Early Dropout Prediction with Neural Co-embeddings

Milagro Teruel,
Universidad Nacional de Cérdoba
Cérdoba, Argentina
mteruel @unc.edu.ar

Abstract

We present an approach to dropout prediction in Massive On-
line Courses (MOOCS) that relies on a neural model of stu-
dent behavior. The evaluation is focused on predicting the
dropout weekly, using partial information, to simulate a more
realistic scenario.

We propose to obtain a joint representation (a co-embedding)
of students and course components with a recurrent neural
network (RNN) trained with logs of student activity. A joint
representation is more adequate than disjoint representations
because they elicit insights on the interactions between stu-
dents and contents. Such insights are useful for early predic-
tion, when less information is available. This approach does
not require manual labeling of the data, which makes it less
prone to theoretical bias, more portable and less costly to de-
velop. Results indicate that a joint embedding improves the
performance for datasets with less students.

Introduction and Motivation

The ultimate goal of education is to improve the learning
process, and in particular Educational Data Mining (EDM)
contributes to such objective through the analysis of data.
Human learning is a complex process, with hidden, un-
known causes governing the behavior of students and the
success or failure of courses. This turns the analysis of ed-
ucational data into a search for these hidden causes that ex-
plain or predict a certain phenomenon of interest.

The field of EDM has been growing steadily in the past
decade, slowly including more machine learning and data
science approaches. The increased development of Massive
Open Online Courses (MOOCs) and the new availability
of Intelligent Tutoring Systems (ITS) allow researches to
gather large amounts of data.

Dropout Detection

Dropout detection is one of the most studied tasks in EDM,
motivated by rates of students prematurely leaving MOOCs
as high as 93% (Yang et al. 2013). Some lines of work focus
on the prediction of student behavior at the end of the course,
while others seek to prevent dropout and focus on the pre-
diction of actions in the near future (Whitehill et al. 2017).

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Laura Alonso Alemany,
Universidad Nacional de Cérdoba
Cérdoba, Argentina
lauraalonsoalemnay @unc.edu.ar

The KDDCup 2015 competition ! considered as dropout the
absence of student activity in the 10 days following the end
of the course. It was not clear, however, the nature of such
interaction or whether a posterior activity was present or not.
There are more possible definitions of dropout, as proposed
by (Fei and Yeung 2015) , but most of them can only be as-
sessed after the course has ended. In consequence, it is hard
to train a model while the course is running, when an inter-
vention is still possible.

From a more general point of view, educational content
is so rich in different kinds of information that it becomes
problematic to discover patterns and systematize them in a
uniform manner. Even courses created in a single platform
can be very different, with disjoint sets of lessons, designed
for different levels of engagement, among others. These phe-
nomena are aggravated between different platforms, which
can collect different signals or provide different tools. It is
hard to evaluate a dropout prediction model across several
platforms, or develop a generalizable framework.

Furthermore, in MOOCs students come from very dif-
ferent backgrounds and have different expectations as well.
(Kizilcec, Piech, and Schneider 2013) analyze the back-
ground, demographics and common learning paths of stu-
dents in MOOC:s.

Traditional MOOC platforms generate records of student
activity with a very low level of granularity. It is a challenge
to interpret these logs in tasks like dropout prediction, which
involve high-level concepts like skills or engagement.

Contribution

Neural models (or deep models) have proven useful to find
suitable representations for complex problems in several ar-
eas: from modeling meaning in natural language to detecting
nonconcrete concepts in image classification. The multiple
layers in a deep architecture build a number of internal rep-
resentations of the input data, optimized for a certain predic-
tion task. These internal representations are liable to capture
underlying causes of behaviour like the diversity in student
background and interests.

The main contribution of this work is the evaluation of
neural classifiers used for early dropout prevention, simulat-

"https://biendata.com/competition/
kddcup2015/

ing a realistic environment. The data is divided into periods
of one week and the models trained to predict the presence
of any activity on the following week. This approach pro-
duces models that can be applied as the course progresses,
and thus allow for timely dropout detection and intervention.
The difficulty of this approach is the lack on initial informa-
tion to train the model. Neural models need large amounts
of examples to avoid falling into local minima.

To tackle this challenge, we propose to model student
state with course elements using embeddings on a shared
space. Student embeddings capture the factors relevant to
the engagement level, while course element embeddings op-
timize the representation of materials for dropout prediction.
The use of a joint embedding space helps the classifier to
model better the relations between the sequence of visited
course elements and student engagement, adding more in-
formation to scenarios with little student actions recorded.

Additionally, given the neural structure of the embed-
dings, they can be obtained from low-level data, using only
the identifiers of the visited course elements. As a result,
the method is flexible enough to be easily ported to differ-
ent frameworks and course types, because low-level data is
quite comparable across courses. It also has the advantage
that they do not require that experts previously annotate the
data in each course, and can be thus adapted to MOOCs with
lower resources.

Experimental results indicate that models with embed-
dings and co-embeddings outperform a basic recurrent ar-
chitecture, and are particularly helpful for the detection of
dropout on the first week. In particular, they increase perfor-
mance in smaller courses, which suffer more acutely from
lack of generalization.

Relevant work

As mentioned in the previous section, many studies have
been carried out for dropout prediction using deep learn-
ing. For the task of early prediction, it is possible to train a
model using historical data and use it to detect near dropout
cases in a new, current course. However, the diversity be-
tween MOOCs hinders the possibility of transfer learning
between different courses. As pointed out by (Whitehill et
al. 2017) and (Xing et al. 2016), many dropout predictors
are trained and evaluated using the full history of students’
actions on the same course.

An example is the work of (Fei and Yeung 2015), where
the authors use a neural model and report an increase in per-
formance using the data aggregated in weekly periods in-
stead of the full sequence of interactions.

It is also worth noticing that the factors involved in
dropout prediction are not thoroughly understood. For ex-
ample in (Kizilcec, Piech, and Schneider 2013) an analysis
is done on the difference of background and expectations
from students, which leads to diverse levels of engagement.

Deep learning architectures have been proven very help-
ful in other EDM tasks like Deep Knowledge Tracing (DKT)
(Piech et al. 2015), where the level of knowledge of stu-
dents is modeled using the hidden state of a recurrent neu-
ral network. This representation is obtained by optimizing

the model to predict if the student will be able to solve the
next exercise presented by a tutoring system. In contrast with
other non-neural methods, it does not depend on manually
assigned skills. The work of (Tang, Peterson, and Pardos
2016) models students also using RNNs trained to predict
the next action to be performed by the student.

Co-embeddings have been successfully used before in
MOOC environments. (Reddy, Labutov, and Joachims 2016)
propose an embedded representations of students in a “la-
tent skill space” that can be interpreted as the knowledge
level of the student on each skill. Along with them, they find
embeddings for course elements in the same skill space. As
this approach is based on MOOC-like course structures, it
takes into account both graded (assessments) and non graded
(lessons) types of course elements.

Neural co-embeddings for student states and
course elements

As presented in previous sections, our aim is to obtain a joint
representation of students and course elements that high-
lights the major factors involved in the human learning expe-
rience. The goal is to find the embedding functions ¢ and
g that project course elements and students from their rep-
resentation in log data into a shared space, respectively. This
method has been proposed and evaluated for other tasks in
(Teruel and Alonso Alemany 2018). In the shared space each
course element is represented as a vector. Students are repre-
sented as a sequence of vectors, each of them corresponding
to a point of time. Individual vectors represents the state of
the student after each interaction with a course element.

To optimize the co-embeddings, we propose a recurrent
neural architecture, shown in Figure 1. The base of this ar-
chitecture is a Recurrent Neural Network (RNN), which is
designed to collect the relevant information of the inputs
previously seen. The network is trained with the ids of the
course elements seen by students.

The specific update equations for a basic RNN are the fol-
lowing:

y = U(W(hy)h(t) + b(y))

hy = tanh(W @M W=D 4 p(h)) (1)

Where the upper index ¢ indicates the time step. y*) is
the output of the network, given the input (). h, is the hid-
den state, which also represents the student embedding. The
matrices W and biases b are the network’s parameters.

To integrate the embedding of course elements into the
RNN classifier, we add a new embedding layer between the
input layer and the recurrent layer. However, ensure the stu-
dents and for course elements are effectively in the same
space, we use as input to the recurrent layer a point-wise
combination between both embeddings.

After introducing these changes, Equation 1 is rewritten
as:

hy = tanh(WE §(pp(z®), RED) 4w PR =1)

Student and course element has been combined before
by (Reddy, Labutov, and Joachims 2016). However, the au-
thors use only the length of projection of the student em-

Figure 1: Co-embedded recurrent architecture

Lesson Student
embedding ¢, embedding @

Recurrent layer

bedding over the lesson embedding, while we use the point-
wise function 4. This allows us to discriminate the influence
of each dimension in the resulting state, not compensating a
small value on a dimension with a large value in another.

We propose several § functions, some examples are:
o(z,y) = (@ —y)* d(z,y) = |(z — y)| and §(z,y) =
norm(x — y,0, std) (all operations are pointwise). In the
last function, norm refers to the probability of the vector
following a normal distribution

Experimental setting

The dataset used for the experimental evaluation is the KD-
DCup 2015 competition. It was provided by XuetangX,
a Chinese MOOC learning platform initiated by Tsinghua
University, a partner of EdX.

Although the information is no longer available in the
competition website, this dataset was, to our knowledge, one
of the few freely available big datasets of detailed logging
in a MOOC environment. The data provided logs of events
like access to video content, resolution of a problem, etc., for
39 different courses. Events are timestamped and identified
with the corresponding student and course.

Looking for a more realistic scenario, we have performed
a period-wise prediction, trying to emulate the conditions
under which an early detection system could be used for
dropout prevention. We divide each course into periods of
7 days. After this, we take as training instances the sequence
of interactions up to the end on the period. We assign each
instance a label representing whether the student has activity
in the next period. In this dataset, all courses have a span of 4
weeks, allowing to evaluate 3 periods in period-wise predic-
tion. The original definition of dropout classified 79% of all
students as dropouts, and he distribution of dropouts is simi-
lar across courses moving between 70% and 90%. Using the
period-wise defition of dropout, we see a higher concentra-
tion of dropouts in latter periods, with a mean of 0.67 for the
first period, and a mean of 0.81 for the last two.

One model was trained for each course, and we report
the results of the model with better AUC. We have found
that courses with different numbers of students have very
different results, therefore we decided to distinguish results
in three different segments of courses: 5 big courses with
more than 6000 training students, 9 medium courses with
between 5000 and 2000 students and 24 small courses with
less than 2000 students.

The entire student sequences of actions were divided in
three portions, training (70%), testing (20%) and validation
(10%). The performances reported are obtained by applying
the trained model over the testing dataset, after the best hy-
perparameters have been chosen using the validation dataset.

The neural architectures we tested are all based on RNNs.
The simplest one (LSTM) has a single layer of LSTM cells.
The input for this model is the one-hot encoding represen-
tations of the course element id. The output of the recurrent
layer is connected to a dropout layer, and later to a regu-
lar dense layer with sigmoid activation and L2 regulariza-
tion. The output layer is composed of two neurons with soft-
max activation, one for each class. In the second model (E-
LSTM) the input layer is replaced by an embedding layer.
Since students and course elements are not forced to share
the same space, we call this approach disjoint embeddings.
The final model (CoE-LSTM) is the one described in sec-
tion , implementing the proposed co-embeddings.

The algorithm used to optimize a recurrent neural archi-
tecture is called Back Propagation Through Time (BPTT).
However, propagating the gradients over very long se-
quences of time can produce vanishing gradients. LSTM
networks are designed to avoid vanishing gradients, but in
practice they also have a limited propagation point. A tech-
nique used to overcome this problem is truncating the gra-
dients after certain amount of steps, leading to a Truncated
BPTT (TBPTT). However, as TBPTT decreased the perfor-
mance significantly, we used only the last 100 steps of the
sequences to train every model.

The hyperparamenters of the networks optimized in-
cluded embedding size (20, 50, 100 and 200), hidden layer
size (20, 50, 100 and 200), and dropout ratio (0, 0.2, 0.3
and 0.5). The optimizer used is the Adam implementation of
Tensorflow with a learning rate of 0.001.

The metric used is the Area Under the ROC Curve (AUC),
the reference metric in the KDDCup competence. It evalu-
ates the performance of binary probabilistic classifiers in dif-
ferent thresholds, measuring also the difference with a ran-
dom baseline.

Results

In Figure 3 we show the results for period-wise prediction,
showing the AUC of the three classifier types on all courses,
divided by period. We can observe that embedded models
outperform LSTM models in all periods, thus the general-
ization provided by embeddings is useful for this task as
well. The median of performance values in embeddings and
co-embeddings are close in the two first periods. However,
the difference in the quartiles indicates that co-embeddings
are in fact outperforming disjoint representations. The pres-
ence of fewer outliers and lower dispersion in general of
co-embedded models indicate the classifiers generalize bet-
ter with respect to different dataset. Collectively, these re-
sults suggest joint models are more adequate to represent se-
quences with fewer interactions, and they are a good choice
to apply dropout prevention in on-going courses.

When we disaggregate courses by size, we can see the
difference between co-embedded models is more signifi-
cant in smaller courses, even if the general performance

Figure 2: AUC for period-wise prediction, divided by course size

Course size = big

0.90

0.85
0.80 i

Course size = medium

Course size = small

S
2 0.75

0.70| Model

0.65 Il LSTM

I E-LSTM
0.60 I CoE-LSTM
0 1 2 0
Period

Figure 3: AUC for period-wise prediction

Model

. STM 1T
09| wm ELSTM o
W CoE-LSTM
0.85
0.80
E
2075

in such courses is worse than for bigger courses. In Fig-
ure 2 we can see that for the biggest courses all classifiers
perform indistinguishably, with small variations, hence the
smaller spread of the boxplot and close medians. However,
for smaller courses, where data is more scarce and perfor-
mance is worse, co-embeddings seem to provide useful gen-
eralizations over the low-level data.

Conclusions

We have reformulated the dropout task into a period-wise
prediction scenario, more analogous to the scenario where
prevention policies could be deployed. We have assessed the
impact of joint embeddings of course elements and students
for this evaluation setting.

Results indicate that co-embeddings are able to capture
the latent causes involved in dropout, outperforming disjoint
and not-embedded representations. Gaining insight into the
results, we show that performance is better in courses with
less students.

We have obtained promising results from the performance
point of view, but there is still work to do on the effective-
ness of the joint representation for interpretation of human
learning.

References

Fei, M., and Yeung, D.-Y. 2015. Temporal models for pre-
dicting student dropout in massive open online courses. In
Data Mining Workshop (ICDMW), 2015 IEEE International
Conference on Data Mining, 256-263. IEEE.

1

Period

2 0 1 2
Period

Kizilcec, R. E.; Piech, C.; and Schneider, E. 2013. Decon-
structing disengagement: analyzing learner subpopulations
in massive open online courses. In Proceedings of the third
international conference on learning analytics and knowl-
edge, 170-179. ACM.

Piech, C.; Bassen, J.; Huang, J.; Ganguli, S.; Sahami, M.;
Guibas, L.; and Sohl-Dickstein, J. 2015. Deep knowledge
tracing. In Proceedings of the 28th International Conference
on Neural Information Processing Systems, NIPS’15, 505—
513. Cambridge, MA, USA: MIT Press.

Reddy, S.; Labutov, L.; and Joachims, T. 2016. Learning
student and content embeddings for personalized lesson se-
quence recommendation. In Proceedings of the Third (2016)
ACM Conference on Learning @ Scale, L@S ’16, 93-96.
New York, NY, USA: ACM.

Tang, S.; Peterson, J. C.; and Pardos, Z. A. 2016. Deep
neural networks and how they apply to sequential education
data. In Proceedings of the Third (2016) ACM Conference
on Learning @ Scale, L@S ’16, 321-324. New York, NY,
USA: ACM.

Teruel, M., and Alonso Alemany, L. 2018. Co-embeddings
for student modeling in virtual learning environments. In
Proceedings of the 26th Conference on User Modeling,
Adaptation and Personalization, UMAP 18, 73-80. New
York, NY, USA: ACM.

Whitehill, J.; Mohan, K.; Seaton, D.; Rosen, Y.; and Tingley,
D. 2017. Mooc dropout prediction: How to measure accu-
racy? In Proceedings of the Fourth (2017) ACM Conference
on Learning @ Scale, L@S ’17, 161-164. New York, NY,
USA: ACM.

Xing, W.; Chen, X.; Stein, J.; and Marcinkowski, M. 2016.
Temporal predication of dropouts in moocs: Reaching the
low hanging fruit through stacking generalization. Comput-
ers in Human Behavior 58:119-129.

Yang, D.; Sinha, T.; Adamson, D.; and Rose, C. P. 2013.
Turn on, tune in, drop out: Anticipating student dropouts in

massive open online courses. In Proceedings of the 2013
NIPS Data-Driven Education Workshop, volume 10, 13-20.

