

The proble	em
Classification ("supervised")	
 A set of classified examples Produce A way of classifying new examples 	"instances
Instances: described by fixed set of f Classes: discrete or continuous	•
Interested in: Results? (classifying new instance Model? (how the decision is mad	,
Association rules Look for rules that relate feature	s to other features
Clustering ("unsupervised") There are no classes	

Simplicity first!

- Simple algorithms often work very well!
- There are many kinds of simple structure, eg:
 - One attribute does all the work
 - All attributes contribute equally and independently
 - A decision tree involving tests on a few attributes
 - Rules that assign instances to classes
 - □ Distance in instance space from a few class "prototypes"
 - Result depends on a linear combination of attributes
- Success of method depends on the domain

Agenda

- ✤ A very simple strategy
- Overfitting, evaluation ✤ Statistical modeling
- Bayes rule
- Constructing decision trees
- Constructing rules
- + Association rules
- Linear models
- □ Regression, perceptrons, neural nets, SVMs, model trees Instance-based learning and clustering
- □ Hierarchical, probabilistic clustering
- Engineering the input and output Attribute selection, data transformations, PCA Bagging, boosting, stacking, co-training

One attribute does all the work

- ✤ Learn a 1-level decision tree
 - □ i.e., rules that all test one particular attribute

Basic version

- One branch for each value
- □ Each branch assigns most frequent class
- Error rate: proportion of instances that don't belong to the majority class of their corresponding branch
- □ Choose attribute with smallest error rate

For each attribute,

For each value of the attribute, make a rule as follows: count how often each class appears find the most frequent class

- make the rule assign that class to this attribute-value
- Calculate the error rate of this attribute's rules Choose the attribute with the smallest error rate

Outlook	Temp	Humidity	Wind	Play	Attribute	Rules	Errors	Total
Sunny	Hot	High	False	No				errors
Sunny	Hot	High	True	No	Outlook	Sunny → No	2/5	4/14
Overcast	Hot	High	False	Yes		Overcast \rightarrow Yes	0/4	
Rainy	Mild	High	False	Yes		Rainy → Yes	2/5	
Rainy	Cool	Normal	False	Yes	Temp	Hot \rightarrow No*	2/4	5/14
Rainy	Cool	Normal	True	No		Mild → Yes	2/6	
Overcast	Cool	Normal	True	Yes		Cool → Yes	1/4	
Sunny	Mild	High	False	No	Humidity	High → No	3/7	4/14
Sunny	Cool	Normal	False	Yes		Normal → Yes	1/7	
Rainy	Mild	Normal	False	Yes	Wind	False \rightarrow Yes	2/8	5/14
Sunny	Mild	Normal	True	Yes		True \rightarrow No*	3/6	
Overcast	Mild	High	True	Yes				
Overcast	Hot	Normal	False	Yes		 indicates a tie 	9	
Rainy	Mild	High	True	No				

Example

Complications: Missing values

- ✤ Omit instances where the attribute value is missing
- Treat "missing" as a separate possible value

"Missing" means what?

- Unknown?
- Unrecorded?
- Irrelevant?

Is there significance in the fact that a value is missing?

Complications: Overfitting

Nominal vs numeric values for attributes

Outlook Sunny	Temp 85	Humidity 85	Wind False	Play No	Attribute	Rules	Errors	Total errors
Sunny	80	90	True	No	Temp	85 → No	0/1	0/14
Overcast	83	86	False	Yes		80 → No	0/1	
Rainy	75	80	False	Yes		83 → Yes	0/1	
'						$75 \rightarrow \text{Yes}$	0/1	

- Memorization vs generalization
- ✤ Do not evaluate rules on the training data
- ✤ Here, independent test data shows poor performance
- To fix, use
 - □ Training data to form rules
 - □ Validation data to decide on best rule
 - Test data to determine system performance

Evaluating the result Evaluate on training set? - NO! Independent test set Cross-validation Stratified cross-validation Stratified 10-fold cross-validation, repeated 10 times Leave-one-out

The "Bootstrap"

One attribute does all the work

- This incredibly simple method
 - was described in a 1993 paper
 - An experimental evaluation on 16 datasets
 Used *cross-validation* so that results were
 - representative of performance on new data
 - Simple rules often outperformed far more complex methods
- Simplicity first pays off!

"Very Simple Classification Rules Perform Well on Most Commonly Used Datasets" Robert C. Holte, Computer Science Department, University of Ottawa

Agenda A very simple strategy Overfitting, evaluation Statistical modeling Bayes rule Constructing decision trees Constructing rules + Association rules Linear models Regression, perceptrons, neural nets, SVMs, model trees Instance-based learning and clustering Hierarchical, probabilistic clustering Engineering the input and output

Attribute selection, data transformations, PCA
 Bagging, boosting, stacking, co-training

Statistical modeling

One attribute does all the work?

- ✤ Opposite strategy: use *all* the attributes
- Two assumptions: Attributes are
 equally important a priori
 - statistically independent (given the class value)
 I.e., knowing the value of one attribute says nothing about the value of another (if the class is known)
- Independence assumption is never correct!
- But ... often works well in practice

Ou	tlook		Tempe	erature		Hu	imidity		v	Vind		PI	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/1
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5			Outloo	k Temp	Hu	nidity	Wind	Pi
								Sunny	Hot	Hig	h	False	No
								Sunny	Hot	Hig		True	No
								Overca		Hig		False	Ye
								Rainy	Mild	Hig		False	Ye
								Rainy Rainy	Cool Cool		mal mal	False	Ye
								Overca			mai mal	True	Ye
								Sunny	Mild	Hig		False	No
								Sunny	Cool		mal	False	Ye
								Rainv	Mild	No	mai	False	Ye
								Sunny	Mild	Not	mal	True	Ye
								Sunny				True True	
									st Mild	Hig			Ye Ye Ye

00	tlook		Tempe	rature		Hu	midity			Wind		PI	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								
				_									
*	A	new	ı day	: 💾	Outlook	Temp.	Hum	idity	Wind	Play			
			,		Sunny	Cool	Hig	jh 🛛	True	?			
				Li	kelihood	of the two	classes						
					For "yes" = 2/9 × 3/9 × 3/9 × 3/9 × 9/14 = 0.0053								
					For "no" = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$								
					Conversion into a probability by normalization:								
				I C	onversio	n into a pro	bability	by nor					
				C		n into a pro es") = 0.00		· ·			15		

outlool

ves

rainy

wind

false

unnv

normal

yes

- entropy of distribution after it

Claude Shannon

American mathematician and scientist "The father of information theory Born 1916 Died 2001

Co	mplicati	or	IS		
 Highly-branch 	ning attributes				
Evtreme c	ase: ID code				
Overfitting: n	eed to prune				
Attribute	Туре	1	2	3	 40
Duration	(Number of years)	1	2	3	 2
Vage increase first year	Percentage	2%	4%	4.3%	4.5
lage increase second year	Percentage	?	5%	4.4%	4.0
lage increase third year	Percentage	?	?	?	?
ost of living adjustment	{none,tcf,tc}	none	tcf	?	none
orking hours per week	(Number of hours)	28	35	38	40
ension	{none,ret-allw, empl-cntr}	none	?	?	?
andby pay	Percentage	?	13%	?	?
hift-work supplement	Percentage	?	5%	4%	4
ducation allowance	{yes,no}	yes	?	?	?
tatutory holidays	(Number of days)	11	15	12	12
acation	{below-avg,avg,gen}	avg	gen	gen	avg
ong-term disability assistance	{yes,no}	no	?	?	yes
ental plan contribution	{none,half,full}	none	?	full	full
ereavement assistance	{yes,no}	no	?	?	yes
lealth plan contribution	{none,half,full}	none	?	full	half
Acceptability of contract	{good,bad}	bad	aood	aood	aood

Constructing decision trees

Top-down induction of decision trees

- The most extensively studied method of machine learning used in data mining
- Different criteria for attribute selection rarely make a large difference
- Different pruning methods mainly change the size of the pruned tree
- Univariate vs multivariate decision trees Single vs compound tests at the nodes
- C4.5 and CART

Ross Quinlan Australian computer scienti University of Sydney

□ Attribute selection, data transformations, PCA □ Bagging, boosting, stacking, co-training

Constructing rules

- Convert (top-down) decision tree into a rule set □ Straightforward, but rule set overly complex □ More effective conversions are not trivial
- Alternative: (bottom-up) covering method □ for each class in turn find rule set that covers all
 - instances in it (excluding instances not in the class)
- ✤ Separate-and-conquer method
 - First identify a useful rule
 - □ Then separate out all the instances it covers
 - $\hfill \square$ Finally "conquer" the remaining instances
- ✤ Cf divide-and-conquer methods:
 - No need to explore subset covered by rule any further

- Remove the instances covered by R from E

More about rules

- Rules are order-dependent
- Two rules might assign different classes to an instance
- Work through the classes in turn generating rules for that class
- ✤ For each class a "decision list" is generated Subsequent rules are designed for instances that are not covered by previous rules
 - □ But: order doesn't matter because all rules predict the same class
- Problems: overlapping rules
- For better rules: globalization optimization

Constructing association rules

- To find association rules:
 - Use separate-and-conquer
 - Treat every possible combination of attribute values as a separate class
- Two problems:
 - Computational complexity
 - Huge number of rules (which would need pruning on the basis of support and confidence)
- But: we can look for high support rules directly! Generate frequent "item sets"

perature = Cool, Humidity = Normal, Wind = False, Play = Yes (2)

□ From them, generate and test possible rules

erature = Cool, Wind = False → Humidity = Normal, Play = Yes erature = Cool, Wind = False, Humidity = Normal → Play = Yes erature = Cool, Wind = False, Play = Yes → Humidity = Normal

(all have support 2, confidence = 100%)

Example association rules

♦ Rules with support \ge 2 and confidence 100%:

	Association rule			Sup.	Conf.
1	Humidity=Normal Wind	=False	⇒ Play=Yes	4	100%
2	Temperature=Cool		➡ Humidity=Normal	4	100%
3	Outlook=Overcast		⇒ Play=Yes	4	100%
4	Temperature=Cold Pla	y=Yes	\Rightarrow Humidity=Normal	3	100%
58	Outlook=Sunny Temper	ature=Hot	⇒ Humidity=High	2	100%
	support=4 support=3 support=2 total				

Association rules: discussion

Market basket analysis: huge data sets

Buy beer \Rightarrow buy chips Day = Thursday, buy beer \Rightarrow buy diapers

- May not fit in main memory
 - Different algorithms necessary
 - Minimize passes through the data
- Practical issue: generating a certain number of rules
- e.g. by incrementally reducing minimum support
- ✤ Confidence is not necessarily the best measure
 - e.g. milk occurs in almost every supermarket transaction □ Other measures have been devised (e.g. lift)

Agenda

- A very simple strategy
- Overfitting, evaluation
- Statistical modeling Bayes rule
- Constructing decision trees
- Constructing rules
- Linear models
 - □ Regression, perceptrons, neural nets, SVMs, model trees
- Instance-based learning and clustering
- Hierarchical, probabilistic clustering
- Engineering the input and output
- □ Attribute selection, data transformations, PCA Bagging, boosting, stacking, co-training

Linear models

"Regression" = predicting a numeric quantity

- ◆ Standard technique: linear regression
 □ Works most naturally with numeric attributes
 □ Outcome is linear combination of attributes
 x = w₀ + w₁a₁ + w₂a₂ + ... + w_ka_k
- Calculate weights from the training data
- Predicted value for first training instance a⁽¹⁾

 $w_0 a_0^{(1)} + w_1 a_1^{(1)} + w_2 a_2^{(1)} + \dots + w_k a_k^{(1)} = \sum_{j=1}^{n} w_j a_j^{(1)}$

• Choose weights to minimize squared error on the training data $\frac{\pi}{2} \left(\begin{array}{cc} 0 & k \\ 0 & k \end{array} \right)^2$

Standard matrix problem
$$\sum_{i=1}^{N} \left(x^{(i)} - \sum_{j=0}^{N} w_j a_j^{(i)} \right)$$

U Works if there are more instances than attributes

Advanced linear models

- Linear model inappropriate if data exhibits nonlinear dependencies
- But: can serve as building blocks for more complex schemes
- ✤ Support vector machine
 - Resilient to overfitting
 Learn a particular kind of decision boundary
- Multilayer perceptron
 - Network of linear classifiers can approximate any target
 - concept
 - □ An example of an artificial neural network
- Model tree
 - Decision tree with linear model at the nodes

Discussion of linear models

- Linear regression: well-founded mathematical technique
- \clubsuit Can be used for classification in situations that are "linearly separable"
- ✤ ... but very susceptible to noise
- Support vector machines yield excellent performance
 particularly in situations with many redundant attributes
- Multilayer perceptrons ("neural nets") can work well
 but often require much experimentation
- Regression/model trees grew out of decision trees
 Regression trees were introduced in CART
 Model trees were developed by Quinlan

Agenda * A very simple strategy Overfitting, evaluation * Statistical modeling Bayes rule * Constructing decision trees * Constructing decision trees * Constructing rules + Association rules * Linear models Regression, perceptrons, neural nets, SVMs, model trees * Instance-based learning and clustering Hierarchical, probabilistic clustering * Engineering the input and output Attribute selection, data transformations, PCA

Instance-based learning

"Rote learning" = simplest form of learning

- Search training set for instance that's most like the new one
 - The instances themselves represent the "knowledge"
 Noise will be a problem
- Similarity function defines what's "learned"
 - Euclidean distance
 Nominal attributes? Set to 1 if different, 0 if same
 Weight the attributes?
- Lazy learning: do nothing until you have to
- Methods:
- nearest-neighbor
- □ *k*-nearest-neighbor

Instance-based learning

□ Bagging, boosting, stacking, co-training

- Often very accurate
- ... but slow:
- scan entire training data to make each prediction?sophisticated data structures can make this much faster
- ✤ Assumes all attributes are equally important
- □ Remedy: attribute selection or weights
- Remedies against noisy instances:
 - Majority vote over the *k* nearest neighbors
 Weight instances according to their prediction accuracy
 Identify reliable "prototypes" for each class
- Statisticians have used k-NN since 1950s
 - □ If $n \rightarrow \infty$ and $k/n \rightarrow 0$, error approaches minimum

Clustering

Unsupervised vs supervised learning (classification)

- No target value to predict
- Differences between models/algorithms:
 - □ Exclusive vs. overlapping
 - Hierarchical vs. flat
 - Incremental vs. batch learning
 - Deterministic vs. probabilistic
- Evaluation?
 - Usually by inspection
 - □ Clusters-to-classes evaluation?
 - Probabilistic density estimation can be evaluated on test data

Hierarchical clustering

- Bottom up
 - Start with single-instance clusters
 - □ At each step, join the two closest clusters
 - How to define the distance between clusters?
 Distance between the two closest instances?
 Distance between the means

gacied

- Top down
 - Start with one universal cluster
 - Find two clusters
 - Proceed recursively
 - on each subset

Iterative: fixed num of clusters

The k-means algorithm

- To cluster data into k groups (k is predefined)
- Choose *k* cluster centers ("seeds")
 □ e.g. at random
- Assign instances to clusters
 □ based on distance to cluster centroids
- 3. Compute centroids of clusters
- 4. Go to step 1
 - until convergence
- Results can depend strongly on initial seeds
- Can get trapped in local minumum
- Rerun with different seeds?

Probabilistic clustering • Model data using a *mixture* of normal distributions • One cluster, one distribution governs probabilities of attribute values in that cluster • *Finite mixtures* : finite number of clusters • *finite mixtures* : finite number of clusters • *finite mixtures* : finite number of clusters • *finite mixtures* : *finite number of clusters* • *finite number of c*

Using the mixture model

- ♦ Probability that instance x belongs to cluster A: $\Pr[A \mid x] = \frac{\Pr[x \mid A]\Pr[A]}{\Pr[x]} = \frac{f(x; \mu_A, \sigma_A)p_A}{\Pr[x]} \qquad f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$
- ✤ Likelihood of an instance given the clusters: $Pr[x | the distributions] = \sum Pr[x | cluster_i]Pr[cluster_i]$
- ♦ Learn the clusters \Rightarrow
- determine their parameter, ie mean, standard deviation
 Performance criterion:
 - likelihood of training data given the clusters
- Iterative Expection-Maximization (EM) algorithm
 E step: Calculate cluster probability for each instance
 - M step: Estimate distribution parameters from cluster probabilities
- Finds a local maximum of the likelihood

Extending the mixture model

- $\boldsymbol{\diamondsuit}$ More then two distributions: easy
- Several attributes: easy—assuming independence!
- Correlated attributes: difficult
 - Joint model: bivariate normal distribution with a (symmetric) covariance matrix
 - □ *n* attributes: need to estimate n + n(n+1)/2 parameters
- Nominal attributes: easy (if independent)
- Missing values: easy
- Can use other distributions than normal:
 - □ "log-normal" if predetermined minimum is given
 - $\hfill\square$ "log-odds" if bounded from above and below
 - Poisson for attributes that are integer counts
- Unknown number of clusters:
 Use cross-validation to estimate k

Bayesian clustering

- ♦ Problem: many parameters \Rightarrow EM overfits
- Bayesian approach : give every parameter a prior probability distribution
 - Incorporate prior into overall likelihood figure
 Penalizes introduction of parameters
- ✤ Eg: Laplace estimator for nominal attributes
- Can also have prior on number of clusters!
- Implementation: NASA's AUTOCLASS

Agenda

- ✤ A very simple strategy
- Overfitting, evaluation
- Statistical modeling
 Bayes rule
- Constructing decision trees
- Constructing rules
- + Association rule
 Linear models
- Enterin models
 Regression, perceptrons, neural nets, SVMs, model trees
- Instance-based learning and clustering
 Hierarchical, probabilistic clustering
- Engineering the input and output
- Attribute selection, data transformations, PCA
 Bagging, boosting, stacking, co-training

Engineering the input & output

Just apply a learner? - NO!

- Attribute selection □ Scheme-independent, scheme-specific
- Attribute discretization □ Unsupervised, supervised
- Data transformations
- Ad hoc, Principal component analysis Dirty data
- Data cleansing, robust regression, anomaly detection Combining multiple models
- Bagging, randomization, boosting, stacking
- ✤ Using unlabeled data
 - Co-training

Attribute selection

- Adding a random (i.e. irrelevant) attribute can significantly degrade C4.5's performance Problem: attribute selection based on smaller and smaller amounts of data
- IBL very susceptible to irrelevant attributes Number of training instances required increases exponentially with number of irrelevant attributes
- Naïve Bayes doesn't have this problem
- Relevant attributes can also be harmful

Data transformations

- Simple transformations can often make a large difference in performance
- Example transformations (not necessarily for performance improvement):
 - Difference of two date attributes
 - Ratio of two numeric (ratio-scale) attributes
 - Concatenating the values of nominal attributes
 - □ Encoding cluster membership
 - Adding noise to data
 - Removing data randomly or selectively
 - Obfuscating the data
- Principal component analysis

Principal component analysis

- Method for identifying the important "directions" in the data
- Can rotate data into (reduced) coordinate system that is given by those directions
- ✤ Algorithm:
 - 1. Find direction (axis) of greatest variance
 - 2. Find direction of greatest variance that is perpendicular to previous direction and repeat
- Implementation: find eigenvectors of covariance matrix by diagonalization □ Eigenvectors (sorted by eigenvalues) are the directions

Combining multiple models

- ✤ Basic idea:
- build different "experts," let them vote
- Advantage:
- often improves predictive performance Disadvantage:
- - usually produces output that is very hard to analyze but: there are approaches that aim to produce a single comprehensible structure
- Methods
 - Bagging
 - Randomization
 - Boosting
 - Stacking

Bagging

- Combining predictions by voting/averaging □ Simplest way
 - Each model receives equal weight
- ✤ "Idealized" version:

 - Sample several training sets of size n (instead of just having one training set of size n)
 - Build a classifier for each training set
 - Combine the classifiers' predictions
- Learning scheme is unstable Þ
 - almost always improves performance
 - Small change in training data can make big change in model (e.g. decision trees)

Randomization

- ✤ Can randomize learning algorithm instead of input
- Some algorithms already have a random component: eq. initial weights in neural net
- Most algorithms can be randomized, eg. greedy algorithms:
 - Pick from the N best options at random instead of always picking the best options
 - □ Eg.: attribute selection in decision trees
- More generally applicable than bagging: e.g. random subsets in nearest-neighbor scheme
- Can be combined with bagging

Boosting

- Also uses voting/averaging
- Weights models according to performance
- Iterative: new models are influenced by performance of previously built ones
 - Encourage new model to become an "expert" for instances misclassified by earlier models
 - Intuitive justification: models should be experts that complement each other
- Several variants

Stacking

- To combine predictions of base learners, don't vote, use *meta learner*
 - □ Base learners: level-0 models
 - Meta learner: level-1 model
 - $\hfill\square$ Predictions of base learners are input to meta learner
- ✤ Base learners are usually different schemes
- Can't use predictions on training data to generate data for level-1 model!
 Instead use cross-validation-like scheme
- ✤ Hard to analyze theoretically: "black magic"

Using unlabeled data

- Semisupervised learning: attempts to use unlabeled data as well as labeled data
 - □ The aim is to improve classification performance
- Why try to do this? Unlabeled data is often plentiful and labeling data can be expensive
 - Web mining: classifying web pages
 - □ Text mining: identifying names in text
 - Video mining: classifying people in the news
- Leveraging the large pool of unlabeled examples would be very attractive

Co-training

- Method for learning from multiple views (multiple sets of attributes), eg:
 - First set of attributes describes content of web page
 Second set of attributes describes links that link to the web page
- ✤ Step 1: build model from each view
- Step 2: use models to assign labels to unlabeled data
- Step 3: select those unlabeled examples that were most confidently predicted (ideally, preserving ratio of classes)
- Step 4: add those examples to the training set
- ✤ Step 5: go to Step 1 until data exhausted
- ✤ Assumption: views are independent

Agenda

- ✤ A very simple strategy
- Overfitting, evaluation
- Statistical modeling
 Bayes rule
- Constructing decision trees
- Constructing rules
 - + Association rules
- Linear models
- Regression, perceptrons, neural nets, SVMs, model trees
- Instance-based learning and Clustering
- Hierarchical, probabilistic clustering
 Engineering the input and output
- Attribute selection, data transformations, PCA
 Bagging, boosting, stacking, co-training

Data mining with Weka There is no magic in data mining Instead, a huge array of alternative techniques There is no single universal "best method" Experiment! Which ones work best on your problem? The WEKA machine learning workbench http://www.cs.waikato.ac.nz/m//weka Data mining: practical machine learning tools and techniques by Ian H. Witten and Eibe Frank, 2005

