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Abstract. In this paper we present the main kernel approaches to the
problem of relation extraction from unstructured texts. After a brief
introduction to the problem and its characterization as a classification
task, we present a survey of the methods and techniques used, and the
results obtained. We finally suggest some future lines of work, such as
the use of information retrieval techniques and the development of event
factuality identification methods.

1 Introduction

Relation extraction is a task within the field of information extraction. It involves
the identification of relations between entities already identified in natural lan-
guage texts. Two subtasks can be considered: we may just want to discover if
two or more candidate entities are related (the subtask of relation detection), or
we may wish to know which of a predefined set of relations hold between them
(the subtask of relation characterisation).

In the sentence “This cross regulation between Drosha and DGCR8 may con-
tribute to the homeostatic control of miRNA biogenesis”, where the proteins
Drosha and DGCR8 are mentioned, we can identify a CROSSREGULATION rela-
tion between them. In the molecular biology domain, the investigation of protein-
protein interaction networks plays a key role in the construction of knowledge
about molecular mechanisms. Because stating hand-curated relations in the ap-
propriate databases is a very time-consuming task, the application of relation
extraction techniques to the rapidly growing amount of information that is avail-
able in the research literature can undoubtedly help domain researchers.

Relation extraction can be characterised as a classification problem: if we
consider pairs (or even n-uples) of entities that could be related, we just need to
determine if they are indeed related (which is a problem of binary classification)
or even to determine which relation holds between them (which is a problem of
n-class classification).



In this paper, we present a survey of kernel approaches to relation extraction.
In the MUC-7 Conferences, where the relation detection and characterization
tasks were first formulated, all but one of the systems (Miller et al., 1998) were
based on handcrafted rules. In machine learning approaches, patterns for identi-
fying relations are not manually written but are learned from labelled examples.
While it may be difficult to generate enough labelled examples (a manual and
time-costly task), machine learning solutions have shown in many different tasks
their ability to adapt to different domains and solve problems that handcrafted
rules could not.

In the following sections, we present the main techniques and methods, from
feature-based to state-of-the-art tree and graph kernel methods and their combi-
nation, showing the results of their application to comparable evaluation corpora.
We suggest some future lines of work, including the incorporation of informa-
tion retrieval techniques to the task and the development of event factuality
identification methods.

2 Kernel methods

Most machine learning algorithms are feature-based. Feature-based methods rep-
resent labelled examples as a sequence f1, f2, . . . , fm of features, living in an m-
dimensional space. For example, in the relation extraction task we can consider
a sentence as an example, represented by a list of binary attributes, one for each
possible token, indicating if the sentence includes that particular token or not.

The problem with feature-based methods is that sometimes data cannot be
easily represented with explicit feature vectors (for example, natural language
sentences are better described by means of trees or even graphs). In those cases,
feature extraction is a very complex task, and leads to very high dimensional
vectors, which in turn leads to computational problems. Kernel-based methods
try to solve this problem by implicitly calculating feature vector dot-products in
very high dimensionality spaces, without having to make each vector explicit.

In kernel methods, labelled examples are not necessarily feature vectors. In-
stead, a similarity function (or kernel) between examples is computed and dis-
criminative methods are used to label new examples. A kernel function over
an object space X is a symmetric, positive semi-definite binary function K :
X × X → [0,∞] that assigns a similarity score between two instances of X.
An important property of kernels is that if we have a collection f1, f2, . . . , fn of
features, where fi : X → R, the dot product between two vectors is necessarily
a kernel function; the converse also holds.

There are many learning algorithms, from the simple Perceptron algorithm
(Rosenblatt, 1958) to Voted Perceptron (Freund and Schapire, 1999) and Sup-
port Vector Machines (Cortes and Vapnik, 1995) that can be represented in what
is called the dual form, which just relies on dot products between examples. In
those cases, dot products can be replaced by kernel functions (the “kernel trick”).
This allows us to compute, through kernels, the dot product of certain feature
vectors, without necessarily enumerating all the features (for example, (Lodhi et



al., 2000) defined a kernel to compute in polytime the number of common subse-
quences in two strings, a problem with an exponential number of features). This
allows for the implicit exploration of a much larger feature space than feature-
based learning algorithms. For a detailed explanation on how kernel methods
work, see (Cristianni and Shawe-Taylor, 2000).

Kernel methods for relation extraction were first introduced by (Zelenko et
al., 2003). They proposed this kind of machine learning methods after their suc-
cessful application to similar problems, such as natural language parsing (Collins
and Duffy, 2001). In this section we survey their problem formalization and ker-
nels, then discuss other approaches that improved classification performance over
comparable corpora.

Most of the methods here presented were evaluated on the ACE corpus, a
300K news corpus annotated with entities and relations, created by the Linguistic
Data Consortium for the Automatic Content Extraction Program (Doddington
et al., 2004), and the AImed corpus (Bunescu and Mooney, 2005), a molecu-
lar biology corpus consisting of 225 Medline abstracts, annotated with human
proteins and their interactions.

2.1 First kernel approaches to relation extraction

(Zelenko et al., 2003) reduced the problem of relation extraction to the problem
of pair-of-entities classification: examples consisted of parts of sentence shallow
parse trees, where relation roles (for example: member, or affiliation) were identi-
fied and expressed by tree attributes. For training, examples were marked with
{+1,-1} labels, expressing wheter the tree linked roles in the examples were in-
deed semantically related. Figure 1 shows one of the positive examples built from
the shallow parse tree of the sentence “John Smith is the chief scientist of the
Hardcom Corporation”

Fig. 1. Example of the person-affiliation relation (from (Zelenko et al., 2003))

They defined a similarity function between example trees that took into ac-
count the number of similar subsequences of children with matching parents.
They showed that this similarity function was a kernel, and could therefore be



used in any dual-representable learning algorithm. They worked with two differ-
ent types of kernels: contiguous sub tree kernels (where the similarity measure
enumerated only contiguous subsequences of children), and the general case of
sparse sub tree kernels. In both cases they gave a fast algorithm for computing
the similarity function (O(mn) for the case of contiguous sub tree kernels, and
O(mn3) for the case of sparse sub-tree kernels, where m and n are the number
of children in the two examples).

As working in such a large feature space could easily lead to overfitting,
they evaluated their approach using two different kernel algorithms: Support
Vector Machines and Voted Perceptron, implementing both kernels in each case.
They compared them with three feature-based algorithms: Naive-Bayes, Winnow
and SVM (where features were conjunctions of conditions over relation example
nodes). They found that kernel methods outperformed feature-based methods
in almost every scenario, achieving a best F-measure of 86.8 for the person-
affiliation relation, and 83.3 for the organization-location relation, in both cases
using Support Vector Machines with a sparse tree kernel.

2.2 Feature-based kernel approaches

In feature-based kernels, the dot-product between feature vectors is explicitly
calculated. These methods use a similar approach to traditional feature-based
machine learning methods, but they can also exploit some interesting properties
of kernels (for instance, a product or sum of kernels is also a kernel).

(Zhao and Grishman, 2005) used feature-based kernels, with information
from tokenization, parsing and deep dependency analysis, extending some of
them to generate high order features, and composing them in different ways.
(Zhou et al., 2005), using SVM, incorporated diverse lexical, syntactic and se-
mantic knowledge features. They argued that full parsing information was not
very important, because most of the relations were within a short distance in
their corpus. They also showed that the use of WordNet and Name Lists could
improve classification results. Based on their work, (Wang et al., 2006) added
POS tags and several general semantic features, using a semantic analyser and
WordNet. They found that basic features (those arising from words, POS tags,
entity, mention and overlap) were far more important than the deeper ones
(chunk, dependency tree, parse tree and semantic analysis).

(Bunescu and Mooney, 2005) observed that the information required to assert
a relation between two entities could be captured by the shortest path between
the two entities in the dependency graph. Based on this, they developed a simple
kernel which incorporated words and word class features of the path components,
and calculated the number of common features between two relation examples.
(Erkan et al., 2007) adapted their work to the domain of protein-protein re-
lation extraction, measuring the similarity of two examples by comparing their
corresponding shortest path using cosine similarity and edit distance. Using semi-
supervised models on top of dependency features and using harmonic functions
(a semi-supervised version of the kNN classification method) and transductive



SVMs, they showed that semi-supervised approaches could improve classification
performance.

2.3 Tree, graph and combined kernel methods

Instead of directly computing the dot product between examples, and working
on the same hypothesis as (Zelenko et al., 2003) (i.e. that instances containing
similar relations shared similar syntactic structure), other kinds of kernels have
been developed: they work with instances represented by trees or even graphs,
instead of just feature vectors.

(Culotta and Sorensen, 2004) used dependency trees as representations of
relation examples. They augmented these trees with features in each node (in-
cluding word, part of speech, entity type and Wordnet hypernyms), trying to
incorporate more information for classification, and used a slightly more general
version of (Zelenko et al., 2003) kernels.

(Bunescu and Mooney, 2006), used a subsequence kernel that computed the
number of common subsequences of words and word classes between examples
(considering only those subsequences where candidate entities existed, and words
belonged to three predefined patterns). (Giuliano et al. 2006) used the same pat-
terns to discover the presence of a relation, but each pattern was represented
as a bag-of-words, instead of sparse subsequences, adding n-grams to improve
classification performance. Another kernel, the Local Context Kernel added in-
formation about the local contexts of the candidate interacting entities.

(Zhang et al., 2006) combined a feature-based entity kernel (which measured
the number of common features between two entities), and a convolution parse
tree kernel (which counted the number of common sub-trees between two re-
lations), in two different ways: as a linear combination, and as a polynomial
expansion that aimed to explore the combined features from the first and sec-
ond entities of the relationship. They also systematically explored which parts of
the parse tree could be used for similarity calculation. They obtained their best
results using the sub-tree enclosed by the shortest path linking two involved
entities in the parse tree, combined via polynomial expansion with the entity
kernel.

(Zhou et al., 2007) tried to improve on the Collins and Duffy convolution ker-
nel, proposing what they called a context-sensitive convolution tree kernel. This
method first automatically determined a dynamic context-sensitive tree span
(the original convolution kernels were context free: a sub tree did not consider
context information outside the sub tree), and then used not only the found
tree, but also its ancestor node paths as contexts for calculating the similarity.
Similar to the previous work, they combined their kernel via polynomial inter-
polation with the linear kernel described in (Zhou et al. , 2005), achieving a
state-of-the-art F-measure of 74.1 using a composite kernel.

(Airola et al., 2008), in their work on protein-protein interaction proposed
a graph kerne on dependency parses. They defined a weighted, directed graph,
composed of two unconnected subgraphs: one with the dependency structure of
the sentence, and the other one with just the linear order of the words (using



word, POS and entity information, entity information and indicator of their
relative position with respect to candidate entities). On this graph, they defined
what they called the all-dependency-paths kernel, that computed the summed
weights of all possible paths connecting two vertices.

For the sake of comparison, table 1 presents precision, recall and F-measure
for some of the presented methods on the Automatic Content Extraction 2003
(numbers without parenthesis) and 2004 corpora, for the tasks of relation de-
tection, relation characterization for the top high-level relation types. Table 2
presents results on the AImed corpus.

Table 1. Relation classification performance on the ACE corpus

Relation Identification Relation Types Characterization

P R F P R F

(Culotta and Sorensen, 2004) 81.2 51.8 63.2 67.1 35.0 45.8
(Zhao and Grishman,2005 (69.2) (70.5) (70.3)
(Bunescu and Mooney, 2005) 65.5 43.8 52.5
(Zhou et al., 2005) 84.8 66.7 74.7 77.2 60.7 68.0
(Bunescu and Mooney, 2006) 73.9 35.2 47.7
(Wang et al.,2006) (73.9) (69.5) (71.6) (71.4) (60.0) (65.2)
(Zhou et al.,2007) 80.8 68.4 74.1

Table 2. Relation characterization performance on the Aimed corpus

Precision Recall F-measure

(Giuliano et al.,2006) 60.9 57.2 59.0
(Bunescu and Mooney,2006) 65.0 46.4 54.2
(Airola et al.,2008) 52.9 61.8 56.4

3 Conclusions

As this paper shown, extensive work has been done on the task of relation
extraction. Kernel-based methods present many features that makes them spe-
cially suitable for this kind of tasks: they can accomodate features from different
analyses (lexical and syntactic analysis, information from external sources); the
supervised learning classifiers they use (Support Vector Machines, Voted Per-
cpetron) are known for their good performance even when few training data is
available; finally, their ability to represent similarity measures between complex



structures allows them to incorporate information not easily represented using
the traiditional feature-value pairs (such as dependency or shallow parses).

From the results, it is not clear which type of kernels (those computed as an
explicit dot-product between feature vectors or directly calculated from the orig-
inal structures, being them strings, trees or graphs) are better for the relation-
extraction task, nor which kernel could yield better performance using the same
algorithm. However, later work seems to indicate that combining many sources
of information and different kernels can indeed improve performance, accommo-
dating smoothly a large amount of linguistic features, including entity related
semantic information, syntactic parse and dependency trees and lexical informa-
tion.

The huge amount of unannotated texts for some domains suggests that the
incorporation of semi-supervised approaches and the adaptation of information
retrieval techniques could lead to precision and recall improvement. For exam-
ple, having hypothesized that a relation holds between two proteins, we could
gather more information, based on their sentence and document co-occurrence
on unannotated texts to improve the precision of the hypothesis.

In the highly specialized domain of molecular biology, there has recently
been considerable research effort towards ontology-based annotation of entities
and relations on natural language texts. The availability of annotated corpora
plays a key role in the success of any supervised machine learning task. Every
possible model is the result of inference reasoning of some sort of previously seen
annotated data. Two annotated corpus (not mentioned in this survey) specif-
ically oriented to the relation extraction task in the biomedical domain, have
been published: the Bioinfer corpus (Pyysalo et al., 2007) and the Genia Event
corpus (Kim et al. 2008).

Relation extraction would also benefit from advances in general semantics
and pragmatic recognition tasks in natural language processing. Contextual fea-
tures such as polarity or modality clearly may change local inferences about the
factuality status of an event or extracted relation, and they should be considered
(Sauri et al., 2006) .We think that the combination of kernel-based methods with
semantic features produced by careful studies of event modality applied to the
molecular biology domain (involving the work of biologists, linguists and natural
language processing specialists) could lead to successful results.

All these tasks could undoubtedly contribute to the automatic extraction
and even inference of previously unseen relations, which could be the basis for
subsequent experimental methods of validation.

References

Airola, A., Pyysalo, S., Björne, J., Pahikkala, T., Ginter, F., Salakoski, T.: A
graph kernel for protein-protein interaction extraction. In: BioNLP (2008),
http://www.aclweb.org/anthology-new/W/W08/W08-0601.pdf

Bunescu, R., Mooney, R.: Subsequence kernels for relation extraction. In:
Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information

7



Processing Systems 18, pp. 171–178. MIT Press, Cambridge, MA (2006),
http://books.nips.cc/papers/files/nips18/NIPS2005 0450.pdf

Bunescu, R.C., Mooney, R.J.: A shortest path dependency kernel for relation extrac-
tion. In: Proceedings of the Joint Conference on Human Language Technology /
Empirical Methods in Natural Language Processing (HLT/EMNLP). pp. 724–731.
Association for Computational Linguistics, Vancouver, British Columbia, Canada
(October 2005), http://www.aclweb.org/anthology/H/H05/H05-1091.pdf

Collins, M., Duffy, N.: Convolution kernels for natural language. In: Advances in Neural
Information Processing Systems 14. pp. 625–632. MIT Press (2001)

Cortes, C., Vapnik, V.: Support vector networks. In: Machine Learning. pp. 273–297
(1995)

Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge University Press
(March 2000), http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-
20&amp;path=ASIN/0521780195

Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In: Proceed-
ings of the 42nd Annual Meeting of the Association for Computational Linguistics
(2004), http://acl.ldc.upenn.edu/P/P04/P04-1054.pdf

Doddington, G., Mitchell, A., Przybocki, M., Ramshaw, L., Strassel, S., Weischedel, R.:
The Automatic Content Extraction (ACE) Program–Tasks, Data, and Evaluation.
Proceedings of LREC 2004 pp. 837–840 (2004)

Erkan, G., Ozgur, A., Radev, D.R.: Semi-supervised classification for extracting pro-
tein interaction sentences using dependency parsing. In: Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-CoNLL). pp. 228–237 (2007),
http://www.aclweb.org/anthology/D/D07/D07-1024

Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algorithm.
In: Machine Learning. pp. 277–296 (1999)

Giuliano, C., Lavelli, A., Romano, L.: Exploiting shallow linguistic information for
relation extraction from biomedical literature. In: 11th Conference of the European
Chapter of the Association for Computational Linguistics (EACL ’06). pp. 401–408.
European Chapter of the Association for Computational Linguistics, Trento, Italy
(April 2006), http://acl.ldc.upenn.edu/E/E06/E06-1051.pdf

Guodong, Z., Jian, S., Jie, Z., Min, Z.: Exploring various knowledge in relation ex-
traction. In: ACL ’05: Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics. pp. 427–434. Association for Computational Linguis-
tics, Morristown, NJ, USA (2005), http://dx.doi.org/10.3115/1219840.1219893

Kim, J.D., Ohta, T., Tsujii, J.: Corpus annotation for mining biomedical events from
literature. BMC Bioinformatics 9(1) (2008), http://dx.doi.org/10.1186/1471-2105-
9-10

Lodhi, H., Taylor, J.S., Cristianini, N., Watkins, C.J.C.H.: Text clas-
sification using string kernels. In: NIPS. pp. 563–569 (2000),
http://citeseer.ist.psu.edu/lodhi02text.html

Miller, S., Crystal, M., Fox, H., Ramshaw, L., Schwartz, R., Stone, R.,
Weischedel, R., Group, T.A.: Algorithms that learn to extract information
BBN: Description of the Sift system as used for MUC-7. In: MUC-7 (1998),
http://acl.ldc.upenn.edu/muc7/M98-0009.pdf

Pyysalo, S., Ginter, F., Heimonen, J., Bjorne, J., Boberg, J., Jarvinen, J., Salakoski,
T.: Bioinfer: A corpus for information extraction in the biomedical domain. BMC
Bioinformatics 8(1) (2007), http://dx.doi.org/10.1186/1471-2105-8-50

8



Rosenblatt, F.: The perceptron: a probabilistic model for informa-
tion storage and organization in the brain pp. 89–114 (1958),
http://portal.acm.org/citation.cfm?id=65669.104386

Wang, T., Li, Y., Bontcheva, K., Cunningham, H., Wang, J.: Auto-
matic extraction of hierarchical relations from text. pp. 215–229 (2006),
http://dx.doi.org/10.1007/11762256 18

Zelenko, D., Aone, C., Richardella, A.: Kernel methods for re-
lation extraction. J. Mach. Learn. Res. 3, 1083–1106 (2003),
http://portal.acm.org/citation.cfm?id=944919.944964

Zhang, M., Zhang, J., Su, J., Zhou, G.: A composite kernel to extract relations be-
tween entities with both flat and structured features. In: ACL ’06: Proceedings of
the 21st International Conference on Computational Linguistics and the 44th an-
nual meeting of the ACL. pp. 825–832. Association for Computational Linguistics,
Morristown, NJ, USA (2006), http://dx.doi.org/10.3115/1220175.1220279

Zhao, S., Grishman, R.: Extracting relations with integrated information using kernel
methods. http://acl.ldc.upenn.edu/P/P05/P05-1052.pdf

Zhou, G., Zhang, M., Ji, D., Zhu, Q.: Tree kernel-based relation extraction with context-
sensitive structured parse tree information. In: Proceedings of EMNLP-CoNLL
2007 (2007), http://acl.ldc.upenn.edu/D/D07/D07-1076.pdf

9


