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ABSTRACT
We present a neural architecture to model student behavior in
virtual educational environments using purely unsupervised infor-
mation. A crucial part of this architecture is the optimization of a
joint embedding function to represent both students and course el-
ements into a single shared space. This joint representation is more
adequate than disjoint representations because it elicits insights on
the relations between students and contents. Moreover, the model
is trained only with interactions of the student with online learning
platforms, without requiring any additional manual labeling by
experts.

We obtain state-of-the-art results using this approach in two
types of task: first, dropout prediction in online courses (MOOCs),
and second Knowledge Tracing in Intelligent Tutoring Systems
(ITS). We explore how the deep architecture is flexible enough to
capture variables related to different phenomena, such as engage-
ment or skill mastery.
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1 INTRODUCTION
Educational Data Mining (EDM) is a complex area, with hidden,
unknown causes governing the behavior of students and the suc-
cess or failure of courses. In this context, Student Modeling, a spe-
cialized area of user modeling, has been growing steadily in the
past decade. The increased development of Massive Open Online
Courses (MOOCs) and the new availability of Intelligent Tutoring
Systems (ITS) allow researchers to gather large amounts of data. A
clear example is the Carnegie Mellon University DataShop 1, that
acts as a dataset repository and also provides standard learning
analytics tools. These large datasets facilitate the application of ma-
chine learning and data science approaches, for example to address
tasks like dropout prediction and prevention, or personalization to
improve learning.

However, various factors are hindering advances in this area.
First, the scarcity of manually labeled datasets freely available for re-
search, which are costly to develop and to anonymize. Secondly, it is
hard to obtain adequate abstractions, because the available datasets
are composed of low-level logs generated by learning platforms.
In this paper we try to address both these problems by applying
unsupervised methods for representation learning. These methods
can be applied to datasets without manual labels, and they provide
generalizations over the low-level data that may be useful to attain
human-level abstractions. These abstractions, although not directly
interpretable, can be used in visualization, personalization, or to
support decision-making in general.

Educational content has such a diversity that it becomes prob-
lematic to discover patterns and systematize it in a uniform manner.
Different courses will have a completely different set of lessons and
exercises, can be designed for other levels of engagement and work
load, the units can be independent or highly correlated, among
others.

Diversity is evenmore acutewhenwe compare data fromMOOCs
with data from ITSs, where the learning environment and the or-
ganization of materials is quite different. For example, the content
used by ITSs are selected and labeled with meta-information nec-
essary for the recommendations produced by the system, which
involves expert human annotation. The static format of MOOCs
makes them less expensive to create and usually do not include
such detailed meta-information.

We expect a general method based on deep architectures will be
flexible enough to deal with different kinds of data and still preserve
basic properties. In addition, neural networks have been proved to
generalize well without the need of additional meta-information,
as the models construct their own representations (embeddings)
only from access traces.

1https://pslcdatashop.web.cmu.edu/about/
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Therefore, to tackle the challenge of modeling students with low-
level unlabeled data, we propose not only to model student actions
but also course elements using neural embeddings. Embeddings
will provide an abstraction and aggregation layer over the low-level
data, which can then be used by domain experts to interpret student
behavior. As neural models do not require an intensive effort of
the experts to previously annotate the data, we can encompass
unlabeled content developed with less resources.

Along with the modeling of students and course content through
embeddings, we explore the impact of joint representations where
both embeddings are in the same latent space. A shared space allows
us to explicitly model properties of the relations between students
and content, rather than letting the model infer them. Through
a modification in the recurrent architecture, we can inject in the
model with knowledge of the phenomena it is trying to discover,
which can have a significant impact in tasks with few examples
available.

In summary, the main contribution of this paper as the proposal
to model student interactions with a joint embedding of course
elements and students, using a recurrent neural architecture. We
describe the general model and how to adapt it to solve two tasks:
dropout prediction in MOOCs using the KDDCup 2015 competition
dataset, and knowledge tracing in ITSs using the ASSISTments
2009-2010 dataset.

We compare the performance of the system with an architecture
without embeddings and with disjoint embeddings. We include the
state of the art and an upper bound of performance provided by
a manually labeled dataset. Results show that, besides providing
a conceptually more adequate representation of students and con-
tents, embeddings provide an improvement in performance, and
that co-embeddings perform at least as well as disjoint embeddings,
and outperform them in some contexts, like smaller courses.

We also asses the impact of pretrained embeddings for course el-
ements obtained with the word2vec unsupervised algorithm, using
them as a starting point to train the final model. Results show that
the pretraining improves performance only in some courses with
few examples.

2 RELEVANTWORK
Representation of students and course elements has been usually
carried out by explicitly incorporating expert domain knowledge
into the data. For example, Bayesian Knowledge Tracing (BKT)
[1], one of the most used methods for knowledge tracing, requires
each exercise to be labeled with a set of skills. This type of anno-
tated information is not usually available, for example in the case
of MOOCs. The underlying representations for such approaches
are strongly based on the manually added information, and as a
consequence they can suffer from a theoretical bias. This implies
that the main variation factors are set by the domain expert and
not discovered by the model.

However, in recent years there has been an increase in unsu-
pervised approaches to modeling students and course elements.
These approaches are more flexible than supervised ones because
they serve as general methods to obtain representations from any
dataset. In other words, they are not based on aspects of specific
courses or platforms that have to be adapted later, or that acquire

different relevance in a different context. For example, Performance
Factor Analysis (PFA), [8] and SPARse Factor Analysis (SPARFA)
[5], show that factor analysis has a positive impact in knowledge
tracing, discovering or refining the skills associated to each exercise.
These works use a form of embedding based on variable correlation
to discover a useful underlying representation of phenomena.

Deep learning architectures have also proven to be very help-
ful in discovering latent causes from observable phenomena. The
multiple layers in a deep architecture build a number of internal
representations of the input data, optimized for a certain prediction
task. These internal representations, when the model is applied
to tasks like dropout prediction, are liable to capture underlying
causes like the diversity in student background and interests. In this
context, we can train a model only to obtain these internal repre-
sentations, called embeddings, which will then be used to represent
examples for a different task. The task used to train embeddings
is called a pretext task. When the model trained to obtain such
embeddings is a neural network, we call them neural embeddings.

Neural models, and in particular deep neural models, have shown
to be very effective for a wide range of problems, also for EDM.
Deep Knowledge Tracing (DKT) [10] is a method that proposes
to model student knowledge using the hidden state of a recurrent
neural network. The pretext task for the model is to predict if the
studentwill be able to solve the next exercise presented by a tutoring
system. In contrast with BKT, it does not depend on manually
assigned skills. Furthermore, it can be used to automatically detect
relations between exercises and cluster them. The work of [13]
models students also using RNNs trained to predict the next action
to be performed by the student. This approach does not require
exercises to be graded, as is often the case in MOOCs.

In addition to representing student state with neural embeddings,
our proposal is to embed course elements in the same space. This
implies learning a joint representation for both students and course
contents. Co-embeddings have been successfully used before in
MOOC environments [11]. In this study, the authors propose an
embedded representations of students in a “latent skill space" that
can be interpreted as the knowledge level of the student on each skill.
Along with them, they find embeddings for course elements in the
same skill space. The pretext task used to obtain these embeddings
was performance prediction. Our approach differs from [11] in the
use of a neural architecture to obtain the embeddings, and in the
pretext task selected for optimization.

Modeling students and course elements in the same space is con-
venient in two aspects. On the one hand, it allows us to model better
the relations between them using distances in the shared space. On
the other hand, it opens the door for possible joint visualization and
interpretation, leading to better insights on the causes of a certain
phenomenon, for example dropout. A study of 2017 [7] shows how
visualizations of student states can be interpreted and contribute
to the work of course designers.

Dropout prediction is a task that differs from Knowledge Tracing
in several aspects. One of the most important ones is the lack of
a consensus about the definition of dropout. For example, some
lines of work focus on the prediction of student behavior at the
end of the course, while others seek to prevent dropout and focus
on the prediction of actions in the near future [14]. It is also worth
noticing that the factors involved in dropout prediction are not



throughly understood. In [4] an analysis is done on the difference
of background and expectations from students, which leads to di-
verse levels of engagement. We expect a deep learning model can
capture this type of variability, represent it with an adequate level
of abstraction, and help course creators understand it.

Some neural approaches have been applied to dropout prediction,
for example [2], who reports an increase in performance compared
toMarkovmodels, logistic regressions and support vector machines.
However, instead of using the full sequence of interactions, the data
is aggregated in weekly periods.

3 NEURAL CO-EMBEDDINGS FOR STUDENT
STATES AND COURSE ELEMENTS

As presented in previous sections, our aim is to obtain a represen-
tation of students and course elements that highlights the major
factors involved in the human learning experience. To do that, we
learn how to project students and course elements to a shared space,
bringing forth their most indicative aspects and the relations be-
tween them. In this section we describe the concrete computational
architecture to obtain the neural co-embeddings that represent
students and course elements.

Our goal is to find the embedding functions φE and φS that
project course elements and students from their representation
in log data into a shared space, respectively. In the shared space
each course element is represented as a vector. Students, on the
other hand, are continuously changing as they progress through the
course. As a result, they are represented as a sequence of vectors,
corresponding to a given point of time. Individual vectors represent
the state of the student after each interaction with a course element.

To find this shared space and the functions embedding students
and course elements in this space, we propose a recurrent neural
architecture to optimize φS and φE , shown in Figure 1. The base of
this architecture is a Recurrent Neural Network (RNN), which is
designed to selectively remember some aspect of previously seen
input. The network is trained with some identifier (ids) of the
course elements seen by students and possibly the outcome of the
interaction. The output of the network will depend on the pretext
taks used for the optimization. The difference between the output
and the true labels is used to calculate the loss of the model over all
examples, which is minimized using the BackPropagation Through
Time algorithm (BPPT), until the model converges.

3.1 Integrating embeddings in the RNN
architecture

A basic RNN structure has tree layers: input, hidden state and out-
put. What characterizes a RNN is that the new hidden state ht
is calculated using the information from the input layer xt and
from the previous hidden state ht−1, where t represents the posi-
tion of the interaction in the sequence. Following, the output ot is
calculated as a transformation of the hidden state ht .

The specific update equations for a basic RNN are the following:

y(t ) = σ (W (hy)h(t ) + b(y))

ht = tanh(W (xh)x (t ) +W (hh)h(t−1) + b(h)) (1)
Inspired by [10], we will interpret the hidden state after t interac-
tions (ht ) of the RNN classifier as the embedding of the student at

Figure 1: RNN architecture with co-embeddings.

time T + 1. Once trained, the network has learned which informa-
tion from the input is useful to keep during time, and a codification
of such input is recorded in the hidden state. This hidden state is
our function φS that encodes the student states.

To integrate the embedding of course elements φE into the RNN
classifier, we add a new embedding layer between the input layer
and the recurrent layer. An embedding layer is nothing more than
a matrix that works as a look-up table, where the column j is the
embedding of the element with index j.

At this point we have an architecture that projects students and
course elements to a space, but we haven’t ensured yet that this
space is shared. In other words, the dimensions of this space do
not necessarily have the same meaning for students and for course
elements. To ensure that both embeddings are indeed in the same
space, we will calculate the new hidden state as a combination of
the previous state and a point-wise function between the student
current embedding and the embedding of the course element in the
current interaction. An illustration of these architecture is depicted
in Figure 1

The relation between the course element embedding and the
student embedding will have different impacts depending on the
pretext task. For example, in KT, the dimensions of the latent space
are interpreted as the mastery level of the student in a given skill.
Then, the course element embedding can be seen as a prerequisite
vector, as in [11]. If students are close enough to the course element,
then they will get the major possible gain of interacting with the
course element. If they are too far, then the lesson content will be
either too easy or too hard.

The point-wise aspect of the function is also important, as we
want to distinguish the influence of each dimension in the resulting
state. This is an important distinction between our model and [11],
which uses only the length of projection of the student embedding
over the lesson embedding. As a result, our approach does not
compensate a small value on a dimension (seen as skill level) with a
large value in other one, but preserves the relation between student
and course element for every dimension.

After introducing these changes, Equation 1 is rewritten as:

ht = tanh(W (xh)δ (φE (x (t )),h(t−1)) +W (hh)h(t−1) + b(h))



where δ is the pointwise function measure. We propose several δ
functions, some examples are: δ (x ,y) = (x −y)2, δ (x ,y) = |(x −y)|
and δ (x ,y) = norm(x − y, 0, std) (all operations are pointwise).
In the last function, norm refers to the probability of the vector
following a normal distribution centered in 0 and with standard
deviation std . The value of std is originally fixed, but it can be also
optimized with the network.

More sophisticated networks can be used instead of a vanilla
RNN, like Long Short Term Memory (LSTM) or Gated Recurrent
Unit (GRU) networks. Their variation is not in the layers but in the
neurons, so they can be trained to produce co-embeddings as long
as the input vector to the recurrent layer is modified with the δ
function.

3.2 Neural co-embeddings for Knowledge
Tracing

For the task of KT, the RNN networkwill be used to produce one out-
put for each element of the sequence, in a configuration known as
sequence labeling. Just as in DKT, our model estimates the probabil-
ity of success for every exercise, given all the previous interactions
of the student. In consequence, the model’s output layer has one
neuron for each possible exercise. However, only the probability
for the exercise that the student actually faced on the next time
step is used to optimize the classifier, as we do not know what the
performance could have been in other exercises. The output layer
does not have a softmax activation, but rather a sigmoid one to
normalize each individual neuron.

The loss function selected is the mean binary cross entropy or
log loss between the model prediction and the true label over all
examples. The loss for a student is sum of the cross entropy for all
the interactions in the sequence. If we define the exercise index in
the interaction at time t as et , the loss for a student is:

loss =
∑
t
loд(yt,et )ot + loд(1 − yt,et )(1 − ot ) (2)

The representation of the input data is also modified with respect
to the basemodel. This task provides two values for each interaction:
the id of the exercise and if the student solves it successfully on
the first attempt. To model both aspects, we use the sum of two
embeddings for each exercise: one that corresponds to the base
exercise, and one for the successful outcome of the interaction. If
the student does not solve the exercise in the first try, only the base
embedding is used.

3.3 Neural co-embeddings for dropout
prediction

Neural embeddings and co-embeddings can be useful as well for
less defined tasks like dropout prediction. In this case, we do not
expect them to model skill mastery or knowledge, but mainly other
variables, like engagement.

It is important to note that, from a classification point of view,
this task is very different from KT. For every sequence, a single
output is expected instead of one for each time step. This scenario
is usually called sequence classification. As a result, the vanishing
gradient problem associated with RNNs can be more problematic:
we need to propagate a very weak signal of error up to the very

first interaction of the sequence, which can be many steps away
from the training label.

There are two possible configurations in a neural network to
predict a binary variable like dropout: to output only the probability
of the positive layer, or to output the probability of both classes as
a multilabel classification task. This affects the size of the output
layer, as one neuron is needed per output class. The loss function
is in both cases the average of the cross entropy.

3.4 Pre-trained embeddings
A possible variation in this model is to initialize the embedding
layer with pre-trained course element embeddings, obtained with
an unsupervised method.

Pre-trained embeddings have the advantage of including infor-
mation about the order in which students access course elements,
using algorithms specialized for this kind of task. Indeed, methods
like word2vec [6] and GloVe [9] have been shown to adequately
model the underlying distribution of sequences of events with in-
complete samples. These models seem to capture latent causes,
like word semantics in language modeling. We expect pre-trained
models will capture aspects of the datasets pertinent to the relation
between course elements independently of their impact in the pre-
text task. In [7], the author modeled student sequences using only
word2vec and analyzed the usefulness of visualizations from those
embeddings, rated by course creators. Results show that high-level
organization of the course content was captured by the embeddings,
and they even clustered successful and unsuccessful students.

Additionally, these embeddings have the possibility to be opti-
mized or fine-tuned along with the optimization of the model for
the pretext task. If we do not allow fine-tuning, the impact of the
pre-trained embeddings on the student embedding will be higher.
Another important advantage is that pre-trained embeddings, as
an unsupervised method, can also be trained with instances from
the same domain but without labels for the pretext task.

4 EXPERIMENTAL SETTING
4.1 Datasets
The KDDCup 2015 competition 2 proposed predicting the dropout
of students in MOOCs. The data was provided by XuetangX, a
Chinese MOOC learning platform initiated by Tsinghua University,
a partner of EdX.

Although the information is no longer available in the compe-
tition website, this dataset was, to our knowledge, one of the few
freely available big datasets of detailed logging in a MOOC environ-
ment. The data provided logs of events like access to video content,
resolution of a problem, etc., for 39 different courses. Events are
timestamped and identified with the corresponding student and
course.

For the competition the dropout event was defined as the absence
of student activity in the ten days following the end of the course.
With this definition, 79% of the students in this dataset (19072) are
labeled as dropouts. The distribution of dropouts is similar across
courses and it ranges between 70% and 90%.

2https://biendata.com/competition/kddcup2015/
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One model was optimized for each course. We have found that
courses with different numbers of students have very different
results, therefore we decided to distinguish results in three different
segments of courses: 5 big courses with more than 6000 training
students, 9 medium courses with between 5000 and 2000 students
and 24 small courses with less than 2000 students.

On the other hand, we explored the performance of our approach
in the Knowledge Tracing task using the ASSISTments 2009-2010
dataset, described in [3]. This dataset is a typical example of the data
generated by an ITS system. It also has other desirable properties: it
contains a fairly big amount of student interactions, nearly 350000,
and the class imbalance is not pronounced, with 65% of positive
labels. Furthermore, it is a reference dataset for the field of EDM,
as it has been used for experimentation by several works.

As noted by Xiong et al. [15], the interactions between a student
and an exercise labeled with multiple skills are stored duplicating
the row for the interaction and labeling each of them with a dif-
ferent skill. This leads to duplicated data and can affect the test
performance of any classifier if there is leaked information between
the training and testing dataset. Following [15], we represent exer-
cises with multiple skills with a new skill that serves as the merge
of the original ones.

To reduce the noise of the dataset, the interactions involving
exercises that appear less than 5 times in total were deleted. It is
a common technique, used for example by word2vec, as no mean-
ingful embedding can be trained from such a small amount of
instances.

For all experiments, the entire student sequences of actions in
both datasets were divided in three portions, training (70%), testing
(20%) and validation (10%). The performances reported are obtained
by applying the trained model over the testing dataset, after the best
hyperparameters have been chosen using the validation dataset.

4.2 Variations in classifiers and learned
representations

The neural architectures we tested are all based on RNNs. The sim-
plest one (LSTM) has a single layer of LSTM cells. The input for
this model is the one-hot encoding representations of the course
element id. The output of the recurrent layer is connected to a
dropout layer, and later to a regular dense layer with sigmoid acti-
vation and L2 regularization. The output layer is composed of two
neurons with softmax activation, one for each class.

The second model (E-LSTM) has the same structure as the LSTM
model, but the input layer is replaced by an embedding layer. Since
students and course elements are not forced to share the same
space, we call this approach disjoint embeddings. It is followed by a
dropout layer using the same ratio as the one after the recurrent
layer.

As mentioned before, the embedding for the KT task is com-
posed of two parts. There is a base embedding for each exercise.
Later, another embedding is added if the student has successfully
solved the input exercise. In dropout prediction, one embedding is
created for the merged module id and event id of the element seen
by the student. We experimented using only the module id, with
consistently worse results.

The final model (CoE-LSTM) is the one described in section 3,
implementing the proposed co-embeddings. It has the same dropout
layers as the E-LSTM.

For the two embedded models, we also explored the use of pre-
trained embeddings, as developed in 3.4. To obtain the embedding
we used the training sequences as input to the word2vec SkipGram
algorithm. The parameters used are: window size of 5 events, mini-
mum frequency of 5 events, an alpha initial learning rate of 0.01 and
a negative sampling of 5 examples. Both settings with and without
fine-tuning are explored.

The hyperparamenters of the networks optimized included em-
bedding size (20, 50, 100 and 200), hidden layer size (20, 50, 100 and
200), number of events in the sequence used (20, 50, 100, 200 and
300) and dropout ratio (0, 0.2, 0.3 and 0.5). The optimizer used is
the Adam implementation of Tensorflow with a learning rate of
0.001. Other configurations were also tested: RNN and GRU cells;
bidirectional networks; RMSEProp, SGD, Adagrad and Adaboost
optimizers; and higher and lower learning rates. Results for these
other parameters are not reported as the performance decreased.

In the case of dropout prediction, we report the results of the
model with the better AUC score for each course.

4.3 Optimization
The algorithm used to optimize a recurrent neural architecture is
called Back Propagation Through Time (BPTT). However, prop-
agating the gradients over very long sequences of time can be a
prolonged process, producing vanishing gradients for the upper
most steps. LSTM networks are designed to avoid vanishing gra-
dients, but in practice they also have a limited propagation point.
A technique used to overcome this problem is truncating the gra-
dients after certain amount of steps, leading to a Truncated BPTT
(TBPTT).

In dropout prediction, TBPTT decreased the performance signif-
icantly. As a result, for this task we used only the last portion of
the sequences to train the model.

4.4 Metrics
To assess performance of different approaches, we measure the
difference between the predicted probability of dropout or success
and what is actually found in the dataset. Note that the prediction
is probabilistic, while the true label value is binary. The metrics
used are the Area Under the ROC Curve (AUC), the reference met-
ric in the KDDCup, the Root Mean Square Error (RSME) and the
coefficient of determination R2. The R2 score [12] estimates the
proximity of the performance of the classifier to a random classifier.

5 RESULTS
5.1 Dropout prediction
In table 1 we present the results for AUC, RMSE and R2 for the
best performing models for dropout prediction. In general, we can
see the three metrics increase with the use of embeddings, and
raise even more with joint representations. This supports our initial
hypothesis that co-embeddings capture the underlying causes of
dropout better than other representations.

It is worth noticing that the winner team at KDDCup 2016
reached an AUC of 0.91 with an ensemble model. Those results



Table 1: Model performance for dropout prediction

Model AUC RMSE R2
LSTM 0.831 0.333 0.331
E-LSTM 0.842 0.327 0.356
CoE-LSTM 0.852 0.322 0.368

were obtained with the official test dataset, to which we don’t have
access. In addition to that, the winning solution used all the infor-
mation available, while we only use the identifier of each course
element, in order to evaluate the models in a scenario of minimal
information. In this work, we have not focused in performance,
hyperparameter tuning or ensemble of different models, but in as-
sessing the impact of embeddings with simpler models, and also
assessing the utility of different kinds of embeddings.

Figure 2: AUC for dropout prediction, grouped by course size

When we disaggregate courses by size, we can see that co-
embeddings performmuch better in smaller courses, even if the gen-
eral performance in such courses is worse than for bigger courses.
In Figure 2 we can see that for the biggest courses all classifiers
perform indistinguishably, with small variations, hence the smaller
spread of the boxplot. However, for smaller courses, where data
is more scarce and performance is worse, co-embeddings seem to
provide useful generalizations over the low-level data. It is notewor-
thy that, while co-embeddings do not seem to impact positively on
the performance on bigger courses, they do not impact negatively
either.

Exploring the differences in performance for different courses
we found another factor of correlation. The proportion of students
that dropped out, i.e. the class imbalance, impacts on the difficulty
of the task. The less examples in one of the classes, the harder it is
to learn the differences with the majority class. In figure 3 we plot

the AUC values for each type of model in each course, according to
the dropout rate in the test dataset. The lines represent regression
models fitted to the data. They helps us to see that, in average,
CoE-LSTM models have a greater impact on the performance over
courses with more class imbalance.

For this task, embedding sizes of 50 and 20 are more successful.
The number of steps used in training varies from 50 to 300, and
they are inversely proportional to the size of the recurrent layer.

Figure 3: AUC for dropout prediction, in relation with the
course no-dropout rate

5.2 Knowledge Tracing
In table 2 we present the model performances for the Knowledge
Tracing task. To facilitate comparison with the state of the art,
we display the results reported by Xiong et al. [15] for the same
dataset, marked with an asterisk. However, it must be noted that
these results are not directly comparable because they don’t use the
same dataset for testing. In particular, the whole set of problems is
used, instead of filtering less common problems as we do.

Table 2: Model performance for knowledge tracing

Model Identifier AUC RMSE R2
DKT* Skill ID 0.75
LSTM Skill ID 0.746 0.432 0.176
LSTM Problem ID 0.721 0.462 0.069
E-LSTM Problem ID 0.740 0.443 0.131
CoE-LSTM Problem ID 0.741 0.448 0.130

The wording in Xiong et al. [15] seems to indicate the method
is using DKT with the skill ID. Indeed, when we use our LSTM
with skill IDs (second row in the table), we obtain a comparable



Figure 4: Impact of pre-training embeddings for dropout prediction, grouped by model type and course size, reporting AUC.

performance. However, the original intention of Piech et al. [10]
was to avoid using this manually added information, treating the
problem with unsupervised information only, using the problem
ID as input.

The performance of the LSTM classifier with skill IDs is pre-
sented as an upper bound of performance, a point of comparison of
the model in the optimal case: when labeled information is present.
We can see that using only unsupervised information (the problem
ID), the performance of the embedded methods is comparable to
the performance using manually labeled information (skill IDs).
Results indicates that, with this setting, embedded models have
a positive impact with respect to the basic LSTM network. The
joint representation obtains slightly better results than the disjoint
representation, but further exploration needs to be carried out to
discover the causes for these differences in performance.

The selection of the δ function had a great impact on the co-
embedding performance. The best results where obtained with
δ (x ,y) = tanh(x − y), and the absolute value of the difference
displayed good results as well. Other possibilities, like a sigmoid or
square function lowered the AUC up to 4 points below the results
shown. Such impact suggest that this function is vital to model the
relations between student state and course elements correctly. In
the case of dropout prediction, the results are highly dependent
on the course and not so drastically variable. In general the the
square function and the normal function with a fixed 0.5 standard
deviation were the best performing ones.

For the sake of reproducibility, it is worth reporting that the best
hyperparameter configuration for KT is an embedding size of 50, a
maximum number of steps in the TBPTT of 50, between 200 and
500 training epochs and a dropout rate of 0.3. This contrasts with
results reported in previous work, where they use a recurrent layer
size of 200 neurons. Note that embeddings for this task are the same

size as embeddings for the task of dropout prediction, even if the
dataset for each course was smaller.

5.3 Impact of pre-trained embeddings
Finally, we have compared the performance of embeddings trained
together with the whole model, and embeddings pre-trained as
explained in Section 3.4.

In Figure 4 we present the AUC scores of all experiments con-
ducted with the KDDCup 2015 dataset, to compare the general per-
formance of embedded methods with and without a pre-training
step. We see that pre-trained embeddings are just as sensitive
to course size as models without pre-training. Indeed, for bigger
courses the performance is better, regardless of pre-training. In con-
trast, for medium and smaller courses, we can see that CoE-LSTM
models perform slightly better without pre-training, while E-LSTM
models are not remarkably affected by the use of pre-trained em-
beddings. Our strongest hypothesis to explain this difference is
that co-embeddings are able to capture relevant information of the
dataset more adequately than a pre-training step. This seems to
advocate for a superiority of co-embeddings over disjoint embed-
dings, because the latter perform indistinguishably from pre-trained
embeddings, thus they seem to be capturing roughly the same in-
formation, and they are both surpassed by co-embeddings.

For the case of Knowledge Tracing, the use of pre-trained em-
beddings had a smaller impact. Some δ functions performed better
with pre-trained embeddings and others without, but the results
varied in less than 0.01 points. One consistent result across all
experiments is the improvement for fine-tuning the pre-trained
embeddings while learning the pretext task.

The differences in the impact of pre-trained embeddings between
dropout prediction and knowledge tracing may be due to the differ-
ence in the classification task, as described in Section 3.3. Dropout
prediction is a sequence labeling task, while knowledge tracing



predicts an output for each item in the sequence. The information
needed to detect dropout is encoded in the entire sequence, not
in the properties of the individual course elements. Methods like
word2vec are not intended to characterize elements with respect to
the entire sequence but rather in relation with their surrounding
elements. It is coherent then that injecting that kind information
does not help, and even hinders performance.

6 CONCLUSIONS
Wehave proposed a purely unsupervised approach tomodel student
behavior in learning platforms with joint embeddings of course
elements and students. The joint embeddings are obtained with
a recurrent neural architecture is modified to directly model the
relation between both types of embeddings, using knowledge of the
task to be solved. We have evaluated and compared the architecture
in two different tasks: dropout prediction and knowledge tracing.

Results indicate that co-embeddings are able to capture the la-
tent causes involved in dropout, outperforming disjoint and not-
embedded representations. This improvement in performance in-
creases in courses with less students, and courses with higher
dropout rate.

For the knowledge tracing task, results indicate that embedded
representations reach state-of-the-art performance, even without
labeled information used in previous work, like manual annotation
of skills. For this task, disjoint representations do not outperform
joint ones (co-embeddings), but the difference in performance is
only within 0.001 point of AUC. However, we expect that joint em-
beddings will add value to other applications in Learning Analytics,
like visualizations or other interpretation tools.

Indeed, this work has shown promising results from performance
point of view, but there is still work to do on the effectiveness of
the joint representation for interpretation of human learning. We
are currently exploring this line of research through visualization
techniques and recommendation of content (personalization).

Future work will include the application of these methods to
other datasets from ITS and MOOC platforms to further evaluate
how different configurations affect the obtained embeddings.

Another interesting line of future work is to further analyze the
impact of pre-trained and possibly fine-tuned embeddings, with
special attention to cases that suffer from data sparseness. The diver-
sity of results obtained for different courses in the KDDCup dataset
indicate there is a potential for the inclusion of this unsupervised
information when the number of examples is limited.
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