Theory Internalizations

theory Internalizations
imports Datatype_absolute
(*  
    This file is completely based on L_axioms.thy and Internalize.thy 
    by Lawrence C Paulson.
*)

theory Internalizations 
  imports 
    "~~/src/ZF/Constructible/Formula"
    Relative  Datatype_absolute 
begin

subsection‹Internalized Formulas for some Set-Theoretic Concepts›

subsubsection‹Some numbers to help write de Bruijn indices›

abbreviation
  digit3 :: i   ("3") where "3 == succ(2)"

abbreviation
  digit4 :: i   ("4") where "4 == succ(3)"

abbreviation
  digit5 :: i   ("5") where "5 == succ(4)"

abbreviation
  digit6 :: i   ("6") where "6 == succ(5)"

abbreviation
  digit7 :: i   ("7") where "7 == succ(6)"

abbreviation
  digit8 :: i   ("8") where "8 == succ(7)"

abbreviation
  digit9 :: i   ("9") where "9 == succ(8)"


subsubsection‹The Empty Set, Internalized›

definition
  empty_fm :: "i=>i" where
    "empty_fm(x) == Forall(Neg(Member(0,succ(x))))"

lemma empty_type [TC]:
     "x ∈ nat ==> empty_fm(x) ∈ formula"
by (simp add: empty_fm_def)

lemma sats_empty_fm [simp]:
   "[| x ∈ nat; env ∈ list(A)|]
    ==> sats(A, empty_fm(x), env) ⟷ empty(##A, nth(x,env))"
by (simp add: empty_fm_def empty_def)

lemma empty_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; env ∈ list(A)|]
       ==> empty(##A, x) ⟷ sats(A, empty_fm(i), env)"
by simp

text‹Not used.  But maybe useful?›
lemma Transset_sats_empty_fm_eq_0:
   "[| n ∈ nat; env ∈ list(A); Transset(A)|]
    ==> sats(A, empty_fm(n), env) ⟷ nth(n,env) = 0"
apply (simp add: empty_fm_def empty_def Transset_def, auto)
apply (case_tac "n < length(env)")
apply (frule nth_type, assumption+, blast)
apply (simp_all add: not_lt_iff_le nth_eq_0)
done


subsubsection‹Unordered Pairs, Internalized›

definition
  upair_fm :: "[i,i,i]=>i" where
    "upair_fm(x,y,z) ==
       And(Member(x,z),
           And(Member(y,z),
               Forall(Implies(Member(0,succ(z)),
                              Or(Equal(0,succ(x)), Equal(0,succ(y)))))))"

lemma upair_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> upair_fm(x,y,z) ∈ formula"
by (simp add: upair_fm_def)

lemma sats_upair_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, upair_fm(x,y,z), env) ⟷
            upair(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: upair_fm_def upair_def)

lemma upair_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> upair(##A, x, y, z) ⟷ sats(A, upair_fm(i,j,k), env)"
by (simp)

text‹Useful? At least it refers to "real" unordered pairs›
lemma sats_upair_fm2 [simp]:
   "[| x ∈ nat; y ∈ nat; z < length(env); env ∈ list(A); Transset(A)|]
    ==> sats(A, upair_fm(x,y,z), env) ⟷
        nth(z,env) = {nth(x,env), nth(y,env)}"
apply (frule lt_length_in_nat, assumption)
apply (simp add: upair_fm_def Transset_def, auto)
apply (blast intro: nth_type)
done

subsubsection‹Ordered pairs, Internalized›

definition
  pair_fm :: "[i,i,i]=>i" where
    "pair_fm(x,y,z) ==
       Exists(And(upair_fm(succ(x),succ(x),0),
              Exists(And(upair_fm(succ(succ(x)),succ(succ(y)),0),
                         upair_fm(1,0,succ(succ(z)))))))"

lemma pair_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> pair_fm(x,y,z) ∈ formula"
by (simp add: pair_fm_def)

lemma sats_pair_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, pair_fm(x,y,z), env) ⟷
        pair(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: pair_fm_def pair_def)

lemma pair_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> pair(##A, x, y, z) ⟷ sats(A, pair_fm(i,j,k), env)"
by simp


subsubsection‹Binary Unions, Internalized›

definition
  union_fm :: "[i,i,i]=>i" where
    "union_fm(x,y,z) ==
       Forall(Iff(Member(0,succ(z)),
                  Or(Member(0,succ(x)),Member(0,succ(y)))))"

lemma union_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> union_fm(x,y,z) ∈ formula"
by (simp add: union_fm_def)

lemma sats_union_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, union_fm(x,y,z), env) ⟷
        union(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: union_fm_def union_def)

lemma union_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> union(##A, x, y, z) ⟷ sats(A, union_fm(i,j,k), env)"
by (simp)


subsubsection‹Set ``Cons,'' Internalized›

definition
  cons_fm :: "[i,i,i]=>i" where
    "cons_fm(x,y,z) ==
       Exists(And(upair_fm(succ(x),succ(x),0),
                  union_fm(0,succ(y),succ(z))))"


lemma cons_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> cons_fm(x,y,z) ∈ formula"
by (simp add: cons_fm_def)

lemma sats_cons_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, cons_fm(x,y,z), env) ⟷
        is_cons(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: cons_fm_def is_cons_def)

lemma cons_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> is_cons(##A, x, y, z) ⟷ sats(A, cons_fm(i,j,k), env)"
by simp


subsubsection‹Successor Function, Internalized›

definition
  succ_fm :: "[i,i]=>i" where
    "succ_fm(x,y) == cons_fm(x,x,y)"

lemma succ_type [TC]:
     "[| x ∈ nat; y ∈ nat |] ==> succ_fm(x,y) ∈ formula"
by (simp add: succ_fm_def)

lemma sats_succ_fm [simp]:
   "[| x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, succ_fm(x,y), env) ⟷
        successor(##A, nth(x,env), nth(y,env))"
by (simp add: succ_fm_def successor_def)

lemma successor_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; j ∈ nat; env ∈ list(A)|]
       ==> successor(##A, x, y) ⟷ sats(A, succ_fm(i,j), env)"
by simp


subsubsection‹The Number 1, Internalized›

(* "number1(M,a) == (∃x[M]. empty(M,x) & successor(M,x,a))" *)
definition
  number1_fm :: "i=>i" where
    "number1_fm(a) == Exists(And(empty_fm(0), succ_fm(0,succ(a))))"

lemma number1_type [TC]:
     "x ∈ nat ==> number1_fm(x) ∈ formula"
by (simp add: number1_fm_def)

lemma sats_number1_fm [simp]:
   "[| x ∈ nat; env ∈ list(A)|]
    ==> sats(A, number1_fm(x), env) ⟷ number1(##A, nth(x,env))"
by (simp add: number1_fm_def number1_def)

lemma number1_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; env ∈ list(A)|]
       ==> number1(##A, x) ⟷ sats(A, number1_fm(i), env)"
by simp


subsubsection‹Big Union, Internalized›

(*  "big_union(M,A,z) == ∀x[M]. x ∈ z ⟷ (∃y[M]. y∈A & x ∈ y)" *)
definition
  big_union_fm :: "[i,i]=>i" where
    "big_union_fm(A,z) ==
       Forall(Iff(Member(0,succ(z)),
                  Exists(And(Member(0,succ(succ(A))), Member(1,0)))))"

lemma big_union_type [TC]:
     "[| x ∈ nat; y ∈ nat |] ==> big_union_fm(x,y) ∈ formula"
by (simp add: big_union_fm_def)

lemma sats_big_union_fm [simp]:
   "[| x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, big_union_fm(x,y), env) ⟷
        big_union(##A, nth(x,env), nth(y,env))"
by (simp add: big_union_fm_def big_union_def)

lemma big_union_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; j ∈ nat; env ∈ list(A)|]
       ==> big_union(##A, x, y) ⟷ sats(A, big_union_fm(i,j), env)"
by simp

subsubsection‹Variants of Satisfaction Definitions for Ordinals, etc.›

text‹The ‹sats› theorems below are standard versions of the ones proved
in theory ‹Formula›.  They relate elements of type @{term formula} to
relativized concepts such as @{term subset} or @{term ordinal} rather than to
real concepts such as @{term Ord}.  Now that we have instantiated the locale
‹M_trivial›, we no longer require the earlier versions.›

lemma sats_subset_fm':
   "[|x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, subset_fm(x,y), env) ⟷ subset(##A, nth(x,env), nth(y,env))"
by (simp add: subset_fm_def Relative.subset_def)

lemma sats_transset_fm':
   "[|x ∈ nat; env ∈ list(A)|]
    ==> sats(A, transset_fm(x), env) ⟷ transitive_set(##A, nth(x,env))"
by (simp add: sats_subset_fm' transset_fm_def transitive_set_def)

lemma sats_ordinal_fm':
   "[|x ∈ nat; env ∈ list(A)|]
    ==> sats(A, ordinal_fm(x), env) ⟷ ordinal(##A,nth(x,env))"
by (simp add: sats_transset_fm' ordinal_fm_def ordinal_def)

lemma ordinal_iff_sats:
      "[| nth(i,env) = x;  i ∈ nat; env ∈ list(A)|]
       ==> ordinal(##A, x) ⟷ sats(A, ordinal_fm(i), env)"
by (simp add: sats_ordinal_fm')


subsubsection‹Membership Relation, Internalized›

definition
  Memrel_fm :: "[i,i]=>i" where
    "Memrel_fm(A,r) ==
       Forall(Iff(Member(0,succ(r)),
                  Exists(And(Member(0,succ(succ(A))),
                             Exists(And(Member(0,succ(succ(succ(A)))),
                                        And(Member(1,0),
                                            pair_fm(1,0,2))))))))"

lemma Memrel_type [TC]:
     "[| x ∈ nat; y ∈ nat |] ==> Memrel_fm(x,y) ∈ formula"
by (simp add: Memrel_fm_def)

lemma sats_Memrel_fm [simp]:
   "[| x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, Memrel_fm(x,y), env) ⟷
        membership(##A, nth(x,env), nth(y,env))"
by (simp add: Memrel_fm_def membership_def)

lemma Memrel_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; j ∈ nat; env ∈ list(A)|]
       ==> membership(##A, x, y) ⟷ sats(A, Memrel_fm(i,j), env)"
by simp

subsubsection‹Predecessor Set, Internalized›

definition
  pred_set_fm :: "[i,i,i,i]=>i" where
    "pred_set_fm(A,x,r,B) ==
       Forall(Iff(Member(0,succ(B)),
                  Exists(And(Member(0,succ(succ(r))),
                             And(Member(1,succ(succ(A))),
                                 pair_fm(1,succ(succ(x)),0))))))"


lemma pred_set_type [TC]:
     "[| A ∈ nat; x ∈ nat; r ∈ nat; B ∈ nat |]
      ==> pred_set_fm(A,x,r,B) ∈ formula"
by (simp add: pred_set_fm_def)

lemma sats_pred_set_fm [simp]:
   "[| U ∈ nat; x ∈ nat; r ∈ nat; B ∈ nat; env ∈ list(A)|]
    ==> sats(A, pred_set_fm(U,x,r,B), env) ⟷
        pred_set(##A, nth(U,env), nth(x,env), nth(r,env), nth(B,env))"
by (simp add: pred_set_fm_def pred_set_def)

lemma pred_set_iff_sats:
      "[| nth(i,env) = U; nth(j,env) = x; nth(k,env) = r; nth(l,env) = B;
          i ∈ nat; j ∈ nat; k ∈ nat; l ∈ nat; env ∈ list(A)|]
       ==> pred_set(##A,U,x,r,B) ⟷ sats(A, pred_set_fm(i,j,k,l), env)"
by (simp) 



subsubsection‹Domain of a Relation, Internalized›

(* "is_domain(M,r,z) ==
        ∀x[M]. (x ∈ z ⟷ (∃w[M]. w∈r & (∃y[M]. pair(M,x,y,w))))" *)
definition
  domain_fm :: "[i,i]=>i" where
    "domain_fm(r,z) ==
       Forall(Iff(Member(0,succ(z)),
                  Exists(And(Member(0,succ(succ(r))),
                             Exists(pair_fm(2,0,1))))))"

lemma domain_type [TC]:
     "[| x ∈ nat; y ∈ nat |] ==> domain_fm(x,y) ∈ formula"
by (simp add: domain_fm_def)

lemma sats_domain_fm [simp]:
   "[| x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, domain_fm(x,y), env) ⟷
        is_domain(##A, nth(x,env), nth(y,env))"
by (simp add: domain_fm_def is_domain_def)

lemma domain_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; j ∈ nat; env ∈ list(A)|]
       ==> is_domain(##A, x, y) ⟷ sats(A, domain_fm(i,j), env)"
by simp


subsubsection‹Range of a Relation, Internalized›

(* "is_range(M,r,z) ==
        ∀y[M]. (y ∈ z ⟷ (∃w[M]. w∈r & (∃x[M]. pair(M,x,y,w))))" *)
definition
  range_fm :: "[i,i]=>i" where
    "range_fm(r,z) ==
       Forall(Iff(Member(0,succ(z)),
                  Exists(And(Member(0,succ(succ(r))),
                             Exists(pair_fm(0,2,1))))))"

lemma range_type [TC]:
     "[| x ∈ nat; y ∈ nat |] ==> range_fm(x,y) ∈ formula"
by (simp add: range_fm_def)

lemma sats_range_fm [simp]:
   "[| x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, range_fm(x,y), env) ⟷
        is_range(##A, nth(x,env), nth(y,env))"
by (simp add: range_fm_def is_range_def)

lemma range_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; j ∈ nat; env ∈ list(A)|]
       ==> is_range(##A, x, y) ⟷ sats(A, range_fm(i,j), env)"
by simp


subsubsection‹Field of a Relation, Internalized›

(* "is_field(M,r,z) ==
        ∃dr[M]. is_domain(M,r,dr) &
            (∃rr[M]. is_range(M,r,rr) & union(M,dr,rr,z))" *)
definition
  field_fm :: "[i,i]=>i" where
    "field_fm(r,z) ==
       Exists(And(domain_fm(succ(r),0),
              Exists(And(range_fm(succ(succ(r)),0),
                         union_fm(1,0,succ(succ(z)))))))"

lemma field_type [TC]:
     "[| x ∈ nat; y ∈ nat |] ==> field_fm(x,y) ∈ formula"
by (simp add: field_fm_def)

lemma sats_field_fm [simp]:
   "[| x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, field_fm(x,y), env) ⟷
        is_field(##A, nth(x,env), nth(y,env))"
by (simp add: field_fm_def is_field_def)

lemma field_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; j ∈ nat; env ∈ list(A)|]
       ==> is_field(##A, x, y) ⟷ sats(A, field_fm(i,j), env)"
by simp


subsubsection‹Image under a Relation, Internalized›

(* "image(M,r,A,z) ==
        ∀y[M]. (y ∈ z ⟷ (∃w[M]. w∈r & (∃x[M]. x∈A & pair(M,x,y,w))))" *)
definition
  image_fm :: "[i,i,i]=>i" where
    "image_fm(r,A,z) ==
       Forall(Iff(Member(0,succ(z)),
                  Exists(And(Member(0,succ(succ(r))),
                             Exists(And(Member(0,succ(succ(succ(A)))),
                                        pair_fm(0,2,1)))))))"

lemma image_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> image_fm(x,y,z) ∈ formula"
by (simp add: image_fm_def)

lemma sats_image_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, image_fm(x,y,z), env) ⟷
        image(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: image_fm_def Relative.image_def)

lemma image_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> image(##A, x, y, z) ⟷ sats(A, image_fm(i,j,k), env)"
by (simp) 


subsubsection‹Pre-Image under a Relation, Internalized›

(* "pre_image(M,r,A,z) ==
        ∀x[M]. x ∈ z ⟷ (∃w[M]. w∈r & (∃y[M]. y∈A & pair(M,x,y,w)))" *)
definition
  pre_image_fm :: "[i,i,i]=>i" where
    "pre_image_fm(r,A,z) ==
       Forall(Iff(Member(0,succ(z)),
                  Exists(And(Member(0,succ(succ(r))),
                             Exists(And(Member(0,succ(succ(succ(A)))),
                                        pair_fm(2,0,1)))))))"

lemma pre_image_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> pre_image_fm(x,y,z) ∈ formula"
by (simp add: pre_image_fm_def)

lemma sats_pre_image_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, pre_image_fm(x,y,z), env) ⟷
        pre_image(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: pre_image_fm_def Relative.pre_image_def)

lemma pre_image_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> pre_image(##A, x, y, z) ⟷ sats(A, pre_image_fm(i,j,k), env)"
by (simp)


subsubsection‹Function Application, Internalized›

(* "fun_apply(M,f,x,y) ==
        (∃xs[M]. ∃fxs[M].
         upair(M,x,x,xs) & image(M,f,xs,fxs) & big_union(M,fxs,y))" *)
definition
  fun_apply_fm :: "[i,i,i]=>i" where
    "fun_apply_fm(f,x,y) ==
       Exists(Exists(And(upair_fm(succ(succ(x)), succ(succ(x)), 1),
                         And(image_fm(succ(succ(f)), 1, 0),
                             big_union_fm(0,succ(succ(y)))))))"

lemma fun_apply_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> fun_apply_fm(x,y,z) ∈ formula"
by (simp add: fun_apply_fm_def)

lemma sats_fun_apply_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, fun_apply_fm(x,y,z), env) ⟷
        fun_apply(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: fun_apply_fm_def fun_apply_def)

lemma fun_apply_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> fun_apply(##A, x, y, z) ⟷ sats(A, fun_apply_fm(i,j,k), env)"
by simp


subsubsection‹The Concept of Relation, Internalized›

(* "is_relation(M,r) ==
        (∀z[M]. z∈r ⟶ (∃x[M]. ∃y[M]. pair(M,x,y,z)))" *)
definition
  relation_fm :: "i=>i" where
    "relation_fm(r) ==
       Forall(Implies(Member(0,succ(r)), Exists(Exists(pair_fm(1,0,2)))))"

lemma relation_type [TC]:
     "[| x ∈ nat |] ==> relation_fm(x) ∈ formula"
by (simp add: relation_fm_def)

lemma sats_relation_fm [simp]:
   "[| x ∈ nat; env ∈ list(A)|]
    ==> sats(A, relation_fm(x), env) ⟷ is_relation(##A, nth(x,env))"
by (simp add: relation_fm_def is_relation_def)

lemma relation_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; env ∈ list(A)|]
       ==> is_relation(##A, x) ⟷ sats(A, relation_fm(i), env)"
by simp


subsubsection‹The Concept of Function, Internalized›

(* "is_function(M,r) ==
        ∀x[M]. ∀y[M]. ∀y'[M]. ∀p[M]. ∀p'[M].
           pair(M,x,y,p) ⟶ pair(M,x,y',p') ⟶ p∈r ⟶ p'∈r ⟶ y=y'" *)
definition
  function_fm :: "i=>i" where
    "function_fm(r) ==
       Forall(Forall(Forall(Forall(Forall(
         Implies(pair_fm(4,3,1),
                 Implies(pair_fm(4,2,0),
                         Implies(Member(1,r#+5),
                                 Implies(Member(0,r#+5), Equal(3,2))))))))))"

lemma function_type [TC]:
     "[| x ∈ nat |] ==> function_fm(x) ∈ formula"
by (simp add: function_fm_def)

lemma sats_function_fm [simp]:
   "[| x ∈ nat; env ∈ list(A)|]
    ==> sats(A, function_fm(x), env) ⟷ is_function(##A, nth(x,env))"
by (simp add: function_fm_def is_function_def)

lemma is_function_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; env ∈ list(A)|]
       ==> is_function(##A, x) ⟷ sats(A, function_fm(i), env)"
by simp


subsubsection‹Typed Functions, Internalized›

(* "typed_function(M,A,B,r) ==
        is_function(M,r) & is_relation(M,r) & is_domain(M,r,A) &
        (∀u[M]. u∈r ⟶ (∀x[M]. ∀y[M]. pair(M,x,y,u) ⟶ y∈B))" *)

definition
  typed_function_fm :: "[i,i,i]=>i" where
    "typed_function_fm(A,B,r) ==
       And(function_fm(r),
         And(relation_fm(r),
           And(domain_fm(r,A),
             Forall(Implies(Member(0,succ(r)),
                  Forall(Forall(Implies(pair_fm(1,0,2),Member(0,B#+3)))))))))"

lemma typed_function_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> typed_function_fm(x,y,z) ∈ formula"
by (simp add: typed_function_fm_def)

lemma sats_typed_function_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, typed_function_fm(x,y,z), env) ⟷
        typed_function(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: typed_function_fm_def typed_function_def)

lemma typed_function_iff_sats:
  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
      i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
   ==> typed_function(##A, x, y, z) ⟷ sats(A, typed_function_fm(i,j,k), env)"
by simp

lemmas function_iff_sats =
        empty_iff_sats number1_iff_sats
        upair_iff_sats pair_iff_sats union_iff_sats
        big_union_iff_sats cons_iff_sats successor_iff_sats
        fun_apply_iff_sats  Memrel_iff_sats
        pred_set_iff_sats domain_iff_sats range_iff_sats field_iff_sats
        image_iff_sats pre_image_iff_sats
        relation_iff_sats is_function_iff_sats


subsubsection‹Composition of Relations, Internalized›

(* "composition(M,r,s,t) ==
        ∀p[M]. p ∈ t ⟷
               (∃x[M]. ∃y[M]. ∃z[M]. ∃xy[M]. ∃yz[M].
                pair(M,x,z,p) & pair(M,x,y,xy) & pair(M,y,z,yz) &
                xy ∈ s & yz ∈ r)" *)
definition
  composition_fm :: "[i,i,i]=>i" where
  "composition_fm(r,s,t) ==
     Forall(Iff(Member(0,succ(t)),
             Exists(Exists(Exists(Exists(Exists(
              And(pair_fm(4,2,5),
               And(pair_fm(4,3,1),
                And(pair_fm(3,2,0),
                 And(Member(1,s#+6), Member(0,r#+6))))))))))))"

lemma composition_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> composition_fm(x,y,z) ∈ formula"
by (simp add: composition_fm_def)

lemma sats_composition_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, composition_fm(x,y,z), env) ⟷
        composition(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: composition_fm_def composition_def)

lemma composition_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> composition(##A, x, y, z) ⟷ sats(A, composition_fm(i,j,k), env)"
by simp


subsubsection‹Injections, Internalized›

(* "injection(M,A,B,f) ==
        typed_function(M,A,B,f) &
        (∀x[M]. ∀x'[M]. ∀y[M]. ∀p[M]. ∀p'[M].
          pair(M,x,y,p) ⟶ pair(M,x',y,p') ⟶ p∈f ⟶ p'∈f ⟶ x=x')" *)
definition
  injection_fm :: "[i,i,i]=>i" where
  "injection_fm(A,B,f) ==
    And(typed_function_fm(A,B,f),
       Forall(Forall(Forall(Forall(Forall(
         Implies(pair_fm(4,2,1),
                 Implies(pair_fm(3,2,0),
                         Implies(Member(1,f#+5),
                                 Implies(Member(0,f#+5), Equal(4,3)))))))))))"


lemma injection_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> injection_fm(x,y,z) ∈ formula"
by (simp add: injection_fm_def)

lemma sats_injection_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, injection_fm(x,y,z), env) ⟷
        injection(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: injection_fm_def injection_def)

lemma injection_iff_sats:
  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
      i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
   ==> injection(##A, x, y, z) ⟷ sats(A, injection_fm(i,j,k), env)"
by simp


subsubsection‹Surjections, Internalized›

(*  surjection :: "[i=>o,i,i,i] => o"
    "surjection(M,A,B,f) ==
        typed_function(M,A,B,f) &
        (∀y[M]. y∈B ⟶ (∃x[M]. x∈A & fun_apply(M,f,x,y)))" *)
definition
  surjection_fm :: "[i,i,i]=>i" where
  "surjection_fm(A,B,f) ==
    And(typed_function_fm(A,B,f),
       Forall(Implies(Member(0,succ(B)),
                      Exists(And(Member(0,succ(succ(A))),
                                 fun_apply_fm(succ(succ(f)),0,1))))))"

lemma surjection_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> surjection_fm(x,y,z) ∈ formula"
by (simp add: surjection_fm_def)

lemma sats_surjection_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, surjection_fm(x,y,z), env) ⟷
        surjection(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: surjection_fm_def surjection_def)

lemma surjection_iff_sats:
  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
      i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
   ==> surjection(##A, x, y, z) ⟷ sats(A, surjection_fm(i,j,k), env)"
by simp


subsubsection‹Bijections, Internalized›

(*   bijection :: "[i=>o,i,i,i] => o"
    "bijection(M,A,B,f) == injection(M,A,B,f) & surjection(M,A,B,f)" *)
definition
  bijection_fm :: "[i,i,i]=>i" where
  "bijection_fm(A,B,f) == And(injection_fm(A,B,f), surjection_fm(A,B,f))"

lemma bijection_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> bijection_fm(x,y,z) ∈ formula"
by (simp add: bijection_fm_def)

lemma sats_bijection_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, bijection_fm(x,y,z), env) ⟷
        bijection(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: bijection_fm_def bijection_def)

lemma bijection_iff_sats:
  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
      i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
   ==> bijection(##A, x, y, z) ⟷ sats(A, bijection_fm(i,j,k), env)"
by simp


subsubsection‹Restriction of a Relation, Internalized›


(* "restriction(M,r,A,z) ==
        ∀x[M]. x ∈ z ⟷ (x ∈ r & (∃u[M]. u∈A & (∃v[M]. pair(M,u,v,x))))" *)
definition
  restriction_fm :: "[i,i,i]=>i" where
    "restriction_fm(r,A,z) ==
       Forall(Iff(Member(0,succ(z)),
                  And(Member(0,succ(r)),
                      Exists(And(Member(0,succ(succ(A))),
                                 Exists(pair_fm(1,0,2)))))))"

lemma restriction_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> restriction_fm(x,y,z) ∈ formula"
by (simp add: restriction_fm_def)

lemma sats_restriction_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, restriction_fm(x,y,z), env) ⟷
        restriction(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: restriction_fm_def restriction_def)

lemma restriction_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> restriction(##A, x, y, z) ⟷ sats(A, restriction_fm(i,j,k), env)"
by simp

subsubsection‹Order-Isomorphisms, Internalized›

(*  order_isomorphism :: "[i=>o,i,i,i,i,i] => o"
   "order_isomorphism(M,A,r,B,s,f) ==
        bijection(M,A,B,f) &
        (∀x[M]. x∈A ⟶ (∀y[M]. y∈A ⟶
          (∀p[M]. ∀fx[M]. ∀fy[M]. ∀q[M].
            pair(M,x,y,p) ⟶ fun_apply(M,f,x,fx) ⟶ fun_apply(M,f,y,fy) ⟶
            pair(M,fx,fy,q) ⟶ (p∈r ⟷ q∈s))))"
  *)

definition
  order_isomorphism_fm :: "[i,i,i,i,i]=>i" where
 "order_isomorphism_fm(A,r,B,s,f) ==
   And(bijection_fm(A,B,f),
     Forall(Implies(Member(0,succ(A)),
       Forall(Implies(Member(0,succ(succ(A))),
         Forall(Forall(Forall(Forall(
           Implies(pair_fm(5,4,3),
             Implies(fun_apply_fm(f#+6,5,2),
               Implies(fun_apply_fm(f#+6,4,1),
                 Implies(pair_fm(2,1,0),
                   Iff(Member(3,r#+6), Member(0,s#+6)))))))))))))))"

lemma order_isomorphism_type [TC]:
     "[| A ∈ nat; r ∈ nat; B ∈ nat; s ∈ nat; f ∈ nat |]
      ==> order_isomorphism_fm(A,r,B,s,f) ∈ formula"
by (simp add: order_isomorphism_fm_def)

lemma sats_order_isomorphism_fm [simp]:
   "[| U ∈ nat; r ∈ nat; B ∈ nat; s ∈ nat; f ∈ nat; env ∈ list(A)|]
    ==> sats(A, order_isomorphism_fm(U,r,B,s,f), env) ⟷
        order_isomorphism(##A, nth(U,env), nth(r,env), nth(B,env),
                               nth(s,env), nth(f,env))"
by (simp add: order_isomorphism_fm_def order_isomorphism_def)

lemma order_isomorphism_iff_sats:
  "[| nth(i,env) = U; nth(j,env) = r; nth(k,env) = B; nth(j',env) = s;
      nth(k',env) = f;
      i ∈ nat; j ∈ nat; k ∈ nat; j' ∈ nat; k' ∈ nat; env ∈ list(A)|]
   ==> order_isomorphism(##A,U,r,B,s,f) ⟷
       sats(A, order_isomorphism_fm(i,j,k,j',k'), env)"
by simp

subsubsection‹Limit Ordinals, Internalized›

text‹A limit ordinal is a non-empty, successor-closed ordinal›

(* "limit_ordinal(M,a) ==
        ordinal(M,a) & ~ empty(M,a) &
        (∀x[M]. x∈a ⟶ (∃y[M]. y∈a & successor(M,x,y)))" *)

definition
  limit_ordinal_fm :: "i=>i" where
    "limit_ordinal_fm(x) ==
        And(ordinal_fm(x),
            And(Neg(empty_fm(x)),
                Forall(Implies(Member(0,succ(x)),
                               Exists(And(Member(0,succ(succ(x))),
                                          succ_fm(1,0)))))))"

lemma limit_ordinal_type [TC]:
     "x ∈ nat ==> limit_ordinal_fm(x) ∈ formula"
by (simp add: limit_ordinal_fm_def)

lemma sats_limit_ordinal_fm [simp]:
   "[| x ∈ nat; env ∈ list(A)|]
    ==> sats(A, limit_ordinal_fm(x), env) ⟷ limit_ordinal(##A, nth(x,env))"
by (simp add: limit_ordinal_fm_def limit_ordinal_def sats_ordinal_fm')

lemma limit_ordinal_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; env ∈ list(A)|]
       ==> limit_ordinal(##A, x) ⟷ sats(A, limit_ordinal_fm(i), env)"
by simp

subsubsection‹Finite Ordinals: The Predicate ``Is A Natural Number''›

(*     "finite_ordinal(M,a) == 
        ordinal(M,a) & ~ limit_ordinal(M,a) & 
        (∀x[M]. x∈a ⟶ ~ limit_ordinal(M,x))" *)
definition
  finite_ordinal_fm :: "i=>i" where
    "finite_ordinal_fm(x) ==
       And(ordinal_fm(x),
          And(Neg(limit_ordinal_fm(x)),
           Forall(Implies(Member(0,succ(x)),
                          Neg(limit_ordinal_fm(0))))))"

lemma finite_ordinal_type [TC]:
     "x ∈ nat ==> finite_ordinal_fm(x) ∈ formula"
by (simp add: finite_ordinal_fm_def)

lemma sats_finite_ordinal_fm [simp]:
   "[| x ∈ nat; env ∈ list(A)|]
    ==> sats(A, finite_ordinal_fm(x), env) ⟷ finite_ordinal(##A, nth(x,env))"
by (simp add: finite_ordinal_fm_def sats_ordinal_fm' finite_ordinal_def)

lemma finite_ordinal_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; env ∈ list(A)|]
       ==> finite_ordinal(##A, x) ⟷ sats(A, finite_ordinal_fm(i), env)"
by simp


subsubsection‹Omega: The Set of Natural Numbers›

(* omega(M,a) == limit_ordinal(M,a) & (∀x[M]. x∈a ⟶ ~ limit_ordinal(M,x)) *)
definition
  omega_fm :: "i=>i" where
    "omega_fm(x) ==
       And(limit_ordinal_fm(x),
           Forall(Implies(Member(0,succ(x)),
                          Neg(limit_ordinal_fm(0)))))"

lemma omega_type [TC]:
     "x ∈ nat ==> omega_fm(x) ∈ formula"
by (simp add: omega_fm_def)

lemma sats_omega_fm [simp]:
   "[| x ∈ nat; env ∈ list(A)|]
    ==> sats(A, omega_fm(x), env) ⟷ omega(##A, nth(x,env))"
by (simp add: omega_fm_def omega_def)

lemma omega_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; env ∈ list(A)|]
       ==> omega(##A, x) ⟷ sats(A, omega_fm(i), env)"
by simp

lemmas fun_plus_iff_sats =
        typed_function_iff_sats composition_iff_sats
        injection_iff_sats surjection_iff_sats
        bijection_iff_sats restriction_iff_sats
        order_isomorphism_iff_sats finite_ordinal_iff_sats
        ordinal_iff_sats limit_ordinal_iff_sats omega_iff_sats

(*  
    Here starts the fraction from Internalize.thy
*)

subsection‹Internalized Forms of Data Structuring Operators›

subsubsection‹The Formula @{term is_Inl}, Internalized›

(*  is_Inl(M,a,z) == ∃zero[M]. empty(M,zero) & pair(M,zero,a,z) *)
definition
  Inl_fm :: "[i,i]=>i" where
    "Inl_fm(a,z) == Exists(And(empty_fm(0), pair_fm(0,succ(a),succ(z))))"

lemma Inl_type [TC]:
     "[| x ∈ nat; z ∈ nat |] ==> Inl_fm(x,z) ∈ formula"
by (simp add: Inl_fm_def)

lemma sats_Inl_fm [simp]:
   "[| x ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, Inl_fm(x,z), env) ⟷ is_Inl(##A, nth(x,env), nth(z,env))"
   
by (simp add: Inl_fm_def is_Inl_def)

lemma Inl_iff_sats:
      "[| nth(i,env) = x; nth(k,env) = z;
          i ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> is_Inl(##A, x, z) ⟷ sats(A, Inl_fm(i,k), env)"
by simp


subsubsection‹The Formula @{term is_Inr}, Internalized›

(*  is_Inr(M,a,z) == ∃n1[M]. number1(M,n1) & pair(M,n1,a,z) *)
definition
  Inr_fm :: "[i,i]=>i" where
    "Inr_fm(a,z) == Exists(And(number1_fm(0), pair_fm(0,succ(a),succ(z))))"

lemma Inr_type [TC]:
     "[| x ∈ nat; z ∈ nat |] ==> Inr_fm(x,z) ∈ formula"
by (simp add: Inr_fm_def)

lemma sats_Inr_fm [simp]:
   "[| x ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, Inr_fm(x,z), env) ⟷ is_Inr(##A, nth(x,env), nth(z,env))"
by (simp add: Inr_fm_def is_Inr_def)

lemma Inr_iff_sats:
      "[| nth(i,env) = x; nth(k,env) = z;
          i ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> is_Inr(##A, x, z) ⟷ sats(A, Inr_fm(i,k), env)"
by simp


subsubsection‹The Formula @{term is_Nil}, Internalized›

(* is_Nil(M,xs) == ∃zero[M]. empty(M,zero) & is_Inl(M,zero,xs) *)

definition
  Nil_fm :: "i=>i" where
    "Nil_fm(x) == Exists(And(empty_fm(0), Inl_fm(0,succ(x))))"

lemma Nil_type [TC]: "x ∈ nat ==> Nil_fm(x) ∈ formula"
by (simp add: Nil_fm_def)

lemma sats_Nil_fm [simp]:
   "[| x ∈ nat; env ∈ list(A)|]
    ==> sats(A, Nil_fm(x), env) ⟷ is_Nil(##A, nth(x,env))"
by (simp add: Nil_fm_def is_Nil_def)

lemma Nil_iff_sats:
      "[| nth(i,env) = x; i ∈ nat; env ∈ list(A)|]
       ==> is_Nil(##A, x) ⟷ sats(A, Nil_fm(i), env)"
by simp


subsubsection‹The Formula @{term is_Cons}, Internalized›


(*  "is_Cons(M,a,l,Z) == ∃p[M]. pair(M,a,l,p) & is_Inr(M,p,Z)" *)
definition
  Cons_fm :: "[i,i,i]=>i" where
    "Cons_fm(a,l,Z) ==
       Exists(And(pair_fm(succ(a),succ(l),0), Inr_fm(0,succ(Z))))"

lemma Cons_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> Cons_fm(x,y,z) ∈ formula"
by (simp add: Cons_fm_def)

lemma sats_Cons_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, Cons_fm(x,y,z), env) ⟷
       is_Cons(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: Cons_fm_def is_Cons_def)

lemma Cons_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==>is_Cons(##A, x, y, z) ⟷ sats(A, Cons_fm(i,j,k), env)"
by simp

subsubsection‹The Formula @{term is_quasilist}, Internalized›

(* is_quasilist(M,xs) == is_Nil(M,z) | (∃x[M]. ∃l[M]. is_Cons(M,x,l,z))" *)

definition
  quasilist_fm :: "i=>i" where
    "quasilist_fm(x) ==
       Or(Nil_fm(x), Exists(Exists(Cons_fm(1,0,succ(succ(x))))))"

lemma quasilist_type [TC]: "x ∈ nat ==> quasilist_fm(x) ∈ formula"
by (simp add: quasilist_fm_def)

lemma sats_quasilist_fm [simp]:
   "[| x ∈ nat; env ∈ list(A)|]
    ==> sats(A, quasilist_fm(x), env) ⟷ is_quasilist(##A, nth(x,env))"
by (simp add: quasilist_fm_def is_quasilist_def)

lemma quasilist_iff_sats:
      "[| nth(i,env) = x; i ∈ nat; env ∈ list(A)|]
       ==> is_quasilist(##A, x) ⟷ sats(A, quasilist_fm(i), env)"
by simp


subsection‹Absoluteness for the Function @{term nth}›


subsubsection‹The Formula @{term is_hd}, Internalized›

(*   "is_hd(M,xs,H) == 
       (is_Nil(M,xs) ⟶ empty(M,H)) &
       (∀x[M]. ∀l[M]. ~ is_Cons(M,x,l,xs) | H=x) &
       (is_quasilist(M,xs) | empty(M,H))" *)
definition
  hd_fm :: "[i,i]=>i" where
    "hd_fm(xs,H) == 
       And(Implies(Nil_fm(xs), empty_fm(H)),
           And(Forall(Forall(Or(Neg(Cons_fm(1,0,xs#+2)), Equal(H#+2,1)))),
               Or(quasilist_fm(xs), empty_fm(H))))"

lemma hd_type [TC]:
     "[| x ∈ nat; y ∈ nat |] ==> hd_fm(x,y) ∈ formula"
by (simp add: hd_fm_def) 

lemma sats_hd_fm [simp]:
   "[| x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, hd_fm(x,y), env) ⟷ is_hd(##A, nth(x,env), nth(y,env))"
by (simp add: hd_fm_def is_hd_def)

lemma hd_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; j ∈ nat; env ∈ list(A)|]
       ==> is_hd(##A, x, y) ⟷ sats(A, hd_fm(i,j), env)"
by simp


subsubsection‹The Formula @{term is_tl}, Internalized›

(*     "is_tl(M,xs,T) ==
       (is_Nil(M,xs) ⟶ T=xs) &
       (∀x[M]. ∀l[M]. ~ is_Cons(M,x,l,xs) | T=l) &
       (is_quasilist(M,xs) | empty(M,T))" *)
definition
  tl_fm :: "[i,i]=>i" where
    "tl_fm(xs,T) ==
       And(Implies(Nil_fm(xs), Equal(T,xs)),
           And(Forall(Forall(Or(Neg(Cons_fm(1,0,xs#+2)), Equal(T#+2,0)))),
               Or(quasilist_fm(xs), empty_fm(T))))"

lemma tl_type [TC]:
     "[| x ∈ nat; y ∈ nat |] ==> tl_fm(x,y) ∈ formula"
by (simp add: tl_fm_def)

lemma sats_tl_fm [simp]:
   "[| x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, tl_fm(x,y), env) ⟷ is_tl(##A, nth(x,env), nth(y,env))"
by (simp add: tl_fm_def is_tl_def)

lemma tl_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; j ∈ nat; env ∈ list(A)|]
       ==> is_tl(##A, x, y) ⟷ sats(A, tl_fm(i,j), env)"
by simp


subsubsection‹The Operator @{term is_bool_of_o}›

(*   is_bool_of_o :: "[i=>o, o, i] => o"
   "is_bool_of_o(M,P,z) == (P & number1(M,z)) | (~P & empty(M,z))" *)

text‹The formula @{term p} has no free variables.›
definition
  bool_of_o_fm :: "[i, i]=>i" where
  "bool_of_o_fm(p,z) == 
    Or(And(p,number1_fm(z)),
       And(Neg(p),empty_fm(z)))"

lemma is_bool_of_o_type [TC]:
     "[| p ∈ formula; z ∈ nat |] ==> bool_of_o_fm(p,z) ∈ formula"
by (simp add: bool_of_o_fm_def)

lemma sats_bool_of_o_fm:
  assumes p_iff_sats: "P ⟷ sats(A, p, env)"
  shows 
      "[|z ∈ nat; env ∈ list(A)|]
       ==> sats(A, bool_of_o_fm(p,z), env) ⟷
           is_bool_of_o(##A, P, nth(z,env))"
by (simp add: bool_of_o_fm_def is_bool_of_o_def p_iff_sats [THEN iff_sym])

lemma is_bool_of_o_iff_sats:
  "[| P ⟷ sats(A, p, env); nth(k,env) = z; k ∈ nat; env ∈ list(A)|]
   ==> is_bool_of_o(##A, P, z) ⟷ sats(A, bool_of_o_fm(p,k), env)"
by (simp add: sats_bool_of_o_fm)


subsection‹More Internalizations›

subsubsection‹The Operator @{term is_lambda}›

text‹The two arguments of @{term p} are always 1, 0. Remember that
 @{term p} will be enclosed by three quantifiers.›

(* is_lambda :: "[i=>o, i, [i,i]=>o, i] => o"
    "is_lambda(M, A, is_b, z) == 
       ∀p[M]. p ∈ z ⟷
        (∃u[M]. ∃v[M]. u∈A & pair(M,u,v,p) & is_b(u,v))" *)
definition
  lambda_fm :: "[i, i, i]=>i" where
  "lambda_fm(p,A,z) == 
    Forall(Iff(Member(0,succ(z)),
            Exists(Exists(And(Member(1,A#+3),
                           And(pair_fm(1,0,2), p))))))"

text‹We call @{term p} with arguments x, y by equating them with 
  the corresponding quantified variables with de Bruijn indices 1, 0.›

lemma is_lambda_type [TC]:
     "[| p ∈ formula; x ∈ nat; y ∈ nat |] 
      ==> lambda_fm(p,x,y) ∈ formula"
by (simp add: lambda_fm_def) 

lemma sats_lambda_fm:
  assumes is_b_iff_sats: 
      "!!a0 a1 a2. 
        [|a0∈A; a1∈A; a2∈A|] 
        ==> is_b(a1, a0) ⟷ sats(A, p, Cons(a0,Cons(a1,Cons(a2,env))))"
  shows 
      "[|x ∈ nat; y ∈ nat; env ∈ list(A)|]
       ==> sats(A, lambda_fm(p,x,y), env) ⟷ 
           is_lambda(##A, nth(x,env), is_b, nth(y,env))"
by (simp add: lambda_fm_def is_lambda_def is_b_iff_sats [THEN iff_sym]) 

subsubsection‹The Operator @{term is_Member}, Internalized›

(*    "is_Member(M,x,y,Z) ==
        ∃p[M]. ∃u[M]. pair(M,x,y,p) & is_Inl(M,p,u) & is_Inl(M,u,Z)" *)
definition
  Member_fm :: "[i,i,i]=>i" where
    "Member_fm(x,y,Z) ==
       Exists(Exists(And(pair_fm(x#+2,y#+2,1), 
                      And(Inl_fm(1,0), Inl_fm(0,Z#+2)))))"

lemma is_Member_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> Member_fm(x,y,z) ∈ formula"
by (simp add: Member_fm_def)

lemma sats_Member_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, Member_fm(x,y,z), env) ⟷
        is_Member(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: Member_fm_def is_Member_def)

lemma Member_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> is_Member(##A, x, y, z) ⟷ sats(A, Member_fm(i,j,k), env)"
by (simp add: sats_Member_fm)

subsubsection‹The Operator @{term is_Equal}, Internalized›

(*    "is_Equal(M,x,y,Z) ==
        ∃p[M]. ∃u[M]. pair(M,x,y,p) & is_Inr(M,p,u) & is_Inl(M,u,Z)" *)
definition
  Equal_fm :: "[i,i,i]=>i" where
    "Equal_fm(x,y,Z) ==
       Exists(Exists(And(pair_fm(x#+2,y#+2,1), 
                      And(Inr_fm(1,0), Inl_fm(0,Z#+2)))))"

lemma is_Equal_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> Equal_fm(x,y,z) ∈ formula"
by (simp add: Equal_fm_def)

lemma sats_Equal_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, Equal_fm(x,y,z), env) ⟷
        is_Equal(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: Equal_fm_def is_Equal_def)

lemma Equal_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> is_Equal(##A, x, y, z) ⟷ sats(A, Equal_fm(i,j,k), env)"
by (simp add: sats_Equal_fm)

subsubsection‹The Operator @{term is_Nand}, Internalized›

(*    "is_Nand(M,x,y,Z) ==
        ∃p[M]. ∃u[M]. pair(M,x,y,p) & is_Inl(M,p,u) & is_Inr(M,u,Z)" *)
definition
  Nand_fm :: "[i,i,i]=>i" where
    "Nand_fm(x,y,Z) ==
       Exists(Exists(And(pair_fm(x#+2,y#+2,1), 
                      And(Inl_fm(1,0), Inr_fm(0,Z#+2)))))"

lemma is_Nand_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> Nand_fm(x,y,z) ∈ formula"
by (simp add: Nand_fm_def)

lemma sats_Nand_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, Nand_fm(x,y,z), env) ⟷
        is_Nand(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: Nand_fm_def is_Nand_def)

lemma Nand_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> is_Nand(##A, x, y, z) ⟷ sats(A, Nand_fm(i,j,k), env)"
by (simp add: sats_Nand_fm)

subsubsection‹The Operator @{term is_Forall}, Internalized›

(* "is_Forall(M,p,Z) == ∃u[M]. is_Inr(M,p,u) & is_Inr(M,u,Z)" *)
definition
  Forall_fm :: "[i,i]=>i" where
    "Forall_fm(x,Z) ==
       Exists(And(Inr_fm(succ(x),0), Inr_fm(0,succ(Z))))"

lemma is_Forall_type [TC]:
     "[| x ∈ nat; y ∈ nat |] ==> Forall_fm(x,y) ∈ formula"
by (simp add: Forall_fm_def)

lemma sats_Forall_fm [simp]:
   "[| x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, Forall_fm(x,y), env) ⟷
        is_Forall(##A, nth(x,env), nth(y,env))"
by (simp add: Forall_fm_def is_Forall_def)

lemma Forall_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; 
          i ∈ nat; j ∈ nat; env ∈ list(A)|]
       ==> is_Forall(##A, x, y) ⟷ sats(A, Forall_fm(i,j), env)"
by (simp add: sats_Forall_fm)


subsubsection‹The Operator @{term is_and}, Internalized›

(* is_and(M,a,b,z) == (number1(M,a)  & z=b) | 
                       (~number1(M,a) & empty(M,z)) *)
definition
  and_fm :: "[i,i,i]=>i" where
    "and_fm(a,b,z) ==
       Or(And(number1_fm(a), Equal(z,b)),
          And(Neg(number1_fm(a)),empty_fm(z)))"

lemma is_and_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> and_fm(x,y,z) ∈ formula"
by (simp add: and_fm_def)

lemma sats_and_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, and_fm(x,y,z), env) ⟷
        is_and(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: and_fm_def is_and_def)

lemma is_and_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> is_and(##A, x, y, z) ⟷ sats(A, and_fm(i,j,k), env)"
by simp


subsubsection‹The Operator @{term is_or}, Internalized›

(* is_or(M,a,b,z) == (number1(M,a)  & number1(M,z)) | 
                     (~number1(M,a) & z=b) *)

definition
  or_fm :: "[i,i,i]=>i" where
    "or_fm(a,b,z) ==
       Or(And(number1_fm(a), number1_fm(z)),
          And(Neg(number1_fm(a)), Equal(z,b)))"

lemma is_or_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> or_fm(x,y,z) ∈ formula"
by (simp add: or_fm_def)

lemma sats_or_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, or_fm(x,y,z), env) ⟷
        is_or(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: or_fm_def is_or_def)

lemma is_or_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> is_or(##A, x, y, z) ⟷ sats(A, or_fm(i,j,k), env)"
by simp



subsubsection‹The Operator @{term is_not}, Internalized›

(* is_not(M,a,z) == (number1(M,a)  & empty(M,z)) | 
                     (~number1(M,a) & number1(M,z)) *)
definition
  not_fm :: "[i,i]=>i" where
    "not_fm(a,z) ==
       Or(And(number1_fm(a), empty_fm(z)),
          And(Neg(number1_fm(a)), number1_fm(z)))"

lemma is_not_type [TC]:
     "[| x ∈ nat; z ∈ nat |] ==> not_fm(x,z) ∈ formula"
by (simp add: not_fm_def)

lemma sats_is_not_fm [simp]:
   "[| x ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, not_fm(x,z), env) ⟷ is_not(##A, nth(x,env), nth(z,env))"
by (simp add: not_fm_def is_not_def)

lemma is_not_iff_sats:
      "[| nth(i,env) = x; nth(k,env) = z;
          i ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> is_not(##A, x, z) ⟷ sats(A, not_fm(i,k), env)"
by simp

subsection‹Well-Founded Recursion!›

subsubsection‹The Operator @{term M_is_recfun}›

text‹Alternative definition, minimizing nesting of quantifiers around MH›
lemma M_is_recfun_iff:
   "M_is_recfun(M,MH,r,a,f) ⟷
    (∀z[M]. z ∈ f ⟷ 
     (∃x[M]. ∃f_r_sx[M]. ∃y[M]. 
             MH(x, f_r_sx, y) & pair(M,x,y,z) &
             (∃xa[M]. ∃sx[M]. ∃r_sx[M]. 
                pair(M,x,a,xa) & upair(M,x,x,sx) &
               pre_image(M,r,sx,r_sx) & restriction(M,f,r_sx,f_r_sx) &
               xa ∈ r)))"
apply (simp add: M_is_recfun_def)
apply (rule rall_cong, blast) 
done


(* M_is_recfun :: "[i=>o, [i,i,i]=>o, i, i, i] => o"
   "M_is_recfun(M,MH,r,a,f) ==
     ∀z[M]. z ∈ f ⟷
               2      1           0
new def     (∃x[M]. ∃f_r_sx[M]. ∃y[M]. 
             MH(x, f_r_sx, y) & pair(M,x,y,z) &
             (∃xa[M]. ∃sx[M]. ∃r_sx[M]. 
                pair(M,x,a,xa) & upair(M,x,x,sx) &
               pre_image(M,r,sx,r_sx) & restriction(M,f,r_sx,f_r_sx) &
               xa ∈ r)"
*)

text‹The three arguments of @{term p} are always 2, 1, 0 and z›
definition
  is_recfun_fm :: "[i, i, i, i]=>i" where
  "is_recfun_fm(p,r,a,f) == 
   Forall(Iff(Member(0,succ(f)),
    Exists(Exists(Exists(
     And(p, 
      And(pair_fm(2,0,3),
       Exists(Exists(Exists(
        And(pair_fm(5,a#+7,2),
         And(upair_fm(5,5,1),
          And(pre_image_fm(r#+7,1,0),
           And(restriction_fm(f#+7,0,4), Member(2,r#+7)))))))))))))))"

lemma is_recfun_type [TC]:
     "[| p ∈ formula; x ∈ nat; y ∈ nat; z ∈ nat |] 
      ==> is_recfun_fm(p,x,y,z) ∈ formula"
by (simp add: is_recfun_fm_def)


lemma sats_is_recfun_fm:
  assumes MH_iff_sats: 
      "!!a0 a1 a2 a3. 
        [|a0∈A; a1∈A; a2∈A; a3∈A|] 
        ==> MH(a2, a1, a0) ⟷ sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,env)))))"
  shows 
      "[|x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
       ==> sats(A, is_recfun_fm(p,x,y,z), env) ⟷
           M_is_recfun(##A, MH, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: is_recfun_fm_def M_is_recfun_iff MH_iff_sats [THEN iff_sym])

lemma is_recfun_iff_sats:
  assumes MH_iff_sats: 
      "!!a0 a1 a2 a3. 
        [|a0∈A; a1∈A; a2∈A; a3∈A|] 
        ==> MH(a2, a1, a0) ⟷ sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,env)))))"
  shows
  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
      i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
   ==> M_is_recfun(##A, MH, x, y, z) ⟷ sats(A, is_recfun_fm(p,i,j,k), env)"
by (simp add: sats_is_recfun_fm [OF MH_iff_sats]) 

text‹The additional variable in the premise, namely @{term f'}, is essential.
It lets @{term MH} depend upon @{term x}, which seems often necessary.
The same thing occurs in ‹is_wfrec_reflection›.›

subsubsection‹The Operator @{term is_wfrec}›

text‹The three arguments of @{term p} are always 2, 1, 0;
      @{term p} is enclosed by 5 quantifiers.›

(* is_wfrec :: "[i=>o, i, [i,i,i]=>o, i, i] => o"
    "is_wfrec(M,MH,r,a,z) == 
      ∃f[M]. M_is_recfun(M,MH,r,a,f) & MH(a,f,z)" *)
definition
  is_wfrec_fm :: "[i, i, i, i]=>i" where
  "is_wfrec_fm(p,r,a,z) == 
    Exists(And(is_recfun_fm(p, succ(r), succ(a), 0),
           Exists(Exists(Exists(Exists(
             And(Equal(2,a#+5), And(Equal(1,4), And(Equal(0,z#+5), p)))))))))"

text‹We call @{term p} with arguments a, f, z by equating them with 
  the corresponding quantified variables with de Bruijn indices 2, 1, 0.›

text‹There's an additional existential quantifier to ensure that the
      environments in both calls to MH have the same length.›

lemma is_wfrec_type [TC]:
     "[| p ∈ formula; x ∈ nat; y ∈ nat; z ∈ nat |] 
      ==> is_wfrec_fm(p,x,y,z) ∈ formula"
by (simp add: is_wfrec_fm_def) 

lemma sats_is_wfrec_fm:
  assumes MH_iff_sats: 
      "!!a0 a1 a2 a3 a4. 
        [|a0∈A; a1∈A; a2∈A; a3∈A; a4∈A|] 
        ==> MH(a2, a1, a0) ⟷ sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,Cons(a4,env))))))"
  shows 
      "[|x ∈ nat; y < length(env); z < length(env); env ∈ list(A)|]
       ==> sats(A, is_wfrec_fm(p,x,y,z), env) ⟷ 
           is_wfrec(##A, MH, nth(x,env), nth(y,env), nth(z,env))"
apply (frule_tac x=z in lt_length_in_nat, assumption)  
apply (frule lt_length_in_nat, assumption)  
apply (simp add: is_wfrec_fm_def sats_is_recfun_fm is_wfrec_def MH_iff_sats [THEN iff_sym], blast) 
done


lemma is_wfrec_iff_sats:
  assumes MH_iff_sats: 
      "!!a0 a1 a2 a3 a4. 
        [|a0∈A; a1∈A; a2∈A; a3∈A; a4∈A|] 
        ==> MH(a2, a1, a0) ⟷ sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,Cons(a4,env))))))"
  shows
  "[|nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
      i ∈ nat; j < length(env); k < length(env); env ∈ list(A)|]
   ==> is_wfrec(##A, MH, x, y, z) ⟷ sats(A, is_wfrec_fm(p,i,j,k), env)" 
by (simp add: sats_is_wfrec_fm [OF MH_iff_sats])


subsection‹For Datatypes›

subsubsection‹Binary Products, Internalized›

definition
  cartprod_fm :: "[i,i,i]=>i" where
(* "cartprod(M,A,B,z) ==
        ∀u[M]. u ∈ z ⟷ (∃x[M]. x∈A & (∃y[M]. y∈B & pair(M,x,y,u)))" *)
    "cartprod_fm(A,B,z) ==
       Forall(Iff(Member(0,succ(z)),
                  Exists(And(Member(0,succ(succ(A))),
                         Exists(And(Member(0,succ(succ(succ(B)))),
                                    pair_fm(1,0,2)))))))"

lemma cartprod_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> cartprod_fm(x,y,z) ∈ formula"
by (simp add: cartprod_fm_def)

lemma sats_cartprod_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, cartprod_fm(x,y,z), env) ⟷
        cartprod(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: cartprod_fm_def cartprod_def)

lemma cartprod_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> cartprod(##A, x, y, z) ⟷ sats(A, cartprod_fm(i,j,k), env)"
by (simp add: sats_cartprod_fm)


subsubsection‹Binary Sums, Internalized›

(* "is_sum(M,A,B,Z) ==
       ∃A0[M]. ∃n1[M]. ∃s1[M]. ∃B1[M].
         3      2       1        0
       number1(M,n1) & cartprod(M,n1,A,A0) & upair(M,n1,n1,s1) &
       cartprod(M,s1,B,B1) & union(M,A0,B1,Z)"  *)
definition
  sum_fm :: "[i,i,i]=>i" where
    "sum_fm(A,B,Z) ==
       Exists(Exists(Exists(Exists(
        And(number1_fm(2),
            And(cartprod_fm(2,A#+4,3),
                And(upair_fm(2,2,1),
                    And(cartprod_fm(1,B#+4,0), union_fm(3,0,Z#+4)))))))))"

lemma sum_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> sum_fm(x,y,z) ∈ formula"
by (simp add: sum_fm_def)

lemma sats_sum_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, sum_fm(x,y,z), env) ⟷
        is_sum(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: sum_fm_def is_sum_def)

lemma sum_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
       ==> is_sum(##A, x, y, z) ⟷ sats(A, sum_fm(i,j,k), env)"
by simp


subsubsection‹The Operator @{term quasinat}›

(* "is_quasinat(M,z) == empty(M,z) | (∃m[M]. successor(M,m,z))" *)
definition
  quasinat_fm :: "i=>i" where
    "quasinat_fm(z) == Or(empty_fm(z), Exists(succ_fm(0,succ(z))))"

lemma quasinat_type [TC]:
     "x ∈ nat ==> quasinat_fm(x) ∈ formula"
by (simp add: quasinat_fm_def)

lemma sats_quasinat_fm [simp]:
   "[| x ∈ nat; env ∈ list(A)|]
    ==> sats(A, quasinat_fm(x), env) ⟷ is_quasinat(##A, nth(x,env))"
by (simp add: quasinat_fm_def is_quasinat_def)

lemma quasinat_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; env ∈ list(A)|]
       ==> is_quasinat(##A, x) ⟷ sats(A, quasinat_fm(i), env)"
by simp


subsubsection‹The Operator @{term is_nat_case}›
text‹I could not get it to work with the more natural assumption that 
 @{term is_b} takes two arguments.  Instead it must be a formula where 1 and 0
 stand for @{term m} and @{term b}, respectively.›

(* is_nat_case :: "[i=>o, i, [i,i]=>o, i, i] => o"
    "is_nat_case(M, a, is_b, k, z) ==
       (empty(M,k) ⟶ z=a) &
       (∀m[M]. successor(M,m,k) ⟶ is_b(m,z)) &
       (is_quasinat(M,k) | empty(M,z))" *)
text‹The formula @{term is_b} has free variables 1 and 0.›
definition
  is_nat_case_fm :: "[i, i, i, i]=>i" where
 "is_nat_case_fm(a,is_b,k,z) == 
    And(Implies(empty_fm(k), Equal(z,a)),
        And(Forall(Implies(succ_fm(0,succ(k)), 
                   Forall(Implies(Equal(0,succ(succ(z))), is_b)))),
            Or(quasinat_fm(k), empty_fm(z))))"

lemma is_nat_case_type [TC]:
     "[| is_b ∈ formula;  
         x ∈ nat; y ∈ nat; z ∈ nat |] 
      ==> is_nat_case_fm(x,is_b,y,z) ∈ formula"
by (simp add: is_nat_case_fm_def)

lemma sats_is_nat_case_fm:
  assumes is_b_iff_sats: 
      "!!a. a ∈ A ==> is_b(a,nth(z, env)) ⟷ 
                      sats(A, p, Cons(nth(z,env), Cons(a, env)))"
  shows 
      "[|x ∈ nat; y ∈ nat; z < length(env); env ∈ list(A)|]
       ==> sats(A, is_nat_case_fm(x,p,y,z), env) ⟷
           is_nat_case(##A, nth(x,env), is_b, nth(y,env), nth(z,env))"
apply (frule lt_length_in_nat, assumption)
apply (simp add: is_nat_case_fm_def is_nat_case_def is_b_iff_sats [THEN iff_sym])
done

lemma is_nat_case_iff_sats:
  "[| (!!a. a ∈ A ==> is_b(a,z) ⟷
                      sats(A, p, Cons(z, Cons(a,env))));
      nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
      i ∈ nat; j ∈ nat; k < length(env); env ∈ list(A)|]
   ==> is_nat_case(##A, x, is_b, y, z) ⟷ sats(A, is_nat_case_fm(i,p,j,k), env)"
by (simp add: sats_is_nat_case_fm [of A is_b])


text‹The second argument of @{term is_b} gives it direct access to @{term x},
  which is essential for handling free variable references.  Without this
  argument, we cannot prove reflection for @{term iterates_MH}.›

subsection‹The Operator @{term iterates_MH}, Needed for Iteration›

(*  iterates_MH :: "[i=>o, [i,i]=>o, i, i, i, i] => o"
   "iterates_MH(M,isF,v,n,g,z) ==
        is_nat_case(M, v, λm u. ∃gm[M]. fun_apply(M,g,m,gm) & isF(gm,u),
                    n, z)" *)
definition
  iterates_MH_fm :: "[i, i, i, i, i]=>i" where
 "iterates_MH_fm(isF,v,n,g,z) == 
    is_nat_case_fm(v, 
      Exists(And(fun_apply_fm(succ(succ(succ(g))),2,0), 
                     Forall(Implies(Equal(0,2), isF)))), 
      n, z)"

lemma iterates_MH_type [TC]:
     "[| p ∈ formula;  
         v ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat |] 
      ==> iterates_MH_fm(p,v,x,y,z) ∈ formula"
by (simp add: iterates_MH_fm_def)

lemma sats_iterates_MH_fm:
  assumes is_F_iff_sats:
      "!!a b c d. [| a ∈ A; b ∈ A; c ∈ A; d ∈ A|]
              ==> is_F(a,b) ⟷
                  sats(A, p, Cons(b, Cons(a, Cons(c, Cons(d,env)))))"
  shows 
      "[|v ∈ nat; x ∈ nat; y ∈ nat; z < length(env); env ∈ list(A)|]
       ==> sats(A, iterates_MH_fm(p,v,x,y,z), env) ⟷
           iterates_MH(##A, is_F, nth(v,env), nth(x,env), nth(y,env), nth(z,env))"
apply (frule lt_length_in_nat, assumption)  
apply (simp add: iterates_MH_fm_def iterates_MH_def sats_is_nat_case_fm 
              is_F_iff_sats [symmetric])
apply (rule is_nat_case_cong) 
apply (simp_all add: setclass_def)
done

lemma iterates_MH_iff_sats:
  assumes is_F_iff_sats:
      "!!a b c d. [| a ∈ A; b ∈ A; c ∈ A; d ∈ A|]
              ==> is_F(a,b) ⟷
                  sats(A, p, Cons(b, Cons(a, Cons(c, Cons(d,env)))))"
  shows 
  "[| nth(i',env) = v; nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
      i' ∈ nat; i ∈ nat; j ∈ nat; k < length(env); env ∈ list(A)|]
   ==> iterates_MH(##A, is_F, v, x, y, z) ⟷
       sats(A, iterates_MH_fm(p,i',i,j,k), env)"
by (simp add: sats_iterates_MH_fm [OF is_F_iff_sats]) 

text‹The second argument of @{term p} gives it direct access to @{term x},
  which is essential for handling free variable references.  Without this
  argument, we cannot prove reflection for @{term list_N}.›

subsubsection‹The Operator @{term is_iterates}›

text‹The three arguments of @{term p} are always 2, 1, 0;
      @{term p} is enclosed by 9 (??) quantifiers.›

(*    "is_iterates(M,isF,v,n,Z) == 
      ∃sn[M]. ∃msn[M]. successor(M,n,sn) & membership(M,sn,msn) &
       1       0       is_wfrec(M, iterates_MH(M,isF,v), msn, n, Z)"*)

definition
  is_iterates_fm :: "[i, i, i, i]=>i" where
  "is_iterates_fm(p,v,n,Z) == 
     Exists(Exists(
      And(succ_fm(n#+2,1),
       And(Memrel_fm(1,0),
              is_wfrec_fm(iterates_MH_fm(p, v#+7, 2, 1, 0), 
                          0, n#+2, Z#+2)))))"

text‹We call @{term p} with arguments a, f, z by equating them with 
  the corresponding quantified variables with de Bruijn indices 2, 1, 0.›


lemma is_iterates_type [TC]:
     "[| p ∈ formula; x ∈ nat; y ∈ nat; z ∈ nat |] 
      ==> is_iterates_fm(p,x,y,z) ∈ formula"
by (simp add: is_iterates_fm_def) 

lemma sats_is_iterates_fm:
  assumes is_F_iff_sats:
      "!!a b c d e f g h i j k. 
              [| a ∈ A; b ∈ A; c ∈ A; d ∈ A; e ∈ A; f ∈ A; 
                 g ∈ A; h ∈ A; i ∈ A; j ∈ A; k ∈ A|]
              ==> is_F(a,b) ⟷
                  sats(A, p, Cons(b, Cons(a, Cons(c, Cons(d, Cons(e, Cons(f, 
                      Cons(g, Cons(h, Cons(i, Cons(j, Cons(k, env))))))))))))"
  shows 
      "[|x ∈ nat; y < length(env); z < length(env); env ∈ list(A)|]
       ==> sats(A, is_iterates_fm(p,x,y,z), env) ⟷
           is_iterates(##A, is_F, nth(x,env), nth(y,env), nth(z,env))"
apply (frule_tac x=z in lt_length_in_nat, assumption)  
apply (frule lt_length_in_nat, assumption)  
apply (simp add: is_iterates_fm_def is_iterates_def sats_is_nat_case_fm 
              is_F_iff_sats [symmetric] sats_is_wfrec_fm sats_iterates_MH_fm)
done


lemma is_iterates_iff_sats:
  assumes is_F_iff_sats:
      "!!a b c d e f g h i j k. 
              [| a ∈ A; b ∈ A; c ∈ A; d ∈ A; e ∈ A; f ∈ A; 
                 g ∈ A; h ∈ A; i ∈ A; j ∈ A; k ∈ A|]
              ==> is_F(a,b) ⟷
                  sats(A, p, Cons(b, Cons(a, Cons(c, Cons(d, Cons(e, Cons(f, 
                      Cons(g, Cons(h, Cons(i, Cons(j, Cons(k, env))))))))))))"
  shows 
  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
      i ∈ nat; j < length(env); k < length(env); env ∈ list(A)|]
   ==> is_iterates(##A, is_F, x, y, z) ⟷
       sats(A, is_iterates_fm(p,i,j,k), env)"
by (simp add: sats_is_iterates_fm [OF is_F_iff_sats]) 

text‹The second argument of @{term p} gives it direct access to @{term x},
  which is essential for handling free variable references.  Without this
  argument, we cannot prove reflection for @{term list_N}.›

subsubsection‹The Formula @{term is_eclose_n}, Internalized›

(* is_eclose_n(M,A,n,Z) == is_iterates(M, big_union(M), A, n, Z) *)

definition
  eclose_n_fm :: "[i,i,i]=>i" where
  "eclose_n_fm(A,n,Z) == is_iterates_fm(big_union_fm(1,0), A, n, Z)"

lemma eclose_n_fm_type [TC]:
 "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> eclose_n_fm(x,y,z) ∈ formula"
by (simp add: eclose_n_fm_def)

lemma sats_eclose_n_fm [simp]:
   "[| x ∈ nat; y < length(env); z < length(env); env ∈ list(A)|]
    ==> sats(A, eclose_n_fm(x,y,z), env) ⟷
        is_eclose_n(##A, nth(x,env), nth(y,env), nth(z,env))"
apply (frule_tac x=z in lt_length_in_nat, assumption)  
apply (frule_tac x=y in lt_length_in_nat, assumption)  
apply (simp add: eclose_n_fm_def is_eclose_n_def 
                 sats_is_iterates_fm) 
done

lemma eclose_n_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j < length(env); k < length(env); env ∈ list(A)|]
       ==> is_eclose_n(##A, x, y, z) ⟷ sats(A, eclose_n_fm(i,j,k), env)"
by (simp add: sats_eclose_n_fm)


subsubsection‹Membership in @{term "eclose(A)"}›

(* mem_eclose(M,A,l) == 
      ∃n[M]. ∃eclosen[M]. 
       finite_ordinal(M,n) & is_eclose_n(M,A,n,eclosen) & l ∈ eclosen *)
definition
  mem_eclose_fm :: "[i,i]=>i" where
    "mem_eclose_fm(x,y) ==
       Exists(Exists(
         And(finite_ordinal_fm(1),
           And(eclose_n_fm(x#+2,1,0), Member(y#+2,0)))))"

lemma mem_eclose_type [TC]:
     "[| x ∈ nat; y ∈ nat |] ==> mem_eclose_fm(x,y) ∈ formula"
by (simp add: mem_eclose_fm_def)

lemma sats_mem_eclose_fm [simp]:
   "[| x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, mem_eclose_fm(x,y), env) ⟷ mem_eclose(##A, nth(x,env), nth(y,env))"
by (simp add: mem_eclose_fm_def mem_eclose_def)

lemma mem_eclose_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; j ∈ nat; env ∈ list(A)|]
       ==> mem_eclose(##A, x, y) ⟷ sats(A, mem_eclose_fm(i,j), env)"
by simp


subsubsection‹The Predicate ``Is @{term "eclose(A)"}''›

(* is_eclose(M,A,Z) == ∀l[M]. l ∈ Z ⟷ mem_eclose(M,A,l) *)
definition
  is_eclose_fm :: "[i,i]=>i" where
    "is_eclose_fm(A,Z) ==
       Forall(Iff(Member(0,succ(Z)), mem_eclose_fm(succ(A),0)))"

lemma is_eclose_type [TC]:
     "[| x ∈ nat; y ∈ nat |] ==> is_eclose_fm(x,y) ∈ formula"
by (simp add: is_eclose_fm_def)

lemma sats_is_eclose_fm [simp]:
   "[| x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, is_eclose_fm(x,y), env) ⟷ is_eclose(##A, nth(x,env), nth(y,env))"
by (simp add: is_eclose_fm_def is_eclose_def)

lemma is_eclose_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; j ∈ nat; env ∈ list(A)|]
       ==> is_eclose(##A, x, y) ⟷ sats(A, is_eclose_fm(i,j), env)"
by simp


subsubsection‹The List Functor, Internalized›

definition
  list_functor_fm :: "[i,i,i]=>i" where
(* "is_list_functor(M,A,X,Z) ==
        ∃n1[M]. ∃AX[M].
         number1(M,n1) & cartprod(M,A,X,AX) & is_sum(M,n1,AX,Z)" *)
    "list_functor_fm(A,X,Z) ==
       Exists(Exists(
        And(number1_fm(1),
            And(cartprod_fm(A#+2,X#+2,0), sum_fm(1,0,Z#+2)))))"

lemma list_functor_type [TC]:
     "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> list_functor_fm(x,y,z) ∈ formula"
by (simp add: list_functor_fm_def)

lemma sats_list_functor_fm [simp]:
   "[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
    ==> sats(A, list_functor_fm(x,y,z), env) ⟷
        is_list_functor(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: list_functor_fm_def is_list_functor_def)

lemma list_functor_iff_sats:
  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
      i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
   ==> is_list_functor(##A, x, y, z) ⟷ sats(A, list_functor_fm(i,j,k), env)"
by simp


subsubsection‹The Formula @{term is_list_N}, Internalized›

(* "is_list_N(M,A,n,Z) == 
      ∃zero[M]. empty(M,zero) & 
                is_iterates(M, is_list_functor(M,A), zero, n, Z)" *)

definition
  list_N_fm :: "[i,i,i]=>i" where
  "list_N_fm(A,n,Z) == 
     Exists(
       And(empty_fm(0),
           is_iterates_fm(list_functor_fm(A#+9#+3,1,0), 0, n#+1, Z#+1)))"

lemma list_N_fm_type [TC]:
 "[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> list_N_fm(x,y,z) ∈ formula"
by (simp add: list_N_fm_def)

lemma sats_list_N_fm [simp]:
   "[| x ∈ nat; y < length(env); z < length(env); env ∈ list(A)|]
    ==> sats(A, list_N_fm(x,y,z), env) ⟷
        is_list_N(##A, nth(x,env), nth(y,env), nth(z,env))"
apply (frule_tac x=z in lt_length_in_nat, assumption)  
apply (frule_tac x=y in lt_length_in_nat, assumption)  
apply (simp add: list_N_fm_def is_list_N_def sats_is_iterates_fm) 
done

lemma list_N_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
          i ∈ nat; j < length(env); k < length(env); env ∈ list(A)|]
       ==> is_list_N(##A, x, y, z) ⟷ sats(A, list_N_fm(i,j,k), env)"
by (simp add: sats_list_N_fm)



subsubsection‹The Predicate ``Is A List''›

(* mem_list(M,A,l) == 
      ∃n[M]. ∃listn[M]. 
       finite_ordinal(M,n) & is_list_N(M,A,n,listn) & l ∈ listn *)
definition
  mem_list_fm :: "[i,i]=>i" where
    "mem_list_fm(x,y) ==
       Exists(Exists(
         And(finite_ordinal_fm(1),
           And(list_N_fm(x#+2,1,0), Member(y#+2,0)))))"

lemma mem_list_type [TC]:
     "[| x ∈ nat; y ∈ nat |] ==> mem_list_fm(x,y) ∈ formula"
by (simp add: mem_list_fm_def)

lemma sats_mem_list_fm [simp]:
   "[| x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, mem_list_fm(x,y), env) ⟷ mem_list(##A, nth(x,env), nth(y,env))"
by (simp add: mem_list_fm_def mem_list_def)

lemma mem_list_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; j ∈ nat; env ∈ list(A)|]
       ==> mem_list(##A, x, y) ⟷ sats(A, mem_list_fm(i,j), env)"
by simp


subsubsection‹The Predicate ``Is @{term "list(A)"}''›

(* is_list(M,A,Z) == ∀l[M]. l ∈ Z ⟷ mem_list(M,A,l) *)
definition
  is_list_fm :: "[i,i]=>i" where
    "is_list_fm(A,Z) ==
       Forall(Iff(Member(0,succ(Z)), mem_list_fm(succ(A),0)))"

lemma is_list_type [TC]:
     "[| x ∈ nat; y ∈ nat |] ==> is_list_fm(x,y) ∈ formula"
by (simp add: is_list_fm_def)

lemma sats_is_list_fm [simp]:
   "[| x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, is_list_fm(x,y), env) ⟷ is_list(##A, nth(x,env), nth(y,env))"
by (simp add: is_list_fm_def is_list_def)

lemma is_list_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y;
          i ∈ nat; j ∈ nat; env ∈ list(A)|]
       ==> is_list(##A, x, y) ⟷ sats(A, is_list_fm(i,j), env)"
by simp


subsubsection‹The Formula Functor, Internalized›

definition formula_functor_fm :: "[i,i]=>i" where
(*     "is_formula_functor(M,X,Z) ==
        ∃nat'[M]. ∃natnat[M]. ∃natnatsum[M]. ∃XX[M]. ∃X3[M].
           4           3               2       1       0
          omega(M,nat') & cartprod(M,nat',nat',natnat) &
          is_sum(M,natnat,natnat,natnatsum) &
          cartprod(M,X,X,XX) & is_sum(M,XX,X,X3) &
          is_sum(M,natnatsum,X3,Z)" *)
    "formula_functor_fm(X,Z) ==
       Exists(Exists(Exists(Exists(Exists(
        And(omega_fm(4),
         And(cartprod_fm(4,4,3),
          And(sum_fm(3,3,2),
           And(cartprod_fm(X#+5,X#+5,1),
            And(sum_fm(1,X#+5,0), sum_fm(2,0,Z#+5)))))))))))"

lemma formula_functor_type [TC]:
     "[| x ∈ nat; y ∈ nat |] ==> formula_functor_fm(x,y) ∈ formula"
by (simp add: formula_functor_fm_def)

lemma sats_formula_functor_fm [simp]:
   "[| x ∈ nat; y ∈ nat; env ∈ list(A)|]
    ==> sats(A, formula_functor_fm(x,y), env) ⟷
        is_formula_functor(##A, nth(x,env), nth(y,env))"
by (simp add: formula_functor_fm_def is_formula_functor_def)

lemma formula_functor_iff_sats:
  "[| nth(i,env) = x; nth(j,env) = y;
      i ∈ nat; j ∈ nat; env ∈ list(A)|]
   ==> is_formula_functor(##A, x, y) ⟷ sats(A, formula_functor_fm(i,j), env)"
by simp


subsubsection‹The Formula @{term is_formula_N}, Internalized›

(*  "is_formula_N(M,n,Z) == 
      ∃zero[M]. empty(M,zero) & 
                is_iterates(M, is_formula_functor(M), zero, n, Z)" *) 
definition
  formula_N_fm :: "[i,i]=>i" where
  "formula_N_fm(n,Z) == 
     Exists(
       And(empty_fm(0),
           is_iterates_fm(formula_functor_fm(1,0), 0, n#+1, Z#+1)))"

lemma formula_N_fm_type [TC]:
 "[| x ∈ nat; y ∈ nat |] ==> formula_N_fm(x,y) ∈ formula"
by (simp add: formula_N_fm_def)

lemma sats_formula_N_fm [simp]:
   "[| x < length(env); y < length(env); env ∈ list(A)|]
    ==> sats(A, formula_N_fm(x,y), env) ⟷
        is_formula_N(##A, nth(x,env), nth(y,env))"
apply (frule_tac x=y in lt_length_in_nat, assumption)  
apply (frule lt_length_in_nat, assumption)  
apply (simp add: formula_N_fm_def is_formula_N_def sats_is_iterates_fm) 
done

lemma formula_N_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; 
          i < length(env); j < length(env); env ∈ list(A)|]
       ==> is_formula_N(##A, x, y) ⟷ sats(A, formula_N_fm(i,j), env)"
by (simp add: sats_formula_N_fm)



subsubsection‹The Predicate ``Is A Formula''›

(*  mem_formula(M,p) == 
      ∃n[M]. ∃formn[M]. 
       finite_ordinal(M,n) & is_formula_N(M,n,formn) & p ∈ formn *)
definition
  mem_formula_fm :: "i=>i" where
    "mem_formula_fm(x) ==
       Exists(Exists(
         And(finite_ordinal_fm(1),
           And(formula_N_fm(1,0), Member(x#+2,0)))))"

lemma mem_formula_type [TC]:
     "x ∈ nat ==> mem_formula_fm(x) ∈ formula"
by (simp add: mem_formula_fm_def)

lemma sats_mem_formula_fm [simp]:
   "[| x ∈ nat; env ∈ list(A)|]
    ==> sats(A, mem_formula_fm(x), env) ⟷ mem_formula(##A, nth(x,env))"
by (simp add: mem_formula_fm_def mem_formula_def)

lemma mem_formula_iff_sats:
      "[| nth(i,env) = x; i ∈ nat; env ∈ list(A)|]
       ==> mem_formula(##A, x) ⟷ sats(A, mem_formula_fm(i), env)"
by simp



subsubsection‹The Predicate ``Is @{term "formula"}''›

(* is_formula(M,Z) == ∀p[M]. p ∈ Z ⟷ mem_formula(M,p) *)
definition
  is_formula_fm :: "i=>i" where
    "is_formula_fm(Z) == Forall(Iff(Member(0,succ(Z)), mem_formula_fm(0)))"

lemma is_formula_type [TC]:
     "x ∈ nat ==> is_formula_fm(x) ∈ formula"
by (simp add: is_formula_fm_def)

lemma sats_is_formula_fm [simp]:
   "[| x ∈ nat; env ∈ list(A)|]
    ==> sats(A, is_formula_fm(x), env) ⟷ is_formula(##A, nth(x,env))"
by (simp add: is_formula_fm_def is_formula_def)

lemma is_formula_iff_sats:
      "[| nth(i,env) = x; i ∈ nat; env ∈ list(A)|]
       ==> is_formula(##A, x) ⟷ sats(A, is_formula_fm(i), env)"
by simp


subsubsection‹The Operator @{term is_transrec}›

text‹The three arguments of @{term p} are always 2, 1, 0.  It is buried
   within eight quantifiers!
   We call @{term p} with arguments a, f, z by equating them with 
  the corresponding quantified variables with de Bruijn indices 2, 1, 0.›

(* is_transrec :: "[i=>o, [i,i,i]=>o, i, i] => o"
   "is_transrec(M,MH,a,z) == 
      ∃sa[M]. ∃esa[M]. ∃mesa[M]. 
       2       1         0
       upair(M,a,a,sa) & is_eclose(M,sa,esa) & membership(M,esa,mesa) &
       is_wfrec(M,MH,mesa,a,z)" *)
definition
  is_transrec_fm :: "[i, i, i]=>i" where
 "is_transrec_fm(p,a,z) == 
    Exists(Exists(Exists(
      And(upair_fm(a#+3,a#+3,2),
       And(is_eclose_fm(2,1),
        And(Memrel_fm(1,0), is_wfrec_fm(p,0,a#+3,z#+3)))))))"


lemma is_transrec_type [TC]:
     "[| p ∈ formula; x ∈ nat; z ∈ nat |] 
      ==> is_transrec_fm(p,x,z) ∈ formula"
by (simp add: is_transrec_fm_def) 

lemma sats_is_transrec_fm:
  assumes MH_iff_sats: 
      "!!a0 a1 a2 a3 a4 a5 a6 a7. 
        [|a0∈A; a1∈A; a2∈A; a3∈A; a4∈A; a5∈A; a6∈A; a7∈A|] 
        ==> MH(a2, a1, a0) ⟷ 
            sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,
                          Cons(a4,Cons(a5,Cons(a6,Cons(a7,env)))))))))"
  shows 
      "[|x < length(env); z < length(env); env ∈ list(A)|]
       ==> sats(A, is_transrec_fm(p,x,z), env) ⟷ 
           is_transrec(##A, MH, nth(x,env), nth(z,env))"
apply (frule_tac x=z in lt_length_in_nat, assumption)  
apply (frule_tac x=x in lt_length_in_nat, assumption)  
apply (simp add: is_transrec_fm_def sats_is_wfrec_fm is_transrec_def MH_iff_sats [THEN iff_sym]) 
done


lemma is_transrec_iff_sats:
  assumes MH_iff_sats: 
      "!!a0 a1 a2 a3 a4 a5 a6 a7. 
        [|a0∈A; a1∈A; a2∈A; a3∈A; a4∈A; a5∈A; a6∈A; a7∈A|] 
        ==> MH(a2, a1, a0) ⟷ 
            sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,
                          Cons(a4,Cons(a5,Cons(a6,Cons(a7,env)))))))))"
  shows
  "[|nth(i,env) = x; nth(k,env) = z; 
      i < length(env); k < length(env); env ∈ list(A)|]
   ==> is_transrec(##A, MH, x, z) ⟷ sats(A, is_transrec_fm(p,i,k), env)" 
by (simp add: sats_is_transrec_fm [OF MH_iff_sats])


end