

The problem

Classification ("supervised")

Given

* A set of classified examples "instances"

Produce

* A way of classifying new examples

Instances: described by fixed set of features "attributes"
Classes: discrete or continuous "classification" "regression"
Interested in:
Results? (classifying new instances)
Model? (how the decision is made)

Association rules

Look for rules that relate features to other features
Clustering ("unsupervised")
There are no classes

Simplicity first!

* Simple algorithms often work very well!
* There are many kinds of simple structure, eg:
- One attribute does all the work
- All attributes contribute equally and independently
- A decision tree involving tests on a few attributes
- Rules that assign instances to classes
- Distance in instance space from a few class "prototypes"
- Result depends on a linear combination of attributes

Success of method depends on the domain

Agenda

* A very simple strategy
- Overfitting, evaluation
* Statistical modeling
- Bayes rule
* Constructing decision trees
* Constructing rules - + Association rules
- Linear models - Regression, perceptrons, neural nets, SVMs, model trees
* Instance-based learning and clustering - Hierarchical, probabilistic clustering
* Engineering the input and output
- Attribute selection, data transformations, PCA
- Bagging, boosting, stacking, co-training

				<	mpl			
Outlook	Temp	Humidity	Wind	Play	Attribute	Rules	Errors	Total
Sunny	Hot	High	False	No				
Sunny	Hot	High	True	No	Outlook	Sunny \rightarrow No	2/5	4/14
Overcast	Hot	High	False	Yes		Overcast \rightarrow Yes	0/4	
Rainy	Mild	High	False	Yes		Rainy \rightarrow Yes	2/5	
Rainy	Cool	Normal	False	Yes	Temp	Hot \rightarrow No*	2/4	5/14
Rainy	Cool	Normal	True	No		Mild \rightarrow Yes	2/6	
Overcast	Cool	Normal	True	Yes		Cool \rightarrow Yes	1/4	
Sunny	Mild	High	False	No	Humidity	High \rightarrow No	3/7	4/14
Sunny	Cool	Normal	False	Yes		Normal \rightarrow Yes	1/7	
Rainy	Mild	Normal	False	Yes	Wind	False \rightarrow Yes	2/8	5/14
Sunny	Mild	Normal	True	Yes		True $\rightarrow \mathrm{No}^{*}$	3/6	
Overcast	Mild	High	True	Yes				
Overcast	Hot	Normal	False	Yes		* indicates a tie		
Rainy	Mild	High	True	No				

Complications: Missing values

* Omit instances where the attribute value is missing
* Treat "missing" as a separate possible value
"Missing" means what?
* Unknown?
* Unrecorded?
* Irrelevant?

Is there significance in the fact that a value is missing?

Complications: Overfitting

- Nominal vs numeric values for attributes

* Memorization vs generalization
* Do not evaluate rules on the training data
* Here, independent test data shows poor performance
* To fix, use
] Training data - to form rules
- Validation data - to decide on best rule
- Test data - to determine system performance

One attribute does all the work

* This incredibly simple method was described in a 1993 paper
- An experimental evaluation on 16 datasets
- Used cross-validation so that results were representative of performance on new data
- Simple rules often outperformed far more complex methods
* Simplicity first pays off!
"Very Simple Classification Rules Perform Well on Most Commonly Used Datasets"
Robert C. Holte, Computer Science Department, University of Ottawa

Agenda

* A very simple strategy
* Statistical modeling
- Bayes rule
* Constructing decision trees
* Constructing rules
- + Association rules
* Linear models
- Regression, perceptrons, neural nets, SVMs, model trees
* Instance-based learning and clustering
- Hierarchical, probabilistic clustering
* Engineering the input and output
- Attribute selection, data transformations, PCA
- Bagging, boosting, stacking, co-training

Statistical modeling

One attribute does all the work?

* Opposite strategy: use all the attributes
* Two assumptions: Attributes are
- equally important a priori
- statistically independent (given the class value)
I.e., knowing the value of one attribute says nothing about the value of another (if the class is known)
* Independence assumption is never correct!
* But ... often works well in practice

Bayes's rule

Probability of event H given evidence E

* A priori probability of $H \quad \operatorname{Pr}[H]$
- Probability of event before evidence is seen
* A posteriori probability of $H \quad \operatorname{Pr}[H \mid E]$
- Probability of event after evidence is seen
\& "Naïve" assumption:
- Evidence splits into parts that are independent
$\operatorname{Pr}[H \mid E]=\frac{\operatorname{Pr}\left[E_{1} \mid H\right] \operatorname{Pr}\left[E_{1} \mid H\right] \ldots \operatorname{Pr}\left[E_{n} \mid H\right] \operatorname{Pr}[H]}{\operatorname{Pr}[E]}$
Thomas Bayes
British mathematician

Weather data: probabilities

Weather data: probabilities

$$
\begin{aligned}
& \begin{array}{|ccccc|}
\hline \text { Outlook } & \text { Temp. } & \text { Humidity } & \text { Wind } & \text { Play } \\
\hline \text { Sunny } & \text { Cool } & \text { High } & \text { True } & ? \\
\hline
\end{array} \\
& \operatorname{Pr}[\text { yes } \mid E]=\operatorname{Pr}[\text { Outlook }=\text { Sunny } \mid \text { yes }] \\
& \times \operatorname{Pr}[\text { Temperature }=\operatorname{Cool} \mid \text { yes } \\
& \times \operatorname{Pr}[\text { Wind } y=\text { True } \mid \text { yes }] \\
& \times \frac{\operatorname{Pr}[y e s]}{\operatorname{Pr}[E]} \\
& =\frac{\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14}}{\operatorname{Pr}[E]}
\end{aligned}
$$

Numeric attributes

* Often assume attributes have a Gaussian distribution (given the class)
* Its probability density function is defined by two parameters:
- Sample mean
$\mu=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- Standard deviation $\sigma=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}$
* The density function is $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

Carl Friedrich Gauss
German mathematician and scientist
"The prince of mathematicions"
Born 1777 Died 1855

Numeric attributes

* Often assume attributes have a Gaussian distribution (given the class)
* Its probability density function is defined by two parameters:
- Sample mean
$\mu=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- Standard deviation
$\sigma=\frac{1}{n-1} \sum^{n}\left(x_{i}-\mu\right.$
$\%$ The density function is $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
* A new day: | | Outlook | Temp. | Humidity | Wind | Play |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Sunny | 66 | 90 | true | ? |

Likelihood of "yes" $=2 / 9 \times 0.0340 \times 0.0221 \times 3 / 9 \times 9 / 14=0.000036$ Likelihood of "no" $=3 / 5 \times 0.0291 \times 0.0380 \times 3 / 5 \times 5 / 14=0.000136$ P("yes") $=0.000036 /(0.000036+0.000136)=20.9 \%$
P ("no") $=0.000136 /(0.000036+0.000136)=79.1 \%$

"Naïve" statistical model

Naïve $=$ assume attributes are independent

* Naïve Bayes works surprisingly well
- even if independence assumption is clearly violated
* Why?
- Because classification doesn't require accurate probability estimates
- so long as the greatest probability is assigned to the correct class
But: adding redundant attributes causes problems - e.g. identical attributes
* And: numeric attributes may not be normally distributed
- \rightarrow kernel density estimators

Agenda

* A very simple strategy
a Overfitting, evaluation
* Statistical modeling
- Bayes rule
* Constructing decision trees
* Constructing rules - + Association rules
* Linear models
- Regression, perceptrons, neural nets, SVMs , model trees
* Instance-based learning and clustering
. Hierarchical, probabilistic clustering
* Engineering the input and output - Attribute selection, data transformations, PCA - Bagging, boosting, stacking, co-training

Which attribute to select?

Constructing decision trees

* Strategy: top down Recursive divide-and-conquer fashion - First: select attribute for root node Create branch for each possible attribute value
- Then: split instances into subsets One for each branch extending from the node

- Finally: repeat recursively for each branch, using only instances that reach the branch
* Stop if all instances have the same class

Which is the best attribute?

* Criterion: want to get the smallest tree
* Heuristic
choose the attribute that produces the "purest" nodes
- I.e. the greatest information gain
* Information theory: measure information in bits
entropy $\left(p_{1}, p_{2}, \ldots, p_{n}\right)=-p_{1} \log p_{1}-p_{2} \log p_{2} \ldots-p_{n} \log p_{n}$
* Information gain
- Amount of information gained by knowing the value of the attribute
- Entropy of distribution before the split - entropy of distribution after it

Which attribute to select?

0.247 bits

0.029 bits

Continuing to split

gain(temperature) $=0.571$ bits gain(humidity) $\quad=0.971$ bits gain(windy) $\quad=0.020$ bits

Complications

Highly-branching attributes

- Extreme case: ID code
* Overfitting: need to prune
- Prepruning vs postpruning
- Missing values
- During training
- During testing: "fractional instances"
* Numeric attributes
- Choose best "split point" for attribute
- E.g. temp < 25

Constructing decision trees

Top-down induction of decision trees

* The most extensively studied method of machine learning used in data mining
* Different criteria for attribute selection
] rarely make a large difference
* Different pruning methods
- mainly change the size of the pruned tree
* Univariate vs multivariate decision trees
- Single vs compound tests at the nodes
* C4.5 and CART

Constructing rules

* Convert (top-down) decision tree into a rule set - Straightforward, but rule set overly complex
- More effective conversions are not trivial
* Alternative: (bottom-up) covering method
- for each class in turn find rule set that covers all instances in it (excluding instances not in the class)
* Separate-and-conquer method
- First identify a useful rule
- Then separate out all the instances it covers
- Finally "conquer" the remaining instances
* Cf divide-and-conquer methods:
- No need to explore subset covered by rule any further

Rules vs. trees

* Corresponding decision tree: (produces exactly the same predictions)

If $\mathrm{x} \leq 1.2$ then class $=\mathrm{b}$
If $\mathrm{x}>1.2$ and $\mathrm{y} \leq 2.6$ then class $=\mathrm{b}$

* Rule sets can be more perspicuous
- E.g. when decision trees contain replicated subtrees
* Also: in multiclass situations,
- covering algorithm concentrates on one class at a time
- decision tree learner takes all classes into account

Agenda

* A very simple strategy
- Overfitting, evaluation
* Statistical modeling
- Bayes rule
* Constructing decision trees
- Constructing rules - + Association rules
* Linear models
- Regression, perceptrons, neural nets, SVMs, model trees
* Instance-based learning and clustering
- Hierarchical, probabilistic clustering
* Engineering the input and output
- Attribute selection, data transformations, PCA
- Bagging, boosting, stacking, co-training

Constructing rules

For each class C

- Initialize E to the instance set
- While E contains instances in class C
- Create a rule R that predicts class C
- Until R is perfect
- For each attribute A not mentioned in R, and each value v,
* Consider adding the condition $\mathrm{A}=\mathrm{v}$ to the lefthand side of R
* Select A and v to maximize the accuracy p / t (break ties by choosing the condition with the largest p)
$A=v$ to R
- Add $A=v$ to R
- Remove the instances covered by R from E

More about rules

* Rules are order-dependent
- Two rules might assign different classes to an instance
* Work through the classes in turn
- generating rules for that class
* For each class a "decision list" is generated
- Subsequent rules are designed for instances that are not covered by previous rules
- But: order doesn't matter because all rules predict the same class
* Problems: overlapping rules
* For better rules: globalization optimization

ASSOCiation rules						
- ... can predict any attribute an - ... are not intended to be used		Outlook	Temp	Humidity	Wind	Play
		Sunny	Hot	High	False	No
		Sunny	Hot	High	True	No
		overcast	Hot	High	False	Yes
	Problem: immense number	Rainy	Mild	High	False	Yes
		Rainy	Cool	Nor	False	Yes
	- Output needs to be restricted	Rainy overcast	Cool	Normal	True	No
	ctive associations	sunny	Mild	High	False	No
		Sunny	Cool	Normal	False	yes
*	Define	Rainy Sunny	Mild	Normal Normal	Fals True	Yes Yes Yes
	- Support: number of instances	Sunny		Normal High	True	Yes
	- Confidence: correct predictior	overca	Hot	Normal		Yes
	- Confidence. correct predictior	Rainy	Mild	Hig	Tru	No
* Examples If temperature $=\begin{array}{r}\text { cool then humidity }=\text { nor } \\ \text { Support }=4, \text { confidence }=100 \%\end{array}$						
If Wind = false and play $=$ no then outlook = sunny and humidity = high						
		Support	$=2,0$	nfidence	$=100 \%$	
* Specify minimum support and confidence						
] e.g. 58 rules with support ≥ 2 and confidence $\geq 95 \%$						

Example association rules

* Rules with support ≥ 2 and confidence 100% :

	Association rule		Sup.	Conf.
1	Humidity=Normal Wind=False	\Rightarrow Play=Yes	4	100%
2	Temperature=Cool	\Rightarrow Humidity=Normal	4	100%
3	Outlook=Overcast	\Rightarrow Play=Yes	4	100%
4	Temperature=Cold Play=Yes	\Rightarrow Humidity=Normal	3	100%
	\ldots	\ldots	\ldots	\ldots
58	Outlook=Sunny Temperature $=$ Hot	\Rightarrow Humidity=High	2	100%

$$
\begin{array}{lc}
\text { support }=4 & 3 \text { rules } \\
\text { support }=3 & 5 \text { rules } \\
\text { support }=2 & 50 \text { rules }
\end{array}
$$

total 58

Association rules: discussion

* Market basket analysis: huge data sets

Buy beer \Rightarrow buy chips
Day $=$ Thursday
Day $=$ Thursday, buy beer \Rightarrow buy diapers

* May not fit in main memory
- Different algorithms necessary
- Minimize passes through the data
* Practical issue: generating a certain number of rules
- e.g. by incrementally reducing minimum support
* Confidence is not necessarily the best measure
a e.g. milk occurs in almost every supermarket transaction
- Other measures have been devised (e.g. lift)

Agenda

* A very simple strategy
- Overfitting, evaluation
* Statistical modeling
- Bayes rule
* Constructing decision trees
* Constructing rules
- + Association rules
* Linear models
- Regression, perceptrons, neural nets, SVMs, model trees
* Instance-based learning and clustering
- Hierarchical, probabilistic clustering
* Engineering the input and output
- Attribute selection, data transformations, PCA
- Bagging, boosting, stacking, co-training

Linear models

"Regression" = predicting a numeric quantity

* Standard technique: linear regression
- Works most naturally with numeric attributes
- Outcome is linear combination of attributes

$$
x=w_{0}+w_{1} a_{1}+w_{2} a_{2}+\ldots+w_{k} a_{k}
$$

* Calculate weights from the training data
* Predicted value for first training instance $\mathbf{a}^{(1)}$

$$
w_{0} a_{0}^{(1)}+w_{1} a_{1}^{(1)}+w_{2} a_{2}^{(1)}+\ldots+w_{k} a_{k}^{(1)}=\sum_{j=0}^{k} w_{j} a_{j}^{(1)}
$$

* Choose weights to minimize squared error on the training data
* Standard matrix problem
\square Works if there are more instances than attributes

Classification by regression

* Method 1: Multi-response linear regression
- Training: perform a regression for each class
- set output to 1 for training instances that belong to the class, 0 for those that don't
- Prediction: predict class that produces the largest output
- Method 2: Pairwise linear regression
- Find a regression function for every pair of classes, using only instances from these two classes - Assign output of +1 to one class, -1 to the other
- Prediction: use voting
- Class that receives most votes is predicted
- Alternative: "don't know" if there is no agreement

Method 3: Logistic regression

- Alternative to linear regression, designed for classification
. Tries to estimate the class probabilities directly

Support vector machine

The support vectors define the maximum margin hyperplane All other instances can be deleted without changing it!

Multilayer perceptron

* Network of linear classifiers
- Input layer, hidden layer(s), and output layer
* Parameters are found by backpropagation
* Minimize error using "gradient descent"
* Can get excellent results
* Involves experimentation
input \mathbf{x}

Trees for numeric prediction

* Regression tree
- each leaf predicts a numeric quantity
- Predict the average value of training instances at the leaf

Discussion of linear models

* Linear regression: well-founded mathematical technique
* Can be used for classification in situations that are "linearly separable"
* ... but very susceptible to noise
* Support vector machines yield excellent performance \square particularly in situations with many redundant attributes
* Multilayer perceptrons ("neural nets") can work well a but often require much experimentation
* Regression/model trees grew out of decision trees - Regression trees were introduced in CART - Model trees were developed by Quinlan

Agenda
 A very simple strategy
 - Overfitting, evaluation
 * Statistical modeling
 - Bayes rule
 * Constructing decision trees
 * Constructing rules
 - + Association rules
 * Linear models

Reqression, perceptrons, neural nets, SVMs, model trees

* Instance-based learning and clustering
- Hierarchical, probabilistic clustering
* Engineering the input and output
- Attribute selection, data transformations, PCA
- Bagging, boosting, stacking, co-training

Instance-based learning

* Often very accurate
* ... but slow:
- scan entire training data to make each prediction?
- sophisticated data structures can make this much faster
* Assumes all attributes are equally important
- Remedy: attribute selection or weights
* Remedies against noisy instances:
- Majority vote over the k nearest neighbors

Weight instances according to their prediction accuracy

- Identify reliable "prototypes" for each class
* Statisticians have used k-NN since 1950s
- If $n \rightarrow \infty$ and $k / n \rightarrow 0$, error approaches minimum

```
Clustering
Unsupervised vs supervised learning (classification)
* No target value to predict
* Differences between models/algorithms:
Exclusive vs. overlapping
- Hierarchical vs. flat
I Incremental vs. batch learning
- Deterministic vs. probabilistic
* Evaluation?
Usually by inspection
- Clusters-to-classes evaluation?
- Probabilistic density estimation can be evaluated on test data
```


Hierarchical clustering

Bottom up

- Start with single-instance clusters
- At each step, join the two closest clusters
- How to define the distance between clusters? - Distance between the two closest instances? - Distance between the means
- Start with one universal cluster
- Find two clusters
- Proceed recursively on each subset

Iterative: fixed num of clusters

The k-means algorithm
To cluster data into k groups (k is predefined)

1. Choose k cluster centers ("seeds") - e.g. at random
2. Assign instances to clusters

- based on distance to cluster centroids

3. Compute centroids of clusters
4. Go to step 1

- until convergence
* Results can depend strongly on initial seeds
* Can get trapped in local minumum - Rerun with different seeds?

Probabilistic clustering

* Model data using a mixture of normal distributions
* One cluster, one distribution
- governs probabilities of attribute values in that cluster
* Finite mixtures : finite number of clusters

Extending the mixture model

More then two distributions: easy

* Several attributes: easy-assuming independence!
* Correlated attributes: difficult
a Joint model: bivariate normal distribution with a (symmetric) covariance matrix
- n attributes: need to estimate $n+n(n+1) / 2$ parameters
* Nominal attributes: easy (if independent)
* Missing values: easy
- Can use other distributions than normal:
- "log-normal" if predetermined minimum is given
- "log-odds" if bounded from above and below
- Poisson for attributes that are integer counts
* Unknown number of clusters:
- Use cross-validation to estimate k

Bayesian clustering

* Problem: many parameters $\Rightarrow \mathrm{EM}$ overfits
* Bayesian approach : give every parameter a prior probability distribution
Incorporate prior into overall likelihood figure
- Penalizes introduction of parameters
* Eg: Laplace estimator for nominal attributes
* Can also have prior on number of clusters!
* Implementation: NASA's AUTOCLASS

Agenda

* A very simple strategy
- Overfitting, evaluation
\% Statistical modeling
- Bayes rule
- Constructing decision trees

Constructing rules
$\square+$ Association rules
Linear models

- Regression, perceptrons, neural nets, SVMs, model trees

Instance-based learning and clustering

- Hierarchical, probabilistic clustering
* E
gineering the input and output
- Attribute selection, data transformations, PCA
- Bagging, boosting, stacking, co-training

Engineering the input \& output

Just apply a learner? - NO!

* Attribute selection
- Scheme-independent, scheme-specific
* Attribute discretization
- Unsupervised, supervised
* Data transformations
- Ad hoc, Principal component analysis
* Dirty data
\square Data cleansing, robust regression, anomaly detection
* Combining multiple models
- Bagging, randomization, boosting, stacking
* Using unlabeled data
- Co-training

Attribute selection

* Adding a random (i.e. irrelevant) attribute can significantly degrade C4.5's performance
- Problem: attribute selection based on smaller and smaller amounts of data
* IBL very susceptible to irrelevant attributes
- Number of training instances required increases exponentially with number of irrelevant attributes
* Naïve Bayes doesn't have this problem
* Relevant attributes can also be harmful

Data transformations

* Simple transformations can often make a large difference in performance
* Example transformations (not necessarily for performance improvement):
- Difference of two date attributes
- Ratio of two numeric (ratio-scale) attributes
- Concatenating the values of nominal attributes
- Encoding cluster membership
- Adding noise to data
. Removing data randomly or selectively
- Obfuscating the data
* Principal component analysis

Principal component analysis

* Method for identifying the important "directions" in the data
* Can rotate data into (reduced) coordinate system that is given by those directions
* Algorithm:

1. Find direction (axis) of greatest variance
2. Find direction of greatest variance that is perpendicular to previous direction and repeat

* Implementation: find eigenvectors of covariance matrix by diagonalization
- Eigenvectors (sorted by eigenvalues) are the directions

Combining multiple models

* Basic idea:
build different "experts," let them vote
* Advantage:
- often improves predictive performance
* Disadvantage:
. usually produces output that is very hard to analyze
but: there are approaches that aim to produce a single comprehensible structure
* Methods
- Bagging
- Randomization
- Boosting
- Stacking

Bagging

* Combining predictions by voting/averaging
- Simplest way
- Each model receives equal weight
* "Idealized" version:
- Sample several training sets of size n (instead of just having one training set of size n)
- Build a classifier for each training set
- Combine the classifiers' predictions
* Learning scheme is unstable P
almost always improves performance
- Small change in training data can make big change in model (e.g. decision trees)

Randomization

* Can randomize learning algorithm instead of input
* Some algorithms already have a random component: eg. initial weights in neural net
* Most algorithms can be randomized, eg. greedy algorithms:
- Pick from the N best options at random instead of always picking the best options
- Eg.: attribute selection in decision trees
* More generally applicable than bagging: e.g. random subsets in nearest-neighbor scheme
* Can be combined with bagging

Stacking

* To combine predictions of base learners, don't vote, use meta learner
- Base learners: level-0 models
- Meta learner: level-1 model
- Predictions of base learners are input to meta learner
* Base learners are usually different schemes
* Can't use predictions on training data to generate data for level-1 model!
- Instead use cross-validation-like scheme
* Hard to analyze theoretically: "black magic"

Boosting

* Also uses voting/averaging
* Weights models according to performance
* Iterative: new models are influenced by performance of previously built ones
- Encourage new model to become an "expert" for instances misclassified by earlier models
- Intuitive justification: models should be experts that complement each other
Several variants

Data mining with Weka

* There is no magic in data mining
a Instead, a huge array of alternative techniques
* There is no single universal "best method" - Experiment! Which ones work best on your problem?
\therefore The WEKA machine learning workbench - http://www.cs.waikato.ac.nz/ml/weka
* Data mining: practical machine learning tools and techniques by Ian H. Witten and Eibe Frank, 2005

