Ejecicios Unidad 4

  1. Mostrar que PP  ⊆  PSPACE.

  2. (Arora Barak 7.1)

Show that one can efficiently simulate choosing a random number from 1 to N using coin tosses. That is, show that for every N and δ > 0 there is a probabilistic algorithm A running in poly(log N  ×  log(1/δ))-time with output in {1, ... , N, ?} such that (1) conditioned on not outputting ?, A’s output is uniformly distributed in [N] and (2) the probability that A outputs ? is at most δ.

  1. (Abhijit Das) Sea RL la versión de la clase RP pero con cota espacial logarítmica. Sea UPATH la versión no dirigida de PATH (ie, el problema de la conectividad en un grafo no dirigido). Un camino aleatorio en un grafo G es una secuencia de pasos tal que en cada paso se elige un vecino al azar. En 1979, Aleliunas et al. mostraron que un camino aleatorio partiendo de s y de 8 ⋅ ∣V(G)∣ ⋅ ∣E(G)∣ (ie O(m3) con m = ∣V(G)∣) pasos visita t con probabilidad  ≥ 1/2. Describir un algoritmo en RL para UPATH usando ese resultado.

  2. Erratum de la Unidad 3: (Sipser 8.23) Sea UCYCLE == {(G) | G es un grafo no dirigido que tiene un ciclo simple}. Mostrar que UCYCLE pertenece a L." Indicación de Goldreich (en el libro Computational complexity: a Conceptual Perspective):

Consider a scanning of the graph that proceeds as follows. Upon entering a vertex v via the ith edge incident at it, we exit this vertex using its i + 1st edge if v has degree at least i + 1 and exit via the first edge otherwise. Note that when started at any vertex of any tree, this scanning performs a DFS. On the other hand, for every cyclic graph there exists a vertex v and an edge e incident to v such that if this scanning is started by traversing the edge e from v then it returns to v via an edge different from e.