
Data Mining Ian H. Witten

Data Mining
with Weka

Ian H. Witten

Computer Science Department
Waikato University

New Zealand

http://www.cs.waikato.ac.nz/~ihw
http://www.cs.waikato.ac.nz/ml/weka

The problem

Classification (“supervised”)
Given
 A set of classified examples
Produce
 A way of classifying new examples

Instances: described by fixed set of features
Classes: discrete or continuous

Interested in:
Results? (classifying new instances)
Model? (how the decision is made)

“instances”

“attributes”
“classification” “regression”

Association rules
Look for rules that relate features to other features

Clustering (“unsupervised”)
There are no classes

Simplicity first!

 Simple algorithms often work very well!

 There are many kinds of simple structure, eg:
 One attribute does all the work
 All attributes contribute equally and independently
 A decision tree involving tests on a few attributes
 Rules that assign instances to classes
 Distance in instance space from a few class “prototypes”
 Result depends on a linear combination of attributes

 Success of method depends on the domain

Agenda

 A very simple strategy
 Overfitting, evaluation

 Statistical modeling
 Bayes rule

 Constructing decision trees
 Constructing rules

 + Association rules

 Linear models
 Regression, perceptrons, neural nets, SVMs, model trees

 Instance-based learning and clustering
 Hierarchical, probabilistic clustering

 Engineering the input and output
 Attribute selection, data transformations, PCA
 Bagging, boosting, stacking, co-training

One attribute does all the work

 Learn a 1-level decision tree
 i.e., rules that all test one particular attribute

 Basic version
 One branch for each value
 Each branch assigns most frequent class
 Error rate: proportion of instances that don’t belong to

the majority class of their corresponding branch
 Choose attribute with smallest error rate

For each attribute,
For each value of the attribute, make a rule as follows:

count how often each class appears
find the most frequent class
make the rule assign that class to this attribute-value

Calculate the error rate of this attribute’s rules
Choose the attribute with the smallest error rate

Example

3/6True → No*
5/142/8False → YesWind

1/7Normal → Yes
4/143/7High → NoHumidity

5/14

4/14

Total
errors

1/4Cool → Yes
2/6Mild → Yes

2/4Hot → No*Temp

2/5Rainy → Yes
0/4Overcast → Yes
2/5Sunny → NoOutlook

ErrorsRulesAttribute

* indicates a tie

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHotOvercast

NoTrueHighHotSunny

NoFalseHighHotSunny

PlayWindHumidityTempOutlook

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHotOvercast

NoTrueHighHotSunny

NoFalseHighHotSunny

PlayWindHumidityTempOutlook

Data Mining Ian H. Witten

Complications: Missing values

 Omit instances where the attribute value is missing
 Treat “missing” as a separate possible value

“Missing” means what?
 Unknown?
 Unrecorded?
 Irrelevant?

Is there significance in the fact that a value is missing?

 Nominal vs numeric values for attributes

Complications: Overfitting

……………

YesFalse8075Rainy

YesFalse8683Overcast

NoTrue9080Sunny

NoFalse8585Sunny

PlayWindHumidityTempOutlook

0/14

Total
errors

……

0/175 → Yes
0/183 → Yes
0/180 → No

0/185 → NoTemp

ErrorsRulesAttribute

 Memorization vs generalization
 Do not evaluate rules on the training data
 Here, independent test data shows poor performance
 To fix, use

 Training data — to form rules
 Validation data — to decide on best rule
 Test data — to determine system performance

 Evaluate on training set? — NO!

 Independent test set

 Cross-validation

 Stratified cross-validation

 Stratified 10-fold cross-validation,
repeated 10 times

 Leave-one-out

 The “Bootstrap”

Evaluating the result

 This incredibly simple method
was described in a 1993 paper
 An experimental evaluation on 16 datasets
 Used cross-validation so that results were

representative of performance on new data
 Simple rules often outperformed far more

complex methods

 Simplicity first pays off!

“Very Simple Classification Rules Perform Well on Most
Commonly Used Datasets”
Robert C. Holte, Computer Science Department, University of Ottawa

One attribute does all the work

Agenda

 A very simple strategy
 Overfitting, evaluation

 Statistical modeling
 Bayes rule

 Constructing decision trees
 Constructing rules

 + Association rules

 Linear models
 Regression, perceptrons, neural nets, SVMs, model trees

 Instance-based learning and clustering
 Hierarchical, probabilistic clustering

 Engineering the input and output
 Attribute selection, data transformations, PCA
 Bagging, boosting, stacking, co-training

Statistical modeling

 Opposite strategy: use all the attributes
 Two assumptions: Attributes are

 equally important a priori
 statistically independent (given the class value)

I.e., knowing the value of one attribute says nothing
about the value of another (if the class is known)

 Independence assumption is never correct!
 But … often works well in practice

One attribute does all the work?

Data Mining Ian H. Witten

 Probability of event H given evidence E

 A priori probability of H
 Probability of event before evidence is seen

 A posteriori probability of H
 Probability of event after evidence is seen

Bayes’s rule

]Pr[
]Pr[]|Pr[]|Pr[

E
HHEEH =

]|Pr[EH

]Pr[H

Thomas Bayes
British mathematician and Presbyterian minister
Born 1702 Died 1761

!

Pr[H | E] =
Pr[E1 |H]Pr[E1 |H]...Pr[En |H]Pr[H]

Pr[E]

 “Naïve” assumption:
 Evidence splits into parts that are independent

instanceclass

Weather data: probabilities

5/14

5

No

9/14

9

Yes

Play

3/5

2/5

3

2

No

3/9

6/9

3

6

Yes

True

False

True

False

Wind

1/5

4/5

1

4

NoYesNoYesNoYes

6/9

3/9

6

3

Normal

High

Normal

High

Humidity

1/5

2/5

2/5

1

2

2

3/9

4/9

2/9

3

4

2

Cool2/53/9Rainy

Mild

Hot

Cool

Mild

Hot

Temperature

0/54/9Overcast

3/52/9Sunny

23Rainy

04Overcast

32Sunny

Outlook

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHotOvercast

NoTrueHighHotSunny

NoFalseHighHotSunny

PlayWindHumidityTempOutlook

5/14

5

No

9/14

9

Yes

Play

3/5

2/5

3

2

No

3/9

6/9

3

6

Yes

True

False

True

False

Wind

1/5

4/5

1

4

NoYesNoYesNoYes

6/9

3/9

6

3

Normal

High

Normal

High

Humidity

1/5

2/5

2/5

1

2

2

3/9

4/9

2/9

3

4

2

Cool2/53/9Rainy

Mild

Hot

Cool

Mild

Hot

Temperature

0/54/9Overcast

3/52/9Sunny

23Rainy

04Overcast

32Sunny

Outlook

?TrueHighCoolSunny

PlayWindHumidityTemp.Outlook A new day:

Likelihood of the two classes

For “yes” = 2/9 × 3/9 × 3/9 × 3/9 × 9/14 = 0.0053

For “no” = 3/5 × 1/5 × 4/5 × 3/5 × 5/14 = 0.0206

Conversion into a probability by normalization:

P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205

P(“no”) = 0.0206 / (0.0053 + 0.0206) = 0.795

Weather data: probabilities

?TrueHighCoolSunny

PlayWindHumidityTemp.Outlook Evidence E

Probability of
class “yes”

]|Pr[]|Pr[yesSunnyOutlookEyes ==

]|Pr[yesCooleTemperatur =!

]|Pr[yesHighHumidity =!

]|Pr[yesTrueWindy =!

]Pr[
]Pr[

E
yes

!

]Pr[
14
9

9
3

9
3

9
3

9
2

E
!!!!

=

Weather data: probabilities

 Training: do not include instance in frequency
count for attribute value-class combination

 Classification: omit attribute from calculation
 Example:

Missing values

?TrueHighCool?

PlayWindHumidityTemp.Outlook

Likelihood of “yes” = 3/9 × 3/9 × 3/9 × 9/14 = 0.0238

Likelihood of “no” = 1/5 × 4/5 × 3/5 × 5/14 = 0.0343

P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%

Complications
Zero frequencies

 An attribute value doesn’t occur with every class
 Probability will be zero! 0]|Pr[== yesHighHumidity

Numeric attributes

 Often assume attributes have a Gaussian distribution
(given the class)

 Its probability density function is defined
by two parameters:
 Sample mean

 Standard deviation

 The density function is

!
=

=
n

i
ixn 1

1
µ

!
=

"
"

=
n

i
ixn 1

2)(
1
1

µ#

2

2

2
)(

2
1)(!

µ

!"

#
#

=
x

exf

Carl Friedrich Gauss
German mathematician and scientist
“The prince of mathematicians”
Born 1777 Died 1855

Data Mining Ian H. Witten

Numeric attributes

 Often assume attributes have a Gaussian distribution
(given the class)

 Its probability density function is defined
by two parameters:
 Sample mean

 Standard deviation

 The density function is

!
=

=
n

i
ixn 1

1
µ

!
=

"
"

=
n

i
ixn 1

2)(
1
1

µ#

2

2

2
)(

2
1)(!

µ

!"

#
#

=
x

exf

 A new day:
?true9066Sunny

PlayWindHumidityTemp.Outlook

Likelihood of “yes” = 2/9 × 0.0340 × 0.0221 × 3/9 × 9/14 = 0.000036

Likelihood of “no” = 3/5 × 0.0291 × 0.0380 × 3/5 × 5/14 = 0.000136

P(“yes”) = 0.000036 / (0.000036 + 0. 000136) = 20.9%

P(“no”) = 0.000136 / (0.000036 + 0. 000136) = 79.1%

“Naïve” statistical model

Naïve = assume attributes are independent

 Naïve Bayes works surprisingly well
 even if independence assumption is clearly violated

 Why?
 Because classification doesn’t require accurate

probability estimates
 so long as the greatest probability is assigned to the

correct class

 But: adding redundant attributes causes problems
 e.g. identical attributes

 And: numeric attributes may not be normally
distributed
 → kernel density estimators

Agenda

 A very simple strategy
 Overfitting, evaluation

 Statistical modeling
 Bayes rule

 Constructing decision trees
 Constructing rules

 + Association rules

 Linear models
 Regression, perceptrons, neural nets, SVMs, model trees

 Instance-based learning and clustering
 Hierarchical, probabilistic clustering

 Engineering the input and output
 Attribute selection, data transformations, PCA
 Bagging, boosting, stacking, co-training

Constructing decision trees

 Strategy: top down
Recursive divide-and-conquer fashion
 First: select attribute for root node

Create branch for each possible
attribute value

 Then: split instances into subsets
One for each branch extending
from the node

 Finally: repeat recursively for each branch,
using only instances that reach the branch

 Stop if all instances have the same class

Which attribute to select? Which is the best attribute?

 Criterion: want to get the smallest tree
 Heuristic

 choose the attribute that produces the “purest” nodes
 I.e. the greatest information gain

 Information theory: measure information in bits

 Information gain
 Amount of information gained by knowing the value of

the attribute
 Entropy of distribution before the split

– entropy of distribution after it

!

entropy(p1, p2,..., pn) = "p1logp1 " p2logp2..." pnlogpn

Claude Shannon
American mathematician and scientist
“The father of information theory”
Born 1916 Died 2001

Data Mining Ian H. Witten

Which attribute to select?

0.247 bits
0.152 bits

0.048 bits 0.029 bits

Continuing to split

gain(temperature) = 0.571 bits
gain(humidity) = 0.971 bits
gain(windy) = 0.020 bits

Complications

 Highly-branching attributes
 Extreme case: ID code

n

m

l

k

j

i

h

g

f

e

d

c

b

a

ID code

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHotOvercast

NoTrueHighHotSunny

NoFalseHighHotSunny

PlayWindHumidityTempOutlook

Info gain is maximal
(0.940 bits)

Complications

 Highly-branching attributes
 Extreme case: ID code

 Overfitting: need to prune

goodgoodgoodbad{good,bad}Acceptability of contract
halffull?none{none,half,full}Health plan contribution
yes??no{yes,no}Bereavement assistance
fullfull?none{none,half,full}Dental plan contribution
yes??no{yes,no}Long-term disability assistance
avggengenavg{below-avg,avg,gen}Vacation
12121511(Number of days)Statutory holidays
???yes{yes,no}Education allowance

Shift-work supplement
Standby pay
Pension
Working hours per week
Cost of living adjustment
Wage increase third year
Wage increase second year
Wage increase first year
Duration

Attribute

44%5%?Percentage
??13%?Percentage
???none{none,ret-allw, empl-cntr}
40383528(Number of hours)
none?tcfnone{none,tcf,tc}
????Percentage
4.04.4%5%?Percentage
4.54.3%4%2%Percentage
2321(Number of years)

40…321Type

Complications

 Highly-branching attributes
 Extreme case: ID code

 Overfitting: need to prune

Complications

 Highly-branching attributes
 Extreme case: ID code

 Overfitting: need to prune
 Prepruning vs postpruning

 Missing values
 During training
 During testing: “fractional instances”

 Numeric attributes
 Choose best “split point” for attribute
 E.g. temp < 25

Data Mining Ian H. Witten

 The most extensively studied method of machine
learning used in data mining

 Different criteria for attribute selection
 rarely make a large difference

 Different pruning methods
 mainly change the size of the pruned tree

 Univariate vs multivariate decision trees
 Single vs compound tests at the nodes

 C4.5 and CART

Constructing decision trees
Top-down induction of decision trees

Ross Quinlan
Australian computer scientist
University of Sydney

Agenda

 A very simple strategy
 Overfitting, evaluation

 Statistical modeling
 Bayes rule

 Constructing decision trees
 Constructing rules

 + Association rules

 Linear models
 Regression, perceptrons, neural nets, SVMs, model trees

 Instance-based learning and clustering
 Hierarchical, probabilistic clustering

 Engineering the input and output
 Attribute selection, data transformations, PCA
 Bagging, boosting, stacking, co-training

Constructing rules

 Convert (top-down) decision tree into a rule set
 Straightforward, but rule set overly complex
 More effective conversions are not trivial

 Alternative: (bottom-up) covering method
 for each class in turn find rule set that covers all

instances in it
(excluding instances not in the class)

 Separate-and-conquer method
 First identify a useful rule
 Then separate out all the instances it covers
 Finally “conquer” the remaining instances

 Cf divide-and-conquer methods:
 No need to explore subset covered by rule any further

Generating a rule

y

x

a

b b

b

b

b

b
b

b

b b b
b

b
b

a a
aa

a
y

a

b b

b

b

b

b
b

b

b b b
b

b
b

a a
aa

a

x
1·2

y

a

b b

b

b

b

b
b

b

b b b
b

b
b

a a
aa

a

x
1·2

2·6

If x > 1.2
then class = a

If x > 1.2 and y > 2.6
then class = a

If true
then class = a

 Possible rule set for class “b”:

 Could add more rules, get “perfect” rule set

If x ≤ 1.2 then class = b
If x > 1.2 and y ≤ 2.6 then class = b

 Corresponding decision tree:
(produces exactly the same
predictions)

 Rule sets can be more perspicuous
 E.g. when decision trees contain replicated subtrees

 Also: in multiclass situations,
 covering algorithm concentrates on one class at a time
 decision tree learner takes all classes into account

Rules vs. trees

If x ≤ 1.2 then class = b
If x > 1.2 and y ≤ 2.6 then class = b

For each class C
 Initialize E to the instance set
 While E contains instances in class C

 Create a rule R that predicts class C
(with empty left-hand side)

 Until R is perfect
(or there are no more attributes to use)

• For each attribute A not mentioned in R, and each
value v,
 Consider adding the condition A = v to the left-

hand side of R
 Select A and v to maximize the accuracy p/t

(break ties by choosing the condition with the
largest p)

• Add A = v to R

 Remove the instances covered by R from E

Constructing rules

Data Mining Ian H. Witten

More about rules

 Rules are order-dependent
 Two rules might assign different classes to an instance

 Work through the classes in turn
 generating rules for that class

 For each class a “decision list” is generated
 Subsequent rules are designed for instances that are

not covered by previous rules
 But: order doesn’t matter because all rules predict the

same class

 Problems: overlapping rules
 For better rules: globalization optimization

Association rules

 … can predict any attribute and combinations of attributes
 … are not intended to be used together as a set

 Problem: immense number of possible associations
 Output needs to be restricted to show only the most

predictive associations

 Define
 Support: number of instances predicted correctly
 Confidence: correct predictions as % of instances covered

 Examples

 Specify minimum support and confidence
 e.g. 58 rules with support ≥ 2 and confidence ≥ 95%

If temperature = cool then humidity = normal

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHotOvercast

NoTrueHighHotSunny

NoFalseHighHotSunny

PlayWindHumidityTempOutlook

If Wind = false and play = no
then outlook = sunny and humidity = high

Support = 4, confidence = 100%

Support = 2, confidence = 100%

Constructing association rules

 To find association rules:
 Use separate-and-conquer
 Treat every possible combination of attribute values as

a separate class

 Two problems:
 Computational complexity
 Huge number of rules

(which would need pruning on the basis of support and
confidence)

 But: we can look for high support rules directly!
 Generate frequent “item sets”

 From them, generate and test possible rules

Temperature = Cool, Humidity = Normal, Wind = False, Play = Yes (2)

Temperature = Cool, Wind = False ⇒ Humidity = Normal, Play = Yes
Temperature = Cool, Wind = False, Humidity = Normal ⇒ Play = Yes
Temperature = Cool, Wind = False, Play = Yes ⇒ Humidity = Normal

(all have support 2, confidence = 100%)

Example association rules

 Rules with support ≥ 2 and confidence 100%:

 support=4 3 rules
 support=3 5 rules
 support=2 50 rules

total 58

100%2⇒ Humidity=HighOutlook=Sunny Temperature=Hot58

............

100%3⇒ Humidity=NormalTemperature=Cold Play=Yes4

100%4⇒ Play=YesOutlook=Overcast3

100%4⇒ Humidity=NormalTemperature=Cool2

100%4⇒ Play=YesHumidity=Normal Wind=False1

Association rule Conf.Sup.

Association rules: discussion

 Market basket analysis: huge data sets

 May not fit in main memory
 Different algorithms necessary
 Minimize passes through the data

 Practical issue: generating a certain number of rules
 e.g. by incrementally reducing minimum support

 Confidence is not necessarily the best measure
 e.g. milk occurs in almost every supermarket transaction
 Other measures have been devised (e.g. lift)

Buy beer ⇒ buy chips
Day = Thursday, buy beer ⇒ buy diapers

Agenda

 A very simple strategy
 Overfitting, evaluation

 Statistical modeling
 Bayes rule

 Constructing decision trees
 Constructing rules

 + Association rules

 Linear models
 Regression, perceptrons, neural nets, SVMs, model trees

 Instance-based learning and clustering
 Hierarchical, probabilistic clustering

 Engineering the input and output
 Attribute selection, data transformations, PCA
 Bagging, boosting, stacking, co-training

Data Mining Ian H. Witten

Linear models

 Standard technique: linear regression
 Works most naturally with numeric attributes
 Outcome is linear combination of attributes

 Calculate weights from the training data
 Predicted value for first training instance a(1)

kkawawawwx ++++= ...22110

!
=

=++++
k

j
jjkk awawawawaw

0

)1()1()1(
22

)1(
11

)1(
00 ...

 Choose weights to minimize squared error on the
training data

 Standard matrix problem
 Works if there are more instances than attributes (roughly speaking)

2

1 0

)()(! !
= =

""
#

$
%%
&

'
(

n

i

k

j

i
jj

i awx

“Regression” = predicting a numeric quantity

Classification by regression

 Method 1: Multi-response linear regression
 Training: perform a regression for each class

 set output to 1 for training instances that belong to the class,
0 for those that don’t

 Prediction: predict class that produces the largest output

 Method 2: Pairwise linear regression
 Find a regression function for every pair of classes,

using only instances from these two classes
 Assign output of +1 to one class, –1 to the other

 Prediction: use voting
 Class that receives most votes is predicted
 Alternative: “don’t know” if there is no agreement

 Method 3: Logistic regression
 Alternative to linear regression, designed for classification
 Tries to estimate the class probabilities directly

Advanced linear models

 Linear model inappropriate if data exhibits non-
linear dependencies

 But: can serve as building blocks for more complex
schemes

 Support vector machine
 Resilient to overfitting
 Learn a particular kind of decision boundary

 Multilayer perceptron
 Network of linear classifiers can approximate any target

concept
 An example of an artificial neural network

 Model tree
 Decision tree with linear model at the nodes

Support vector machine

The support vectors define the maximum margin hyperplane
All other instances can be deleted without changing it!

maximum margin hyperplane

support vectors

Multilayer perceptron

 Network of linear classifiers
 Input layer, hidden layer(s), and output layer

 Parameters are found by backpropagation
 Minimize error using “gradient descent”
 Can get excellent results
 Involves experimentation

input output

Trees for numeric prediction
 Regression tree

 each leaf predicts a numeric quantity
 Predict the average value of training instances at the leaf

 Model tree
 each leaf has a linear regression models
 Linear patches approximate continuous

function

Data Mining Ian H. Witten

Discussion of linear models

 Linear regression: well-founded mathematical
technique

 Can be used for classification in situations that are
“linearly separable”

 … but very susceptible to noise
 Support vector machines yield excellent performance

 particularly in situations with many redundant attributes

 Multilayer perceptrons (“neural nets”) can work well
 but often require much experimentation

 Regression/model trees grew out of decision trees
 Regression trees were introduced in CART
 Model trees were developed by Quinlan

Agenda

 A very simple strategy
 Overfitting, evaluation

 Statistical modeling
 Bayes rule

 Constructing decision trees
 Constructing rules

 + Association rules

 Linear models
 Regression, perceptrons, neural nets, SVMs, model trees

 Instance-based learning and clustering
 Hierarchical, probabilistic clustering

 Engineering the input and output
 Attribute selection, data transformations, PCA
 Bagging, boosting, stacking, co-training

Instance-based learning

 Search training set for instance that’s most like the
new one
 The instances themselves represent the “knowledge”
 Noise will be a problem

 Similarity function defines what’s “learned”
 Euclidean distance
 Nominal attributes? Set to 1 if different, 0 if same
 Weight the attributes?

 Lazy learning: do nothing until you have to
 Methods:

 nearest-neighbor
 k-nearest-neighbor

“Rote learning” = simplest form of learning
 Often very accurate
 … but slow:

 scan entire training data to make each prediction?
 sophisticated data structures can make this much faster

 Assumes all attributes are equally important
 Remedy: attribute selection or weights

 Remedies against noisy instances:
 Majority vote over the k nearest neighbors
 Weight instances according to their prediction accuracy
 Identify reliable “prototypes” for each class

 Statisticians have used k-NN since 1950s
 If n → ∞ and k/n → 0, error approaches minimum

Instance-based learning

Clustering

 No target value to predict
 Differences between models/algorithms:

 Exclusive vs. overlapping
 Hierarchical vs. flat
 Incremental vs. batch learning
 Deterministic vs. probabilistic

 Evaluation?
 Usually by inspection
 Clusters-to-classes evaluation?
 Probabilistic density estimation can be evaluated on

test data

Unsupervised vs supervised learning (classification)

Hierarchical clustering

 Bottom up
 Start with single-instance clusters
 At each step, join the two closest clusters
 How to define the distance between clusters?

 Distance between the two closest instances?
 Distance between the means

 Top down
 Start with one universal cluster
 Find two clusters
 Proceed recursively

on each subset

Data Mining Ian H. Witten

To cluster data into k groups (k is predefined)

1. Choose k cluster centers (“seeds”)
 e.g. at random

2. Assign instances to clusters
 based on distance to cluster centroids

3. Compute centroids of clusters
4. Go to step 1

 until convergence

 Results can depend strongly on initial seeds
 Can get trapped in local minumum

 Rerun with different seeds?

Iterative: fixed num of clusters

The k-means algorithm

A 51
A 43
B 62
B 64
A 45
A 42
A 46
A 45
A 45

B 62
A 47
A 52
B 64
A 51
B 65
A 48
A 49
A 46

B 64
A 51
A 52
B 62
A 49
A 48
B 62
A 43
A 40

A 48
B 64
A 51
B 63
A 43
B 65
B 66
B 65
A 46

A 39
B 62
B 64
A 52
B 63
B 64
A 48
B 64
A 48

A 51
A 48
B 64
A 42
A 48
A 41

Probabilistic clustering

 Model data using a mixture of normal distributions
 One cluster, one distribution

 governs probabilities of attribute values in that cluster

 Finite mixtures : finite number of clusters

µA=50, σA =5, pA=0.6 µB=65, σB =2, pB=0.4

 Learn the clusters ⇒
 determine their parameter, ie mean, standard deviation

 Performance criterion:
 likelihood of training data given the clusters

 Iterative Expection-Maximization (EM) algorithm
 E step: Calculate cluster probability for each instance
 M step: Estimate distribution parameters from cluster probabilities

 Finds a local maximum of the likelihood

Using the mixture model

 Probability that instance x belongs to cluster A:

 Likelihood of an instance given the clusters:

]Pr[
),;(

]Pr[
]Pr[]|Pr[]|Pr[

x
pxf

x
AAxxA AAA !µ
==

2

2

2
)(

2
1),;(!

µ

!"
!µ

#

=
x

exf

!=
i

xx]clusterPr[]cluster|Pr[]onsdistributi the|Pr[ii

Extending the mixture model

 More then two distributions: easy
 Several attributes: easy—assuming independence!
 Correlated attributes: difficult

 Joint model: bivariate normal distribution with a
(symmetric) covariance matrix

 n attributes: need to estimate n + n (n+1)/2 parameters

 Nominal attributes: easy (if independent)
 Missing values: easy
 Can use other distributions than normal:

 “log-normal” if predetermined minimum is given
 “log-odds” if bounded from above and below
 Poisson for attributes that are integer counts

 Unknown number of clusters:
 Use cross-validation to estimate k

Bayesian clustering

 Problem: many parameters ⇒ EM overfits
 Bayesian approach : give every parameter a prior

probability distribution
 Incorporate prior into overall likelihood figure
 Penalizes introduction of parameters

 Eg: Laplace estimator for nominal attributes
 Can also have prior on number of clusters!
 Implementation: NASA’s AUTOCLASS

Agenda

 A very simple strategy
 Overfitting, evaluation

 Statistical modeling
 Bayes rule

 Constructing decision trees
 Constructing rules

 + Association rules

 Linear models
 Regression, perceptrons, neural nets, SVMs, model trees

 Instance-based learning and clustering
 Hierarchical, probabilistic clustering

 Engineering the input and output
 Attribute selection, data transformations, PCA
 Bagging, boosting, stacking, co-training

Data Mining Ian H. Witten

Engineering the input & output

 Attribute selection
 Scheme-independent, scheme-specific

 Attribute discretization
 Unsupervised, supervised

 Data transformations
 Ad hoc, Principal component analysis

 Dirty data
 Data cleansing, robust regression, anomaly detection

 Combining multiple models
 Bagging, randomization, boosting, stacking

 Using unlabeled data
 Co-training

Just apply a learner? – NO!

Attribute selection

 Adding a random (i.e. irrelevant) attribute can
significantly degrade C4.5’s performance
 Problem: attribute selection based on smaller and

smaller amounts of data

 IBL very susceptible to irrelevant attributes
 Number of training instances required increases

exponentially with number of irrelevant attributes

 Naïve Bayes doesn’t have this problem
 Relevant attributes can also be harmful

Data transformations

 Simple transformations can often make a large
difference in performance

 Example transformations (not necessarily for
performance improvement):
 Difference of two date attributes
 Ratio of two numeric (ratio-scale) attributes
 Concatenating the values of nominal attributes
 Encoding cluster membership
 Adding noise to data
 Removing data randomly or selectively
 Obfuscating the data

 Principal component analysis

Principal component analysis

 Method for identifying the important “directions” in
the data

 Can rotate data into (reduced) coordinate system
that is given by those directions

 Algorithm:
1. Find direction (axis) of greatest variance
2. Find direction of greatest variance that is perpendicular

to previous direction and repeat

 Implementation: find eigenvectors of covariance
matrix by diagonalization
 Eigenvectors (sorted by eigenvalues) are the directions

Combining multiple models

 Basic idea:
build different “experts,” let them vote

 Advantage:
 often improves predictive performance

 Disadvantage:
 usually produces output that is very hard to analyze
 but: there are approaches that aim to produce a single

comprehensible structure

 Methods
 Bagging
 Randomization
 Boosting
 Stacking

Bagging

 Combining predictions by voting/averaging
 Simplest way
 Each model receives equal weight

 “Idealized” version:
 Sample several training sets of size n

(instead of just having one training set of size n)
 Build a classifier for each training set
 Combine the classifiers’ predictions

 Learning scheme is unstable Þ
almost always improves performance
 Small change in training data can make big change in

model (e.g. decision trees)

Data Mining Ian H. Witten

Randomization

 Can randomize learning algorithm instead of input
 Some algorithms already have a random

component: eg. initial weights in neural net
 Most algorithms can be randomized, eg. greedy

algorithms:
 Pick from the N best options at random instead of

always picking the best options
 Eg.: attribute selection in decision trees

 More generally applicable than bagging: e.g.
random subsets in nearest-neighbor scheme

 Can be combined with bagging

Boosting

 Also uses voting/averaging
 Weights models according to performance
 Iterative: new models are influenced by

performance of previously built ones
 Encourage new model to become an “expert” for

instances misclassified by earlier models
 Intuitive justification: models should be experts that

complement each other

 Several variants

Stacking

 To combine predictions of base learners, don’t vote,
use meta learner
 Base learners: level-0 models
 Meta learner: level-1 model
 Predictions of base learners are input to meta learner

 Base learners are usually different schemes
 Can’t use predictions on training data to generate

data for level-1 model!
 Instead use cross-validation-like scheme

 Hard to analyze theoretically: “black magic”

Using unlabeled data

 Semisupervised learning: attempts to use unlabeled
data as well as labeled data
 The aim is to improve classification performance

 Why try to do this? Unlabeled data is often plentiful
and labeling data can be expensive
 Web mining: classifying web pages
 Text mining: identifying names in text
 Video mining: classifying people in the news

 Leveraging the large pool of unlabeled examples
would be very attractive

Co-training

 Method for learning from multiple views (multiple
sets of attributes), eg:
 First set of attributes describes content of web page
 Second set of attributes describes links that link to the

web page

 Step 1: build model from each view
 Step 2: use models to assign labels to unlabeled

data
 Step 3: select those unlabeled examples that were

most confidently predicted (ideally, preserving ratio
of classes)

 Step 4: add those examples to the training set
 Step 5: go to Step 1 until data exhausted
 Assumption: views are independent

Agenda

 A very simple strategy
 Overfitting, evaluation

 Statistical modeling
 Bayes rule

 Constructing decision trees
 Constructing rules

 + Association rules

 Linear models
 Regression, perceptrons, neural nets, SVMs, model trees

 Instance-based learning and Clustering
 Hierarchical, probabilistic clustering

 Engineering the input and output
 Attribute selection, data transformations, PCA
 Bagging, boosting, stacking, co-training

Data Mining Ian H. Witten

Data mining with Weka

 There is no magic in data mining
 Instead, a huge array of alternative techniques

 There is no single universal “best method”
 Experiment! Which ones work best on your problem?

 The WEKA machine learning workbench
 http://www.cs.waikato.ac.nz/ml/weka

 Data mining: practical machine learning tools and
techniques by Ian H. Witten and Eibe Frank, 2005

