Essential Information

Theory
Kullback-Leibler Distance
(Relative Entropy)

• Remember:
 – long series of experiments... c_1/T_1 oscillates around some
 number... we can only estimate it... to get a distribution q.
• So we get a distribution q: $(\text{sample space } \Omega, \text{ r.v. } X)$
 the true distribution is, however, p. $(\text{same } \Omega, X)$
 \Rightarrow how big error are we making?
• $D(p||q)$ (the Kullback-Leibler distance):

 $D(p||q) = \sum_{x \in \Omega} p(x) \log_2 \left(\frac{p(x)}{q(x)} \right) = E_p \log_2 \left(\frac{p(x)}{q(x)} \right)$
Comments on Relative Entropy

- Conventions:
 - $0 \log 0 = 0$
 - $p \log (p/0) = \infty$ (for $p > 0$)

- Distance? (less “misleading”: Divergence)
 - not quite:
 - not symmetric: $D(p||q) \neq D(q||p)$
 - does not satisfy the triangle inequality
 - but useful to look at it that way

- $H(p) + D(p||q)$: bits needed for encoding p if q is used
Mutual Information (MI) in terms of relative entropy

- Random variables X, Y; $p_{X \cap Y}(x,y)$, $p_X(x)$, $p_Y(y)$
- Mutual information (between two random variables X,Y):

$$I(X,Y) = D(p(x,y) \parallel p(x)p(y))$$

- $I(X,Y)$ measures how much (our knowledge of) Y contributes (on average) to easing the prediction of X
- or, how $p(x,y)$ deviates from (independent) $p(x)p(y)$
Mutual Information: the Formula

- Rewrite the definition: \[D(r|s) = \sum_{v \in \Omega} r(v) \log_2 \frac{r(v)}{s(v)}; \]
 substitute \(r(v) = p(x,y), s(v) = p(x)p(y); <v> \sim <x,y> \]

\[
I(X,Y) = D(p(x,y) \parallel p(x)p(y)) = \\
= \sum_{x \in \Omega} \sum_{y \in \Psi} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}
\]

- Measured in bits (what else? :-)
Properties of MI vs. Entropy

\[I(X, Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \]

(number of bits the knowledge of Y lowers the entropy of X)

(prev. foil, symmetry)

Recall: \(H(X,Y) = H(X|Y) + H(Y) \Rightarrow -H(X|Y) = H(Y) - H(X,Y) \Rightarrow \)

\[I(X, Y) = H(X) + H(Y) - H(X,Y) \]

\[I(X, X) = H(X) \text{ (since } H(X|X) = 0) \]

\[I(X, Y) = I(Y, X) \text{ (just for completeness)} \]

\[I(X, Y) \geq 0 \text{ ... let's prove that now (as promised).} \]
Language Modeling (and) the Noisy Channel
The Noisy Channel

- Prototypical case:
 Input\[0,1,1,1,0,1,0,1,...\] \rightarrow \text{The channel (adds noise)} \rightarrow \text{Output (noisy)} \[0,1,1,0,0,1,1,0,...\]

- Model: probability of error (noise):
 - Example: \(p(0|1) = .3\) \(p(1|1) = .7\) \(p(1|0) = .4\) \(p(0|0) = .6\)

- The Task:
 known: the noisy output; want to know: the input (decoding)
Noisy Channel Applications

- OCR
 - straightforward: text → print (adds noise), scan → image
- Handwriting recognition
 - text → neurons, muscles ("noise"), scan/digitize → image
- Speech recognition (dictation, commands, etc.)
 - text → conversion to acoustic signal ("noise") → acoustic waves
- Machine Translation
 - text in target language → translation ("noise") → source language
- Also: Part of Speech Tagging
 - sequence of tags → selection of word forms → text
Noisy Channel: The Golden Rule of ...

- Recall:
 \[p(A|B) = \frac{p(B|A) \ p(A)}{p(B)} \] (Bayes formula)
 \[A_{\text{best}} = \text{argmax}_A p(B|A) \ p(A) \] (The Golden Rule)

- \(p(B|A) \): the acoustic/image/translation/lexical model
 - application-specific name
 - will explore later

- \(p(A) \): the language model
The Perfect Language Model

- **Sequence of word forms** [forget about tagging for the moment]
- **Notation:** \(A \sim W = (w_1, w_2, w_3, \ldots, w_d) \)
- **The big (modeling) question:**
 \[p(W) = ? \]
- **Well, we know** (Bayes/chain rule →):
 \[p(W) = p(w_1, w_2, w_3, \ldots, w_d) = \]
 \[= p(w_1) \times p(w_2|w_1) \times p(w_3|w_1, w_2) \times \ldots \times p(w_d|w_1, w_2, \ldots, w_{d-1}) \]
- **Not practical** (even short \(W \) → too many parameters)
Markov Chain

• Unlimited memory (cf. previous foil):
 - for w_i, we know all its predecessors $w_{1}, w_{2}, w_{3}, \ldots, w_{i-1}$

• Limited memory:
 - we disregard “too old” predecessors
 - remember only k previous words: $w_{i-k}, w_{i-k+1}, \ldots, w_{i-1}$
 - called “k^th order Markov approximation”

• + stationary character (no change over time):
 $$p(W) \approx \prod_{i=1}^{d} p(w_i | w_{i-k}, w_{i-k+1}, \ldots, w_{i-1}), \quad d = |W|$$
n-gram Language Models

- (n-1)th order Markov approximation → n-gram LM:

\[
p(W) = \prod_{i=1}^{n} p(w_i|w_{i-n+1},w_{i-n+2},...,w_{i-1})
\]

- In particular (assume vocabulary $|V| = 60k$):
 - 0-gram LM: uniform model, $p(w) = 1/|V|$, 1 parameter
 - 1-gram LM: unigram model, $p(w)$, 6×10^4 parameters
 - 2-gram LM: bigram model, $p(w_i|w_{i-1})$, 3.6×10^9 parameters
 - 3-gram LM: trigram model, $p(w_i|w_{i-2},w_{i-1})$, 2.16×10^{14} parameters
LM: Observations

- How large n?
 - nothing is enough (theoretically)
 - but anyway: as much as possible (\rightarrow close to “perfect” model)
 - empirically: 3
 - parameter estimation? (reliability, data availability, storage space, ...)
 - 4 is too much: $|V|=60k \rightarrow 1.296\times10^{19}$ parameters
 - but: 6-7 would be (almost) ideal (having enough data): in fact, one can recover original from 7-grams!

- Reliability $\sim (1 / \text{Detail})$ (\rightarrow need compromise)

- For now, keep word forms (no “linguistic” processing)
The Length Issue

- $\forall n; \Sigma_{w \in \Omega^n} p(w) = 1 \Rightarrow \Sigma_{n=1}^{\infty} \Sigma_{w \in \Omega^n} p(w) \gg 1$ ($\rightarrow \infty$)

- We want to model all sequences of words
 - for "fixed" length tasks: no problem - n fixed, sum is 1
 - tagging, OCR/handwriting (if words identified ahead of time)
 - for "variable" length tasks: have to account for
 - discount shorter sentences

- General model: for each sequence of words of length n,
 define $p'(w) = \lambda_n p(w)$ such that $\Sigma_{n=1}^{\infty} \lambda_n = 1 \Rightarrow$
 $\Sigma_{n=1}^{\infty} \Sigma_{w \in \Omega^n} p'(w) = 1$

 e.g., estimate λ_n from data; or use normal or other distribution
Parameter Estimation

- Parameter: numerical value needed to compute $p(w|h)$
- From data (how else?)
- Data preparation:
 - get rid of formatting etc. ("text cleaning")
 - define words (separate but include punctuation, call it "word")
 - define sentence boundaries (insert "words" `<s>` and `</s>`)
 - letter case: keep, discard, or be smart:
 - name recognition
 - number type identification
 [these are huge problems per se!]
 - numbers: keep, replace by `<num>`, or be smart (form ~ pronunciation)
Maximum Likelihood Estimate

- MLE: Relative Frequency...
 - ...best predicts the data at hand (the “training data”)

- Trigrams from Training Data T:
 - count sequences of three words in T: \(c_3(w_{i-2}, w_{i-1}, w_i) \)
 - [NB: notation: just saying that the three words follow each other]
 - count sequences of two words in T: \(c_2(w_{i-1}, w_i) \):
 - either use \(c_2(y, z) = \sum_w c_3(y, z, w) \)
 - or count differently at the beginning (& end) of data!

\[
p(w_i | w_{i-2}, w_{i-1}) = \text{est.} \frac{c_3(w_{i-2}, w_{i-1}, w_i)}{c_2(w_{i-2}, w_{i-1})}
\]
Character Language Model

- Use individual characters instead of words:

\[p(w) = \prod_{i=1}^{df} p(c_i|c_{i-n+1}, c_{i-n+2}, \ldots, c_{i-1}) \]

- Same formulas etc.
- Might consider 4-grams, 5-grams or even more
- Good only for language comparison
- Transform cross-entropy between letter- and word-based models:

\[H_S(p_c) = \frac{H_S(p_w)}{\text{avg. # of characters/word in } S} \]
LM: an Example

- Training data:
 - Unigram: $p_1(\text{He}) = p_1(\text{buy}) = p_1(\text{the}) = p_1(\text{of}) = p_1(\text{soda}) = p_1(.) = .125$
 $p_1(\text{can}) = .25$
 - Bigram: $p_2(\text{He}|<s>) = 1, p_2(\text{can}|\text{He}) = 1, p_2(\text{buy}|\text{can}) = .5,
 p_2(\text{of}|\text{can}) = .5, p_2(\text{the}|\text{buy}) = 1,...$
 - Trigram: $p_3(\text{He}|<s>,<s>) = 1, p_3(\text{can}|<s>,\text{He}) = 1,$
 $p_3(\text{buy}|\text{He,can}) = 1, p_3(\text{of}|\text{the,can}) = 1, ..., p_3(.,|\text{of, soda}) = 1.$
 - Entropy: $H(p_1) = 2.75, H(p_2) = .25, H(p_3) = 0 \leftarrow \text{Great?!}$
LM: an Example (The Problem)

- Cross-entropy:
- $S = \langle s \rangle \langle s \rangle$ It was the greatest buy of all.
- Even $H_S(p_1)$ fails ($= H_S(p_2) = H_S(p_3) = \infty$), because:
 - all unigrams but $p_1(\text{the})$, $p_1(\text{buy})$, $p_1(\text{of})$ and $p_1(.)$ are 0.
 - all bigram probabilities are 0.
 - all trigram probabilities are 0.
- We want: to make all (theoretically possible*) probabilities non-zero.
The Zero Problem

• “Raw” n-gram language model estimate:
 - necessarily, some zeros
 • many: trigram model $\rightarrow 2.16 \times 10^{14}$ parameters, data $\sim 10^9$ words
 - which are true 0?
 • optimal situation: even the least frequent trigram would be seen several times, in order to distinguish it’s probability vs. other trigrams
 • optimal situation cannot happen, unfortunately (open question: how many data would we need?)
 → we don’t know
 - we must eliminate the zeros

• Two kinds of zeros: $p(w|h) = 0$, or even $p(h) = 0$!
Why do we need Nonzero Probs?

• To avoid infinite Cross Entropy:
 – happens when an event is found in test data which has not been seen in training data
 \[H(p) = \infty: \] prevents comparing data with \(\geq 0 \) “errors”

• To make the system more robust
 – low count estimates:
 • they typically happen for “detailed” but relatively rare appearances
 – high count estimates: reliable but less “detailed”
Eliminating the Zero Probabilities: Smoothing

- Get new \(p'(w) \) (same \(\Omega \)): almost \(p(w) \) but no zeros
- Discount \(w \) for (some) \(p(w) > 0 \): new \(p'(w) < p(w) \)
 \[\sum_{w \in \text{discounted}} (p(w) - p'(w)) = D \]
- Distribute \(D \) to all \(w; \ p(w) = 0 \): new \(p'(w) > p(w) \)
 - possibly also to other \(w \) with low \(p(w) \)
- For some \(w \) (possibly): \(p'(w) = p(w) \)
- Make sure \(\sum_{w \in \Omega} p'(w) = 1 \)
- There are many ways of \textit{smoothing}
Smoothing by Adding 1

- Simplest but not really usable:
 - Predicting words w from a vocabulary V, training data T:
 $$p'(w|h) = \frac{(c(h,w) + 1)}{(c(h) + |V|)}$$
 - for non-conditional distributions: $p'(w) = \frac{(c(w) + 1)}{(|T| + |V|)}$
 - Problem if $|V| > c(h)$ (as is often the case; even $>> c(h)$!)

- Example:
 Training data:
 $<s>$ what is it what is small ? $|T| = 8$
 - $V = \{ \text{what, is, it, small, ?, <s>, flying, birds, are, a, bird, .} \}$, $|V| = 12$
 - $p(\text{it})=0.125$, $p(\text{what})=0.25$, $p(.)=0$
 $p(\text{what is it?}) = 0.25^2 \times 0.125^2 \approx 0.001$
 $p(\text{it is flying.}) = 0.125 \times 0.25 \times 0.02 = 0$
 - $p'(\text{it}) = 0.1$, $p'(\text{what}) = 0.15$, $p'(.) = 0.05$
 $p'(\text{what is it?}) = 0.15^2 \times 1^2 \approx 0.0002$
 $p'(\text{it is flying.}) = 0.1 \times 0.15 \times 0.05^2 \approx 0.00004$
Adding less than 1

- Equally simple:
 - Predicting words w from a vocabulary V, training data T:
 \[p'(w|h) = \frac{(c(h,w) + \lambda)}{(c(h) + \lambda|V|)}, \lambda < 1 \]
 - for non-conditional distributions: \(p'(w) = \frac{(c(w) + \lambda)}{(|T| + \lambda|V|)} \)

- Example: Training data: \(<s>\) what is it what is small? \(|T| = 8\)
 - \(V = \{ \text{what, is, it, small, ?, <s>, flying, birds, are, a, bird, . } \} \), \(|V| = 12\)
 - \(p(\text{it}) = .125, p(\text{what}) = .25, p(.) = 0 \)
 \(p(\text{what is it}) = .25^2 \times .125^2 \approx .001 \)
 \(p(\text{it is flying}) = .125 \times .25 \times 0^2 = 0 \)
 - Use \(\lambda = .1: \)
 - \(p'(\text{it}) \approx .12, p'(\text{what}) \approx .23, p'(\cdot) \approx .01 \)
 \(p'(\text{what is it}) = .23^2 \times .12^2 \approx .0007 \)
 \(p'(\text{it is flying}) = .12 \times .23 \times .01^2 \approx .000003 \)
Good - Turing

- Suitable for estimation from large data
 - similar idea: discount/boost the relative frequency estimate:
 \[p_r(w) = \frac{(c(w) + 1) \times N(c(w) + 1)}{(|T| \times N(c(w)))}, \]
 where \(N(c) \) is the count of words with count \(c \) (count-of-counts)
 specifically, for \(c(w) = 0 \) (unseen words), \(p_r(w) = \frac{N(1)}{(|T| \times N(0))} \)
 - good for small counts (\(< 5-10\), where \(N(c) \) is high)
 - variants (see MSS)
 - normalization! (so that we have \(\sum_w p'(w) = 1 \))
Good-Turing: An Example

- Example:
 \[p_r(w) = \frac{(c(w) + 1) \times N(c(w) + 1)}{|T| \times N(c(w))} \]

 Training data:
 \(<s>\text{ what is it what is small ? } |T| = 8\)

 \[V = \{ \text{what, is, it, small, ?, <s>, flying, birds, are, a, bird, .} \}, |V| = 12 \]

 \[p(\text{it}) = .125, p(\text{what}) = .25, p(.) = 0 \quad p(\text{what is it?}) = .25^2 \times .125^2 \approx .001 \]

 \[p(\text{it is flying.}) = .125 \times .25 \times 0^2 = 0 \]

- Raw reestimation (\(N(0) = 6, N(1) = 4, N(2) = 2, N(i) = 0\) for \(i > 2\)):
 \[p_r(\text{it}) = \frac{(1+1) \times N(1+1)}{(8 \times N(1))} = 2 \times 2 / (8 \times 4) = .125 \]
 \[p_r(\text{what}) = \frac{(2+1) \times N(2+1)}{(8 \times N(2))} = 3 \times 0 / (8 \times 2) = 0 \quad \text{keep orig. } p(\text{what}) \]
 \[p_r(.) = \frac{(0+1) \times N(0+1)}{(8 \times N(0))} = 1 \times 4 / (8 \times 6) \approx .083 \]

- Normalize (divide by \(1.5 = \sum_{w \in V} p_r(w)\)) and compute:
 \[p'(\text{it}) \approx .08, p'(\text{what}) \approx .17, p'(.) \approx .06 \quad p'(\text{what is it?}) = .17^2 \times .08^2 \approx .0002 \]

 \[p'(\text{it is flying.}) = .08 \times .17 \times .06^2 \approx .00004 \]
Smoothing by Combination: Linear Interpolation

- Combine what?
 - distributions of various level of detail vs. reliability

- n-gram models:
 - use (n-1)gram, (n-2)gram, ..., uniform

 reliability

 detail

- Simplest possible combination:
 - sum of probabilities, normalize:
 - $p(0|0) = .8$, $p(1|0) = .2$, $p(0|1) = 1$, $p(1|1) = 0$, $p(0) = .4$, $p(1) = .6$:
 - $p'(0|0) = .6$, $p'(1|0) = .4$, $p'(0|1) = .7$, $p'(1|1) = .3$
Typical n-gram LM Smoothing

- Weight in less detailed distributions using $\lambda = (\lambda_0, \lambda_1, \lambda_2, \lambda_3)$:
 \[
p'_\lambda(w_i | w_{i-2}, w_{i-1}) = \lambda_3 p_3(w_i | w_{i-2}, w_{i-1}) + \\
 \lambda_2 p_2(w_i | w_{i-1}) + \lambda_1 p_1(w_i) + \lambda_0 / |V|
\]

- Normalize:
 \[
 \lambda_i > 0, \sum_{i=0}^{n} \lambda_i = 1 \text{ is sufficient (} \lambda_0 = 1 - \sum_{i=1}^{n} \lambda_i \text{)} (n=3)
\]

- Estimation using MLE:
 - fix the p_3, p_2, p_1 and $|V|$ parameters as estimated from the training data
 - then find such $\{\lambda_i\}$ which minimizes the cross entropy
 (maximizes probability of data): \[-(1/|D|)\sum_{i=1}^{|D|} \log_2(p'_\lambda(w_i|h_i))\]
The Formulas

• Repeat: minimizing \(-\frac{1}{|H|} \sum_{i=1..|H|} \log_2 (p'_{\lambda}(w_i|h_i))\) over \(\lambda\)

\[
p'_{\lambda}(w_i|h_i) = p'_{\lambda}(w_i|w_{i-2},w_{i-1}) = \lambda_3 p_3(w_i|w_{i-2},w_{i-1}) + \\
\lambda_2 p_2(w_i|w_{i-1}) + \lambda_1 p_1(w_i) + \lambda_0 / |V|
\]

• “Expected Counts (of lambdas)”: \(j = 0..3\)

\[
c(\lambda_j) = \sum_{i=1..|H|} (\lambda_j p_j(w_i|h_i) / p'_{\lambda}(w_i|h_i))
\]

• “Next \(\lambda\)”\(\): \(j = 0..3\)

\[
\lambda_{j,\text{next}} = c(\lambda_j) / \sum_{k=0..3} c(\lambda_k)
\]
The (Smoothing) EM Algorithm

1. Start with some λ, such that $\lambda_j > 0$ for all $j \in 0..3$.
2. Compute “Expected Counts” for each λ_j.
3. Compute new set of λ_j, using the “Next λ” formula.
4. Start over at step 2, unless a termination condition is met.

- Termination condition: convergence of λ.
 - Simply set an ε, and finish if $|\lambda_j - \lambda_{j,\text{next}}| < \varepsilon$ for each j (step 3).
- Guaranteed to converge:
 - follows from Jensen’s inequality, plus a technical proof.
Remark on Linear Interpolation Smoothing

• “Bucketed” smoothing:
 – use several vectors of λ instead of one, based on (the frequency of) history: $\lambda(h)$
 • e.g. for $h = (\text{micrograms,per})$ we will have
 $$\lambda(h) = (.999,.0009,.00009,.00001)$$
 (because “cubic” is the only word to follow...)
 – actually: not a separate set for each history, but rather a set for “similar” histories (“bucket”):
 $$\lambda(b(h))$$, where $b: V^2 \rightarrow N$ (in the case of trigrams)
 b classifies histories according to their reliability (\sim frequency)
Some More Technical Hints

- Set $V = \{\text{all words from training data}\}$.
 - You may also consider $V = T \cup H$, but it does not make the coding in any way simpler (in fact, harder).
 - But: you must never use the test data for your vocabulary!

- Prepend two “words” in front of all data:
 - avoids beginning-of-data problems
 - call these index -1 and 0: then the formulas hold exactly

- When $c_n(w,h) = 0$:
 - Assign 0 probability to $p_n(w|h)$ where $c_{n-1}(h) > 0$, but a uniform probability $(1/|V|)$ to those $p_n(w|h)$ where $c_{n-1}(h) = 0$ [this must be done both when working on the heldout data during EM, as well as when computing cross-entropy on the test data!]