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Abstract. We discuss some highlights of our computer-verified proof of
the construction, given a countable transitive set-model M of ZFC , of
generic extensions satisfying ZFC +¬CH and ZFC +CH . Moreover, let
R be the set of instances of the Axiom of Replacement. We isolated a 21-
element subset Ω ⊆ R and defined F : R→ R such that for every Φ ⊆ R
and M -generic G, M |= ZC ∪F“Φ∪Ω implies M [G] |= ZC ∪Φ∪{¬CH },
where ZC is Zermelo set theory with Choice.
To achieve this, we worked in the proof assistant Isabelle, basing our
development on the Isabelle/ZF library by L. Paulson and others.

Keywords: forcing · Isabelle/ZF · countable transitive models · contin-
uum hypothesis · proof assistants · interactive theorem provers · generic
extension

1 Introduction

This paper is the culmination of our project on the computerized formalization of
the undecidability of the Continuum Hypothesis (CH ) from Zermelo-Fraenkel set
theory with Choice (ZFC ), under the assumption of the existence of a countable
transitive model (ctm) of ZFC . In contrast to our reports of the previous steps
towards this goal [19, 20, 21], we intend here to present our development to the
mathematical logic community. For this reason, we start with a general discussion
around the formalization of mathematics.

1.1 Formalized mathematics

The use of computers to assist the creation and verification of mathematics has
seen a steady grow. But the general awareness on the matter still seems to be a

⋆ Supported by Secyt-UNC projects 33620180100855CB and 33620180100465CB, and
Conicet.
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bit scant (even among mathematicians involved in foundations), and the venues
devoted to the communication of formalized mathematics are, mainly, computer
science journals and conferences: JAR, ITP, IJCAR, CPP, CICM, and others.

Nevertheless, the discussion about the subject in central mathematical circles
is increasing; there were some hints on the ICM2018 panel on “machine-assisted”
proofs [12] and a lively promotion by Kevin Buzzard, during his ICM2022 special
plenary lecture [5].

Before we start an in-depth discussion, a point should be made clear: A
formalized proof is not the same as an automatic proof. The reader surely un-
derstands that, aside from results of a very specific sort, no current technology
allows us to write a reasonably complex (and correct) theorem statement in a
computer and expect to obtain a proof after hitting “Enter”, at least not after
a humanly feasible wait. On the other hand, it is quite possible that the same
reader has some mental image that formalizing a proof requires making each
application of Modus Ponens explicit.

The fact is that proof assistants are designed for the human prover to be
able to decompose a statement to be proved into smaller subgoals which can
actually be fed into some automatic tool. The balance between what these tools
are able to handle is not easily appreciated by intuition: Sometimes, “trivial”
steps are not solved by them, which can result in obvious frustration; but they
would quickly solve some goals that do not look like a “mere computation.”

To appreciate the extent of mathematics formalizable, it is convenient to
recall some major successful projects, such as the Four Color Theorem [16], the
Odd Order Theorem [17], and the proof the Kepler’s Conjecture [24]. There is
a vast mathematical corpus at the Archive of Formal Proofs (AFP) based on
Isabelle; and formalizations of brand new mathematics like the Liquid Tensor
Experiment [53, 54] and the definition of perfectoid spaces [6] have been achieved
using Lean.

We will continue our description of proof assistants in Section 2. We kindly
invite the reader to enrich the previous exposition by reading the apt summary
by A. Koutsoukou-Argyraki [30] and the interviews therein; some of the experts
consulted have also discussed in [3] the status of formalized versus standard
proof in mathematics.

1.2 Our achievements

We formalized a model-theoretic rendition of forcing (Sect. 4), showing how to
construct proper extensions of ctms of ZF (respectively, with AC ), and we for-
malized the basic forcing notions required to obtain ctms of ZFC +¬CH and of
ZFC + CH (Sect. 6.2). No metatheoretic issues (consistency, FOL calculi, etc)
were formalized, so we were mainly concerned with the mathematics of forcing.
Nevertheless, by inspecting the foundations underlying our proof assistant Is-
abelle (Section 2.1) it can be stated that our formalization is a bona fide proof
in ZF of the previous constructions.

In order to reach our goals, we provided basic results that were missing from
Isabelle’s ZF library, starting from ones involving cardinal successors, countable
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sets, etc. (Section 3.2). We also extended the treatment of relativization of set-
theoretical concepts (Section 3.1).

One added value that is obtained from the present formalization is that we
identified a handful of instances of Replacement which are sufficient to set the
forcing machinery up (Section 6.1), on the basis of Zermelo set theory. The
eagerness to obtain this level of detail might be a consequence of “an unnatural
tendency to investigate, for the most part, trivial minutiae of the formalism”
on our part, as it was put by Cohen [9], but we would rather say that we were
driven by curiosity.

The code of our formalization can be accessed at the AFP site, via the fol-
lowing link:

https://www.isa-afp.org/entries/Independence_CH.html

2 Proof assistants and Isabelle/ZF

Let us briefly introduce Isabelle [43] in the large landscape of proof assistants
(“assistants” for short; also known as “interactive theorem provers”); we refer to
the excellent chapter by Harrison et al. [27] for a more thorough reconstruction
of the history of assistants.

It is expected that an assistant aids the human user while mechanizing some
piece of mathematics; the interaction varies from system to system, but a com-
mon interface consists of a display showing the current goal and assumptions.
The user instructs the assistant to modify them by means of tactics; a proof is
completed when the (current) goal is an instance of one of the assumptions.

In that dialog, the user produces a script of tactics that can be later re-
produced step-by-step by the system (to check, for example, that an imported
theory is correct) or by the user to understand the proof.

To have any value at all, the system should only allow the application of
sound tactics. Edinburgh LCF [18] was an influential proof assistant in which
the critical code (that constructs proofs in response to user scripts or other
modules) was reduced to a small kernel. Hence, by verifying the correctness of
the kernel, one achieves confidence on the whole system.

The metalogic of Isabelle, as well as that of LCF, is based on higher-order
logic. In contrast, some of the other prominent assistants of today are based on
some (dependent) type theory. Both Coq [10] and Lean [38] are based on the
Calculus of Inductive Constructions [50, 11], while Agda [1] is an extension of
Martin-Löf type theory [32]. Mizar [36] is the oldest assistant still used today but
is far away both in terms of foundations and architecture from Isabelle; Mizar
inspired, though, the Isar [56] dialect used in Isabelle nowadays, which aims at
the production of proof scripts that are closer to mathematical texts.3

Isabelle also inherited from LCF the possibility for the user to define tactics
to encapsulate common patterns used to solve goals. In fact, this is the origin of

3 We recommend the survey [2] by J. Avigad for details about the different logical
foundations on which assistants are based.

https://www.isa-afp.org/entries/Independence_CH.html
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the ML family of languages: a Meta-Language for programming tactics. In the
case of Isabelle, Standard ML is the first of the four layers on which we worked
in this assistant. Both the kernel and the automation of proofs are coded in ML,
sometimes as a substitute for induction on formulas, as the next section explains.

2.1 Isabelle metalogic M

The second layer of Isabelle is an intuitionistic fragment of higher-order logic (or
simple type theory) calledM; its original version was described in [42], and the
addition of “sorts” was reported in [39].

The only predefined type is prop (“propositions”); new base types can be
postulated when defining objects logics. Types of higher order can be assembled
using the function space constructor ⇒.

The type of propositions prop is equipped with a binary operation =⇒
(“meta-implication”) and a universal “meta-quantifier”

∧
, that are used to rep-

resent the object logic rules. As an example, the axiomatization of first-order
logic postulates a type o of booleans, and Modus Ponens is written as∧

P Q. [P −→ Q] =⇒ ([P ] =⇒ [Q]). (1)

The square brackets (which are omitted in Isabelle theories, as well as the out-
ermost universal quantifiers) represent an injection from o into prop. A conse-
quence of this representation is that every formula of the object logic appears
atomic toM.

Types in Isabelle are organized into classes and sorts; for ease of exposition,
we will omit the former. The axiomatization of first-order logic postulates a sort
{term} (of “individuals,” or elements of a first-order universe of discourse) and
stipulates that every further type variable α must be of that sort. In particular,
Isabelle/ZF only postulates one new type i (“sets”) of sort {term}. Hence, from
the type of the universal quantifier functional ∀ :: (α ⇒ o) ⇒ o, it follows that
it may only be applied to predicates with a variable of type i. This ensures that
the object logic is effectively first-order.

Paulson [42] carried out a proof that the encoding MIFOL of intuitionistic
first-order logic IFOL without equality in the originalM is conservative (there
is a correspondence between provable φ in IFOL and provable [φ] inMIFOL) by
putting MIFOL proofs in expanded normal form [52]; atomicity as stated after
Equation (1) plays a role in this argument. Passing to classical logic does not
present difficulties, but the addition of meta-equality must be taken care of.
Even more so, since the treatment of equality differs between the original and
the present incarnation ofM; details for the latter are exhaustively expounded
in the recent formalization by Nipkow and Roßkof [40].

The meta-logic M is rather weak; it has no induction/recursion principles.
Types are not inductively presented and, in particular, it is not possible to
prove by induction statements about object-logic formulas (which are construed
as terms of type i⇒ . . .⇒ i⇒ o). Two ways to overcome this limitation are:
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1. to construct the proof of each instance of the statement by hand or by
programming on ML; or

2. to encode formulas as sets and prove an internal version statement using
induction of ZF .

For recursive definitions, only the second option is available, and that is the
way the definition of the forcing relation is implemented in our formalization.

2.2 Isabelle/ZF

For the most part, the development of set theory in Isabelle is carried out using its
ZF object logic [49], which is the third logical layer of the formalization and the
most versatile one, since Isabelle’s native automation is available at this level.
Apart from the type and sort declarations detailed above, it features a finite
axiomatization, with a predicate for membership, constants for the empty set
and an infinite set, and functions Pow :: i⇒ i,

⋃
:: i⇒ i, and PrimReplace ::

i⇒ (i⇒ i⇒ o)⇒ i (for Replacement). The Axiom of Replacement has a free
predicate variable P :

(∀x ∈ A. ∀y z. P (x, y) ∧ P (x, z) −→ y = z) =⇒
b ∈ PrimReplace(A,P )←→ (∃x ∈ A. P (x, b))

The restrictions on sorts described above ensure that it is not possible that
higher-order quantification gets used in P . The statement of AC also uses a free
higher-order variable to denote an indexed family of nonempty sets.

Isabelle/ZF reaches essentially Hessenberg’s |A| · |A| = |A|. Our decision
(during 2017) to use this assistant was triggered by its constructibility library,
ZF-Constructible [45], which contains the development of L, the proof that it
satisfies AC , and a version of the Reflection Principle. The latter was actually
encoded as a series of instructions to Isabelle automatic proof tools that would
prove each particular instance of reflection: This is an example of what was said
at the end of Section 2.1.

The development of relativization and absoluteness for classes C :: i ⇒ o

follows the same pattern. Each particular concept was manually written in a
relational form and relativized. Here, the contrast between the usual way one
regards ZF as a first-order theory in the language {∈} and the mathemati-
cal practice of freely using defined concepts comes to the forefront. Assistants
have refined mechanisms to cope with defined concepts and the introduction of
new notation (which also make their foundations more complicated than plain
first-order logic), and this is the only way that nontrivial mathematics can be
formalized. But when studying relative interpretations, one usually assumes a
spartan syntax and defines relativization by induction on formulas of the more
succinct language. The approach taken in ZF-Constructible is to consider rel-
ativizations of the formulas that define each concept. For instance, in the case
of unions, we find a relativization big_union :: (i ⇒ o) ⇒ i ⇒ i ⇒ o of the
statement “

⋃
A = z”:

big_union(M,A, z) ≡ ∀x[M ]. x ∈ z ←→ (∃y[M ]. y ∈ A ∧ x ∈ y)
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where ∀x[M ] . . . stands for ∀x. M(x) −→ . . . , etc. The need to work with re-
lational presentations of defined concepts stems from the fact that the model-
theoretic definition of L requires working with set models and satisfaction, which
is defined for (“codes” of) formulas in the language {∈} (viz. next Section 2.3).

There is one further point concerning the organization of ZF-Constructible.
Isabelle provides a very convenient way to define “contexts,” called locales, in
which some variables are fixed and assumptions are made. In the case of the
constructibility library, several locales are defined where the variable M is as-
sumed to denote a class satisfying certain finite amount of ZF ; the weakest one,
M_trans [21, Sect. 3], just assumes that M is transitive and nonempty. Inside
such context, many absoluteness results are proved. In order to quote those re-
sults for a particular class C, one has to interpret the locale at C, which amounts
to prove that C satisfies the assumptions made by the context.

2.3 Internalized formulas

ZF-Constructible defines the set formula of first-order formulas in the language
{∈}, internalized as sets.4 Its atomic formulas have the form ·x ∈ y· and ·x =
y·. (We use dots as a visual aid signaling internalized formulas.) Variables are
represented by de Bruijn indices [4], so in those formulas x, y ∈ ω; for φ ∈
formula and z ∈ ω, z is free in φ if it occurs under at most z quantifiers. The
arity function on φ is one plus the maximum free index occurring in φ.

The satisfaction predicate sats :: i ⇒ i ⇒ i ⇒ o takes as arguments a set
M , a list env ∈ list(M) for the assignment of free indices, and φ ∈ formula,
and it is writtenM, env |= φ in our formalization. This completes the description
of the fourth and last formal layer of the development.

Internalized formulas for most (but not all) of the relational concepts can
be obtained by guiding the automatic tactics. But in the early development of
ZF-Constructible, most of the concepts were internalized by hand; this is the
case for union,

big_union_fm(A, z) ≡
((·∀· ·0 ∈ succ(z)· ←→ (·∃· ·0 ∈ succ(succ(A))· ∧ ·1 ∈ 0· ··)··)

for which we have the following satisfaction lemma:

A ∈ ω =⇒ z ∈ ω =⇒ env ∈ list(M) =⇒(
M, env |= big_union_fm(A, z)

)
←→

big_union(##M, nth(A, env), nth(z, env)) (2)

Above, nth(x, env) is the xth element of env and ##M :: i ⇒ o is the class
corresponding to the set M :: i.

4 These, alongside with lists, are instances of Isabelle/ZF treatment of inductively
defined (internal) datatypes [44, Sect. 4]; induction and recursion theorems for them
are proved automatically (this is in contrast to general well-founded recursion, for
which one has to work with the fundamental recursor wfrec).
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3 Relative versions of non-absolute concepts

The treatment of relativization/internalization described in the previous sections
was enough for Paulson’s treatment of constructibility. This is the case because
essentially all the concepts in the way of proving the consistency of AC are
absolute, and the treatment of relational versions and relativized notions could
be minimized after proving the relevant absoluteness results: For example, the
lemma Union_abs,

M(A) =⇒ M(z) =⇒ big_union(M,A, z)←→ z =
⋃
A

proved under the assumption that M is transitive and nonempty.
Our first attempt to relativize cardinal arithmetic proceeded in the same way

and we rapidly found out that stating and proving statements like (||A|| = |A|)M
in a completely relational language was extremely cumbersome. This observation
lead to the discovery of the discipline expounded in the next subsection.

3.1 Discipline and tools for relativization

The missing step, that naturally appears in the literature, consists of having
relative functions like PM , and the ability to translate between the different
presentations discussed so far.

To achieve this, we provide automatic tools to ease the definitions of such rel-
ative versions, their fully relational counterparts, and the internalized formulas.
For instance, consider the cardinal :: i ⇒ i function defined in Isabelle/ZF.
Then the commands

relativize functional "cardinal" "cardinal_rel" external
relationalize "cardinal_rel" "is_cardinal"

synthesize "is_cardinal" from definition assuming "nonempty"

define the relative cardinal function cardinal_rel :: (i ⇒ o) ⇒ i ⇒ i (de-
noted | · |M , as expected), the relational version is_cardinal of the latter, the
internalized formula is_cardinal_fm whose satisfaction by a set is equivalent
to the relational version, and prove the previous statement (analogous to (2)).
The proof that is_cardinal(M,x, z) encodes the statement |x|M = z must still
be done by hand, since the definition of cardinal_rel already involves some
tacit absoluteness results (“the least z ∈ Ord such that z ≈M x” instead of “the
least z ∈ OrdM such that z ≈M x”, and the like).

3.2 Extension of Isabelle/ZF

We extended [55] the material formalized in Isabelle, from basic results involving
function spaces and the definition of cardinal exponentiation, to a treatment
of cofinality and the Delta System Lemma for ω1-families. We also included a
concise treatment of the axiom of Dependent Choices DC and the general version
of Rasiowa-Sikorski Lemma [19] and a choiceless one for countable preorders.
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This material was subsequently put in relative form in our formal develop-
ment on transitive class models [23] using as an aid the tools from Section 3.1. We
also relativized many original theories appearing in Isabelle/ZF, including the
fundamentals of cardinal arithmetic, the cumulative hierarchy, and the definition
of the ℵ function.

4 Set models and forcing

4.1 The ZFC axioms as locales

The description of set models of fragments of ZFC was performed using locales
that fix a variable M :: i and pack assumptions stating that ⟨M,∈⟩ satisfy some
axioms; for example, the locale M_Z_basic states that Zermelo set theory holds in
M . It would be natural to state those assumptions directly as the corresponding
satisfactions, as in

M, [ ] |= ·Union Ax·

where ·Union Ax· is the formula code for the Union Axiom. We actually decided
to express the axioms other than the infinite schemes in relational form, by using
terms already available in ZF-Constructible and for which useful lemmas had
already been proved (and, as it was mentioned in Section 2.2, this third layer of
the formalization has more tools at our disposal); the Union Axiom (Union_ax),
for instance, is defined as follows:

∀x[##M ]. ∃z[##M ]. big_union(##M,x, z)

Both assumptions are then shown to be equivalent:

Union_ax(##M)←→M, [ ] |= ·Union Ax·

For stating the axiom schemes, ZF-Constructible defines the expressions

separation(N,Q) and strong_replacement(N,R)

whose first argument N is a class and their second arguments Q and R are
predicates of types Q :: i ⇒ o and R :: i ⇒ i ⇒ o, respectively. The Separa-
tion Axiom appears in M_Z_basic as follows, where φ is free and @ denotes list
concatenation:

separation_ax: "φ ∈ formula =⇒ env ∈ list(M) =⇒
arity(φ) ≤ 1 +ω length(env) =⇒
separation(##M,λx. (M, [x] @ env |= φ))"

Note that the predicate Q mentioned above corresponds to the satisfaction of φ.
In contrast to Separation, we stated each instance of the Replacement Axiom

separately by means of the replacement_assm(M, env , φ) predicate:

φ ∈ formula −→ env ∈ list(M) −→
arity(φ) ≤ 2 +ω length(env) −→

strong_replacement(##M,λx y. (M , [x,y]@env |= φ))"
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In turn, the ·Replacement· function takes a formula code and returns the cor-
responding replacement instance:

φ ∈ formula =⇒
(M, [] |= ·Replacement(φ)·) ←→ (∀ env. replacement_assm(M, env, φ))

Starting from M_Z_basic, stronger locales are defined by assuming more
replacement instances. These assumptions are then invoked to interpret at the
class ##M the relevant locales appearing in ZF-Constructible, and further ones
required for the relative results from Section 3.2. See Section 6.1 for details.

4.2 The fundamental theorems

At this point, we work inside the locale M_ctm1 that assumes M to be countable
and transitive, and satisfies some fragment of ZFC 5. This is further extended by
assuming a forcing notion ⟨P,⪯,1⟩ ∈M . The actual implementation reads:

locale forcing_notion =

fixes P (⟨P⟩) and leq and one (⟨1⟩)

assumes one_in_P: "1 ∈ P"
and leq_preord: "preorder_on(P,leq)"
and one_max: "∀ p∈P. ⟨p,1⟩∈leq"

locale forcing_data1 = forcing_notion + M_ctm1 +

assumes P_in_M: "P ∈ M"

and leq_in_M: "leq ∈ M"

The version of the Forcing Theorems that we formalized follows the considera-
tions on the ⊩∗ relation as discussed in Kunen’s new Set Theory [31, p. 257ff].
We defined forcing for atomic formulas by recursion on names in an analogous
fashion. But, in contrast to the point made on p. 260 of this book, the structural
recursion used to define the forcing relation was replaced by one involving codes
for formulas. Thus, the metatheoretic formula transformer φ 7→ Forcesφ was
replaced by a set-theoretic class function forces :: i⇒ i, which was defined by
using Isabelle/ZF facilities for primitive recursion.

Next, we state this version of the fundamental theorems in a compact way.
For any G ⊆ P, our notation for the extension of M by G is the customary one:
M [G] := {val(G, τ) : τ ∈ M}, where the interpretation val(G, τ) is defined by
well-founded recursion on τ .

Theorem 1. For every φ ∈ formula with arity(φ) ≤ n and τ1, . . . , τn ∈M ,

1. (Definability) forces(φ) ∈ formula,

where the arity of forces(φ) is at most arity(φ)+4; and if “p ⊩ φ [τ1, . . . , τn]”
denotes “M, [p,P,⪯,1, τ1, . . . , τn] |= forces(φ)”, we have:

5 Namely, Zermelo set theory plus the 7 replacement instances included in the locales
M_ZF1 and M_ZF_ground.
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2. (Truth Lemma) for every M -generic G,

∃p ∈ G. p ⊩ φ [τ1, . . . , τn]

is equivalent to

M [G], [val(G, τ1), . . . , val(G, τn)] |= φ.

3. (Density Lemma) p ⊩ φ [τ1, . . . , τn] if and only if {q ∈ P : q ⊩ φ [τ1, . . . , τn]}
is dense below p.

The items in Theorem 1 appear in our Independence CH session [22] as three
separate lemmas (located in the theory Forcing_Theorems). For instance, the
Truth Lemma is stated as follows:

lemma truth_lemma:

assumes
"φ∈formula"
"env∈list(M)" "arity(φ)≤length(env)"

shows
"(∃ p∈G. p ⊩ φ env) ←→ M[G], map(val(G),env) |= φ"

where the ⊩ notation (and its precedence) had already been set up in the
Forces_Definition theory.

Kunen first describes forcing for atomic formulas using a mutual recursion
but then [31, p. 257] it is cast as a single recursively defined function F over
a well-founded relation R. In our formalization, these are called frc_at and
frecR, respectively, and are defined on tuples ⟨ft , t1, t2, p⟩ (where ft ∈ {0, 1} in-
dicates whether the atomic formula being forced is an equality or a membership,
respectively). Forcing for general formulas is then defined by recursion on the
datatype formula as indicated above. Technical details on the implementation
and proofs of the Forcing Theorems have been spelled out in our [21].

5 A sample formal proof

We present a fragment of the formal version of the proof that the Powerset Axiom
holds in a generic extension, which also serves to illustrate the Isar dialect of
Isabelle.

We quote the relevant paragraph of Kunen’s [31, Thm. IV.2.27]:

For Power Set (similarly to Union above), it is sufficient to prove that
whenever a ∈ M [G], there is a b ∈ M [G] such that P(a) ∩M [G] ⊆ b.
Fix τ ∈ MP such that τG = a. Let Q = (P(dom(τ) × P))M . This is the
set of all names ϑ ∈ MP such that dom(ϑ) ⊆ dom(τ). Let π = Q× {1}
and let b = πG = {ϑG : ϑ ∈ Q}. Now, consider any c ∈ P(a) ∩M [G];
we need to show that c ∈ b. Fix χ ∈ MP such that χG = c, and let
ϑ = {⟨σ, p⟩ : σ ∈ dom(τ) ∧ p ⊩ σ ∈ χ}; ϑ ∈ M by the Definability
Lemma. Since ϑ ∈ Q, we are done if we can show that ϑG = c.
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The assumption a ∈ M [G] appears in the lemma statement, and the goal in-
volving b in the first sentence will appear below (signaled by “(**)”); formalized
material necessarily tends to be much more linear than usual prose. In what
follows, we will intersperse the relevant passages of the proof.

lemma Pow_inter_MG:

assumes "a∈M[G]"
shows "Pow(a) ∩ M[G] ∈ M[G]"

proof -

Fix τ ∈MP such that τG = a.

from assms

obtain τ where "τ ∈ M" "val(G, τ) = a"

using GenExtD by auto

Let Q = (P(dom(τ)× P))M . This is the set of all names ϑ ∈MP [. . . ]

let ?Q="PowM(domain(τ)×P)"

Let π = Q× {1} and let b = πG = {ϑG : ϑ ∈ Q}.

let ?π="?Q×{1}"
let ?b="val(G,?π)"

(Recall: . . . there is a b ∈M [G] such that. . . )

from ⟨τ∈M⟩

have "domain(τ)×P ∈ M" "domain(τ) ∈ M"

by simp_all

then
have "?b ∈ M[G]"

by (auto intro!:GenExtI)

Now, consider any c ∈ P(a) ∩M [G]; we need to show that c ∈ b.

have "Pow(a) ∩ M[G] ⊆ ?b" (**)
proof

fix c

assume "c ∈ Pow(a) ∩ M[G]"

Fix χ ∈MP such that χG = c,

then
obtain χ where "c∈M[G]" "χ ∈ M" "val(G,χ) = c"

using GenExt_iff by auto

and let ϑ = {⟨σ, p⟩ : σ ∈ dom(τ) ∧ p ⊩ σ ∈ χ};

let ?ϑ="{⟨σ,p⟩ ∈domain(τ)×P . p ⊩ ·0 ∈ 1· [σ,χ] }"

ϑ ∈M by the Definability Lemma.
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have "arity(forces( ·0 ∈ 1· )) = 6"

using arity_forces_at by auto

with ⟨domain(τ) ∈ M⟩ ⟨χ ∈ M⟩

have "?ϑ ∈ M"

using sats_fst_snd_in_M

by simp

Since ϑ ∈ Q,

with ⟨domain(τ)×P ∈ M⟩

have "?ϑ ∈ ?Q"

using Pow_rel_char by auto

we are done if we can show that ϑG = c.

have "val(G,?ϑ) = c"

proof [. . . ]

This cherry-picked example shows that the formalization can be close to the
mathematical exposition and might be useful to reconstruct the proof from the
book; nonetheless, it also has significantly more details than the mathematical
prose, even with some indications to direct the automatic tools.

There has been some progress on assistants where one writes statements
and proofs in natural language; recently P. Koepke and his team achieved mag-
nificent results by using Isabelle/Naproche [13] to formalize proofs of several
results (particularly, the proof of König’s Theorem). The input language of Is-
abelle/Naproche is a controlled natural language that presents the result be-
ing formalized as a deduction in first-order logic, where every assumption and
the “whole logical scenario” are explicitly given. From the input language, Is-
abelle/Naproche builds “proof tasks” that are handled to automatic theorem
provers. As far as we can tell, Isabelle/Naproche is promising but still unsuit-
able for a project of the magnitude of ours.

6 Main achievements of the formalization

6.1 A sufficient set of replacement instances

We isolated 22 instances of Replacement that are sufficient to force CH or ¬CH .
Many of these were already present in relational form in the ZF-Constructible
library.

The first 4 instances, collected in the subset instances1_fms of formula,
consist of basic constructions:

– 2 instances for transitive closure: one to prove closure under iteration of
X 7→

⋃
X and an auxiliary one used to show absoluteness.

– 1 instance to define ∈-rank.
– 1 instance to construct the cumulative hierarchy (rank initial segments).
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The next 4 instances (gathered in instances2_fms) are needed to set up
cardinal arithmetic in M :

– 2 instances for the definition of ordertypes: The relevant well-founded recur-
sion and a technical auxiliary instance.

– 2 instances for Aleph: Replacement through the ordertype function (for Har-
togs’ Theorem) and the well-founded recursion using it.

We also need a one extra replacement instance ψ on M for each φ of the
previous ones to have them in M [G]:

ψ(x, α, y1, . . . , yn) := ·α = min
{
β | ∃τ ∈ Vβ . snd(x) ⊩ φ [fst(x), τ, y1, . . . , yn]

}
·

Here, fst(⟨a, b⟩) = a and snd(⟨a, b⟩) = b. The map φ 7→ ψ is the function F
referred to in the abstract. All such “ground” replacement instances appear in
the locale M_ZF3 and form the set instances3_fms.

That makes 16 instances up to now. For the setup of forcing, we require the
following 3 instances, which form the set instances_ground_fms:

– Well-founded recursion to define check-names.
– Well-founded recursion for the definition of forcing for atomic formulas.

– Replacement through x 7→ ⟨x, x̌⟩ (for the definition of G).

The proof of the ∆-System Lemma requires 2 instances which form the set
instances_ground_notCH_fms, that are used for the recursive construction of
sets using a choice function (as in the construction of a wellorder of X given a
choice function on P(X)), and to show its absoluteness.

The 21 formulas up to this point are collected into the set overhead_notCH
(called Ω in the abstract), which is enough to force ¬CH . To force CH , we
required one further instance for the absoluteness of the recursive construction
in the proof of Dependent Choices from AC . A listing with the names of all the
formulas can be found in Appendix F.

The particular choice of some of the instances above arose from Paulson’s
architecture on which we based our development. This applies every time a
locale from ZF-Constructible has to be interpreted (M_eclose and M_ordertype,
respectively, for the “auxiliary” instances).

On the other hand, we replaced the original proof of the Schröder-Bernstein
Theorem by Zermelo’s one [37, Exr. x4.27], because the former required at least
one extra instance arising from an iteration. We also managed to avoid 12 further
replacements by restructuring some of original theories in ZF-Constructible, so
these modifications are included as part of our project.

It is to be noted that the proofs of the Forcing Theorems do not require any
extra replacement on the ground model; actually, they only need the 7 instances
appearing in instances1_fms and instances_ground_fms. But this seems not
be the case for Separation, at least by inspecting our formalization: More in-
stances holding in M are needed as the complexity of φ grows. One point where
this is apparent is in the proof of Theorem 1(2), that appears as the truth_lemma
in our development; it depends on truth_lemma’ and truth_lemma_Neg, which
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explicitly invoke separation_ax. In any case, our intended grounds (v.g., the
transitive collapse of countable elementary submodels of a rank initial segment
Vα or an H(κ)) all satisfy full Separation.

6.2 Models for CH and its negation

The statements of the existence of models of ZFC + ¬CH and of ZFC + CH
appear in our formalization as follows:

corollary ctm_ZFC_imp_ctm_not_CH:

assumes
"M ≈ ω" "Transset(M)" "M |= ZFC"

shows
"∃ N.
M ⊆ N ∧ N ≈ ω ∧ Transset(N) ∧ N |= ZFC ∪ {·¬·CH··} ∧
(∀α. Ord(α) −→ (α ∈ M ←→ α ∈ N))"

corollary ctm_ZFC_imp_ctm_CH:

assumes
"M ≈ ω" "Transset(M)" "M |= ZFC"

shows
"∃ N.

M ⊆ N ∧ N ≈ ω ∧ Transset(N) ∧ N |= ZFC ∪ {·CH·} ∧
(∀α. Ord(α) −→ (α ∈ M ←→ α ∈ N))"

where ≈ is equipotency, and the predicate Transset holds for transitive sets.
Both results are proved without using Choice.

As the excerpts indicate, these results are obtained as corollaries of two the-
orems in which only a subset of the aforementioned replacement instances are
assumed of the ground model. We begin the discussion of these stronger results
by considering extensions of ctms of fragments of ZF .

theorem extensions_of_ctms:

assumes
"M ≈ ω" "Transset(M)"

"M |= ·Z· ∪ {·Replacement(p)· . p ∈ overhead}"

"Φ ⊆ formula"

"M |= { ·Replacement(ground_repl_fm(φ))· . φ ∈ Φ}"
shows
"∃ N.

M ⊆ N ∧ N ≈ ω ∧ Transset(N) ∧ M ̸=N ∧
(∀α. Ord(α) −→ (α ∈ M ←→ α ∈ N)) ∧
((M, []|= ·AC·) −→ N, [] |= ·AC·) ∧
N |= ·Z· ∪ { ·Replacement(φ)· . φ ∈ Φ}"

Here, the 7-element set overhead is enough to construct a proper extension.
It is the union of instances1_fms and instances_ground_fms. Also, ·Z· denotes
Zermelo set theory and one can use the parameter Φ to ensure those replacement
instances in the extension.

In the next theorem, the relevant set of formulas is overhead_notCH, defined
above in Section 6.1, and ZC denotes Zermelo set theory plus Choice:
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theorem ctm_of_not_CH:

assumes
"M ≈ ω" "Transset(M)"

"M |= ZC ∪ {·Replacement(p)· . p ∈ overhead_notCH}"

"Φ ⊆ formula"

"M |= { ·Replacement(ground_repl_fm(φ))· . φ ∈ Φ}"
shows
"∃ N.
M ⊆ N ∧ N ≈ ω ∧ Transset(N) ∧
N |= ZC ∪ {·¬·CH··} ∪ { ·Replacement(φ)· . φ ∈ Φ} ∧
(∀α. Ord(α) −→ (α ∈ M ←→ α ∈ N))"

Finally, overhead_CH is the union of overhead_notCH with the DC instance
dc_abs_fm:

theorem ctm_of_CH:

assumes
"M ≈ ω" "Transset(M)"

"M |= ZC ∪ {·Replacement(p)· . p ∈ overhead_CH}"

"Φ ⊆ formula"

"M |= { ·Replacement(ground_repl_fm(φ))· . φ ∈ Φ}"
shows
"∃ N.

M ⊆ N ∧ N ≈ ω ∧ Transset(N) ∧
N |= ZC ∪ {·CH·} ∪ { ·Replacement(φ)· . φ ∈ Φ} ∧
(∀α. Ord(α) −→ (α ∈ M ←→ α ∈ N))"

7 Related work

There is another formalization of forcing in Lean by Han and van Doorn, under
the name Flypitch [25, 26]. When our project started, we were unaware of this
initiative, and the same as them, we were deeply influenced by Wiedijk’s list of
100 theorems [58].

Many aspects make their formalization different from ours. Their presenta-
tion of the mathematics is somewhat more elegant and cohesive, since they go
for the Boolean valued approach; they also set up the calculus of first-order logic,
and en route to forcing they formalized the basic model theory of Boolean valued
models and Gödel’s Completeness Theorem. They also provided the treatment
of the regular open algebra, and the general version of the Delta System Lemma.
Putting this together they readily obtain a proof that ZFC ⊬ CH [25] and after
formalizing collapse forcing they show ZFC ⊬ ¬CH [26, Sect. 5.6].

It should be emphasized, however, that the Flypitch project was carried out
assuming a rather strong metatheory. Carneiro [7] reports that Werner’s results
in [57] can be adapted to show that the base logic of Lean (restricted to n
type universes) proves the consistency of ZFC plus n inaccessibles. Han and
van Doorn did use universes in their implementation; for instance, ordinals are
“defined as equivalence classes of (well-ordered) types, [. . . ] one universe level
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higher than the types used to construct them” [25]. It is not clear to us if they
are able to avoid such strength: At least, Con(ZFC ) is provable in their context.
On a lesser note, in order to prove AC in the generic extension, Flypitch requires
choice in the metatheory [25, p. 11], while our formalization works entirely in
ZF .

This is perhaps an appropriate time to insist that we have not formalized
the relative consistency of ¬CH , and we are actually not aiming for that in the
short term. In our context, going for the plain consistency result seems off the
mark, since we can not weaken our base theory (which is essentially equivalent to
ZF ). Even if we intended to do so, the standard route to use ctms for a relative
consistency proof (through the Reflection Theorem) is prohibitive for us, since
our metatheory does not have the required induction principles (on Isabelle/ZF
formulas—in contrast to formulas coded as sets, as in our presentation).

We believe that our formalization using the ctm approach over Isabelle/ZF
might be more appealing to set-theorists because of the type-theoretic machinery
used in Flypitch, and since absoluteness grants us extra naturality. This last
point may also be illustrated by the treatment of ordinals; in our formalization,
as it is expected intuitively, the following are equivalent for every x in a ctm M :

– Ord(x);

– ordinal(##M,x) (the relational definition relativized to M);

– M, [x] |= ·0 is ordinal·.

where ·n is ordinal· is the code for the appropriate first-order formula (0 is
a de Bruijn index above!). In contrast, Han and van Doorn require an injection
from the ordinals of the corresponding type universe into their encoding of a
model of ZF , and a further necessary injection into the Boolean valued model
using checks—this last step obviously appears in our presentation, but the val
function used to construct M [G] will turn check-names into the corresponding
argument, as expected.

This faithfulness to set-theoretical practice does not come for free. Recursive
constructions and inductive definitions are far easier to perform in the Calculus
of Inductive Constructions on which Lean is based, and in Isabelle/ZF are rather
cumbersome. Also, a typed discipline provides aid to write succinctly and many
assumptions are satisfied by mere notation. To be clear, those benefits come
from doing set theory in a non set-theoretical language. On the other hand, Isar
proofs, as the one shown in Sec. 5, are easier to understand than the language
of tactics of Lean.

A sweet spot combining the best of both worlds is to be found on develop-
ments in Isabelle/HOL based on the AFP entry ZFC in HOL by Paulson [46].
There is a range of results in combinatorics and other set-theoretical material
that was swiftly formalized in this setting: Erdős-Milner partition theorem [47],
Nash-Williams theorem and Larson’s ∀k ωω −→ (ωω, k) [14], Design Theory
[15], and Wetzel’s problem [48]; this last paper describes in a brief and clear
way the convenience of the interaction with Isabelle/HOL (which is also paid in
consistency-strength currency [41, Sect. 3]).
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Concerning the minimum amount of Replacement needed to construct forcing
extensions, only recently we learned about Mathias’ work on the subject (for
which a summary is offered in [29, Sect. 6]). In [33, Sect. 1], modelsM of Zermelo
set theory are constructed for which each of the inclusions M ⊆ M [G] and
M ⊇M [G] fail, where the poset P is the trivial {1}. In one of them, K, we have
ω ∈ K \K[G], hence the ordinals do not coincide.

Also, in the reference [34], a reasonably minimal fragment Prov of ZF that
allows to do set forcing is identified, and transitive sets satisfying it are called
provident. Existence of rank and of transitive closure are implied by Prov; hence
their appearance in our list seems justified. Nevertheless, Prov is far weaker than
the fragments of ZF considered here, since it is a restriction of Kripke-Platek set
theory, and thus it does not include neither Powerset nor full Separation. The
detailed theory of provident sets is developed in [35].

8 Some lessons

We want to finish this report by gathering some of the conclusions we reached
after the experience of formalizing the basics of forcing in a proof assistant.

8.1 Aims of a formalization and planning

We believe that in every project of formalization of mathematics, there is a
tension between the haste to verify the target results and the need to obtain a
readable, albeit extremely detailed, corpus of statements and proofs. This tension
is mirrored in two different purposes of formalization: Developing new mathe-
matics from scratch and producing verified results on the way, versus verifying
and documenting material that has already been produced on paper.

Our present project clearly belongs to the second category, so we prioritized
trying to obtain formal proofs that mimicked standard prose (as can be seen in
the sample proof in Section 5). We feel that the Isar language provided with Is-
abelle has the right balance between elegance and efficacy. Another crucial aspect
to achieve this goal is the level of detail of the blueprint for the formalization.
We must however confess that we learned many of the subtleties of Isabelle in
the making, and many engineering decisions were also taken before it was clear
the precise way things would develop in the future.

A similar experience, but on an opposite side of the formalization spectrum
happened to the Liquid Tensor Experiment [8] as described by Scholze in [54].
People involved in the formalization simply pushed their way to reach the sum-
mit, formalizing lemma after lemma. They actually wrote the blueprint for that
formalization afterwards it was complete! From time to time, we were also fren-
ziedly trying to get the results formalized, going beyond what we had planned.

As a result from this, some design choices that seemed reasonable at first were
proved to be inconvenient. For instance, we should had better used predicates
(of type i⇒ i⇒ o) for the forcing posets’ order relations; this is the way they
are presented in the Delta System Lemma session. A similar problem, which can
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be traced to our reading of Kunen’s suggestion on how to formalize the forcing
relation [31, p. 260], is that we require the forcing poset to be an element of M ,
so the present infrastructure does not allow class forcing out of the box. (The
latter change seems to be rather straightforward, but the former does not.)

Nearly the final stage of the project, we decided to go for the minimal set of
definitions and versions of lemmas that were needed to obtain our target results.
For example,

– we only proved the Delta System Lemma for ℵ1-sized families; thus limiting
us to the case of the ℵ1-chain condition, and avoiding the relativization of
the material on cofinalities [55];

– we showed preservation of sequences by considering countably closed forcings
(in fact, we formalized the bare minimum requirement of being (<ω+1)-
closed, that is, closure under ω-sequences and not δ-sequences for every
countable δ).

In doing this we went against the conventional wisdom that one should formalize
the most general version of the results available. Another shortcut we took was
to simplify some proofs by appealing to the countability of the ground model;
this is the case of definition_of_forces and the result on forcing values of a
function.

8.2 How to believe in the formalization

This is a rather tricky question, that was addressed by Pollack in his [51]. There
is little point to discuss that, after an assistant has accepted some input success-
fully, some mathematics has been formally verified. What might not be apparent
is if the claimed theorems are indeed the results that have been checked. One
key aspect of this is the logical foundation of the assistant (Section 2.1). But
the weakest link in the chain is the laying down of definitions building up to the
concepts needed to state the target results.6

We took care of this matter by providing, as an entry point for our whole de-
velopment, the theory Definitions Main in which a path from some the funda-
mental concepts from Isabelle/ZF reaching to our main theorems is expounded.
Cross-references to major milestones (which can be navigated by using Isabelle)
are provided there. A curated version can be found as Appendix A to this paper.

Frequently, we formalized material by directly typing the proof we knew by
heart, and in so doing we assumed that some definitions accommodated some of
our preconceptions. It is significant that in a few such occasions, we were doubly
surprised by the fact that some supposedly trivial lemma would not go through,
because the definitions addressed something different (think of restriction of a
function to a set versus that of a relation), and also that we were able to prove
the adjacent results. The takeaway is that intuition may drive proofs even if you
are not working on what you think you are.

6 Another related aspect, concerning the way results are printed and parsed by assis-
tant versus their internal meaning, was studied by Wiedijk [59].
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A final aspect on this topic concerns automated methods. In the Introduc-
tion we hinted at the fact that a proof can actually be obscured by automation.
Specifically, proof steps that were solved automatically give no information for
someone who wants to understand the details of the argument; by the same to-
ken, automatic methods might silently exploit inconsistencies in the definitions,
and this will only be apparent in a later stage of the development.

8.3 Bureaucracy and scale factors

It is noteworthy that although the “math” of the construction of a model of
ZFC + ¬CH was already in place by the end of November 2020, it was only 9
months later that we were able to finish the formalization of that result. The
missing pieces were essentially bureaucracy. Some of the material filed under this
category comprises:

– permutation of indices and calculation of arities of internalized formulas;
– proving that certain constructions belong to the relevant models;
– (required for the above) showing that particular instances of separation and

replacement hold in the ground model.

Some of those proofs were almost copy-pasted once and again with minor vari-
ants; this would usually be relegated to some function in the meta-language, but
we were unable to do this due to our limitations in programming Isabelle/ML7.

Nevertheless, experience in software engineering is invaluable in large projects
like the present one. For example, it is (mathematically) misleading when auto-
matic tools (simp, auto, etc) stop working just because of the sheer size of the
goal (v.g., the same statement with 7 variables succeeds but with 8 variables does
not). Scale issues are very easily disregarded in the abstract but, as a colorful
example, the formula forces(·0 ∈ 1·) can be explicitly printed by Isabelle2021-1
(it spans nearly 20k symbols), but forces(·¬·¬·0 ∈ 1···) can not.

Another point where computer science expertise was a prime asset was the
very definition of forces. As a proof of concept, one of us tried to obtain its
definition by using formula synthesis exclusively, which was supposed to be as
trivial as in the usual mathematical development (similarly to the case of Equa-
tion (2)). But in fact, some early minor mistake rendered the whole effort useless.
We then turned to a more informed programming discipline, which involved de-
composing the definition in stages, each of which was checked for correctness,
and in that way we were able to reach our objective.

9 Future directions

There are many possibilities for further work starting from this formalization.
We will mention just a few.

7 On the other hand, our inability to automate proofs of replacement instances paved
the way for identifying which were the ones needed for forcing!
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Obvious missing pieces would be proving the standard properties of general
Cohen posets Fnκ(I, J), and to modify the core definitions to allow for class
forcing. We would also like to try the Boolean valued approach to compare the
(un)ease of formalization using Isabelle/ZF.

Another desirable goal is to construct transitive set models of ZFC from a
large cardinal. There is some work to be done for that: Even the definition of
inaccessibles, and of the transitive collapse (for that matter), are still missing.

As we did for Replacement, we would like to pinpoint an (almost) minimal
set of instances of Separation needed to use forcing. A necessary ingredient will
certainly be an implementation of Gödel operations [28, Thm. 13.4].

In our previous landmark [21], we contributed with some modifications to
ZF-Constructible; this is now part of the official Isabelle distribution. We intend
ask Isabelle maintainers to consider the more modular versions of some of those
theories that we are presenting in this project.

As final words about our journey, we believe that, as in mathematics in
general, the experience of working in a formal environment can be daunting,
but at the same time extremely rewarding: The feeling of accomplishment after
seeing your own writings validated beyond doubt is in some ways comparable
to that of finding a proof of an important lemma. It also allows subtly different
ways of reasoning (with their own merits and pitfalls—it is easy to forget how
easy a proof on paper is once you are fully engaged in directing your assistant).
We hope that at some point these experiences are shared by our community at
large.
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A Main definitions of the formalization

This section, which appears almost verbatim as the theory Definitions Main

in [22], might be considered as the bare minimum reading requisite to trust that
our development indeed formalizes the theory of forcing.

The reader trusting all the libraries on which our development is based,
might jump directly to Section A.3, which treats relative cardinal arithmetic as
implemented in Transitive_Models. But in case one wants to dive deeper, the
following sections treat some basic concepts of the ZF logic (Section A.1) and in
the ZF-Constructible library (Section A.2) on which our definitions are built.

A.1 ZF

For the basic logic ZF we restrict ourselves to just a few concepts (for its axioms,
consult Appendix D).

bij(A, B) ≡
{f ∈ A → B . ∀ w∈A. ∀ x∈A. f ‘ w = f ‘ x −→ w = x} ∩
{f ∈ A → B . ∀ y∈B. ∃ x∈A. f ‘ x = y}

A ≈ B ≡ ∃ f. f ∈ bij(A, B)

Transset(i) ≡ ∀ x∈i. x ⊆ i

Ord(i) ≡ Transset(i) ∧ (∀ x∈i. Transset(x))
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i < j ≡ i ∈ j ∧ Ord(j)

i ≤ j ←→ i < j ∨ (i = j ∧ Ord(j))

With the concepts of empty set and successor in place,

lemma empty_def’: "∀ x. x /∈ 0"

lemma succ_def’: "succ(i) = i ∪ {i}"

we can define the set of natural numbers ω. In the sources, it is defined as a
fixpoint, but here we just write its characterization as the first limit ordinal.

Ord(ω) ∧ 0 < ω ∧ (∀ y. y < ω −→ succ(y) < ω)
Ord(i) ∧ 0 < i ∧ (∀ y. y < i −→ succ(y) < i) =⇒ ω ≤ i

Then, addition and predecessor on ω are inductively characterized as follows:

m +ω succ(n) = succ(m +ω n)

m ∈ ω =⇒ m +ω 0 = m

pred(0) = 0

pred(succ(y)) = y

Lists on a set A can be characterized by being recursively generated from the
empty list [] and the operation Cons that adds a new element to the left end;
the induction theorem for them shows that the characterization is “complete”.
(Mind the [[P; Q]] =⇒ R abbreviation for P =⇒ Q =⇒ R.)

[] ∈ list(A)

[[a ∈ A; l ∈ list(A)]] =⇒ Cons(a, l) ∈ list(A)

[[x ∈ list(A); P([]);
∧
a l. [[a ∈ A; l ∈ list(A); P(l)]] =⇒

P(Cons(a, l))]] =⇒ P(x)

Length, concatenation, and nth element of lists are recursively characterized as
follows.

length([]) = 0

length(Cons(a, l)) = succ(length(l))

[] @ ys = ys

Cons(a, l) @ ys = Cons(a, l @ ys)

nth(0, Cons(a, l)) = a

n ∈ ω =⇒ nth(succ(n), Cons(a, l)) = nth(n, l)

We have the usual Haskell-like notation for iterated applications of Cons:

lemma Cons_app: "[a,b,c] = Cons(a,Cons(b,Cons(c,[])))"

Relative quantifiers restrict the range of the bound variable to a class M of
type i ⇒ o; that is, a truth-valued function with set arguments.
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lemma "∀ x[M]. P(x) ≡ ∀ x. M(x) −→ P(x)"

"∃ x[M]. P(x) ≡ ∃ x. M(x) ∧ P(x)"

Finally, a set can be viewed (“cast”) as a class using the following function of
type i ⇒ i ⇒ o.

(##A)(x) ←→ x ∈ A

A.2 Relative concepts

A list of relative concepts (mostly from the ZF-Constructible library) follows
next.

big_union(M, A, z) ≡ ∀ x[M]. x ∈ z ←→ (∃ y[M]. y ∈ A ∧ x ∈ y)

upair(M, a, b, z) ≡ a ∈ z ∧ b ∈ z ∧ (∀ x[M]. x ∈ z −→ x = a ∨ x = b)

pair(M, a, b, z) ≡ ∃ x[M]. upair(M, a, a, x) ∧
(∃ y[M]. upair(M, a, b, y) ∧ upair(M, x, y, z))

successor(M, a, z) ≡
∃ x[M]. upair(M, a, a, x) ∧ (∀ xa[M]. xa ∈ z ←→ xa ∈ x ∨ xa ∈ a)

empty(M, z) ≡ ∀ x[M]. x /∈ z

transitive_set(M, a) ≡ ∀ x[M]. x ∈ a −→ (∀ xa[M]. xa ∈ x −→ xa ∈ a)

ordinal(M, a) ≡
transitive_set(M, a) ∧ (∀ x[M]. x ∈ a −→ transitive_set(M, x))

image(M, r, A, z) ≡
∀ y[M]. y ∈ z ←→ (∃ w[M]. w ∈ r ∧ (∃ x[M]. x ∈ A ∧ pair(M, x, y, w)))

is_apply(M, f, x, y) ≡
∃ xs[M].
∃ fxs[M]. upair(M, x, x, xs) ∧ image(M, f, xs, fxs) ∧
big_union(M, fxs, y)

is_function(M, r) ≡
∀ x[M].
∀ y[M].
∀ y’[M].
∀ p[M].
∀ p’[M].

pair(M, x, y, p) −→
pair(M, x, y’, p’) −→ p ∈ r −→ p’ ∈ r −→ y = y’

is_relation(M, r) ≡ ∀ z[M]. z ∈ r −→ (∃ x[M]. ∃ y[M]. pair(M, x, y, z))

is_domain(M, r, z) ≡
∀ x[M]. x ∈ z ←→ (∃ w[M]. w ∈ r ∧ (∃ y[M]. pair(M, x, y, w)))
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typed_function(M, A, B, r) ≡
is_function(M, r) ∧
is_relation(M, r) ∧
is_domain(M, r, A) ∧
(∀ u[M]. u ∈ r −→ (∀ x[M]. ∀ y[M]. pair(M, x, y, u) −→ y ∈ B))

is_function_space(M, A, B, fs) ≡
M(fs) ∧ (∀ f[M]. f ∈ fs ←→ typed_function(M, A, B, f))

A →M B ≡ THE d. is_function_space(M, A, B, d)

surjection(M, A, B, f) ≡
typed_function(M, A, B, f) ∧
(∀ y[M]. y ∈ B −→ (∃ x[M]. x ∈ A ∧ is_apply(M, f, x, y)))

Relative version of the ZFC axioms

extensionality(M) ≡ ∀ x[M]. ∀ y[M]. (∀ z[M]. z ∈ x ←→ z ∈ y) −→ x = y

foundation_ax(M) ≡
∀ x[M]. (∃ y[M]. y ∈ x) −→ (∃ y[M]. y ∈ x ∧ ¬ (∃ z[M]. z ∈ x ∧ z ∈ y))

upair_ax(M) ≡ ∀ x[M]. ∀ y[M]. ∃ z[M]. upair(M, x, y, z)

Union_ax(M) ≡ ∀ x[M]. ∃ z[M]. big_union(M, x, z)

power_ax(M) ≡ ∀ x[M]. ∃ z[M]. ∀ xa[M]. xa ∈ z ←→
(∀ xb[M]. xb ∈ xa −→ xb ∈ x)

infinity_ax(M) ≡
∃ I[M].

(∃ z[M]. empty(M, z) ∧ z ∈ I) ∧
(∀ y[M]. y ∈ I −→ (∃ sy[M]. successor(M, y, sy) ∧ sy ∈ I))

choice_ax(M) ≡ ∀ x[M]. ∃ a[M]. ∃ f[M]. ordinal(M, a) ∧
surjection(M, a, x, f)

separation(M, P) ≡ ∀ z[M]. ∃ y[M]. ∀ x[M]. x ∈ y ←→ x ∈ z ∧ P(x)

univalent(M, A, P) ≡
∀ x[M]. x ∈ A −→ (∀ y[M]. ∀ z[M]. P(x, y) ∧ P(x, z) −→ y = z)

strong_replacement(M, P) ≡
∀ A[M].

univalent(M, A, P) −→ (∃ Y[M]. ∀ b[M]. b ∈ Y ←→
(∃ x[M]. x ∈ A ∧ P(x, b)))



28 E. Gunther, M. Pagano, P. Sánchez Terraf, M. Steinberg

Internalized formulas “Codes” for formulas (as sets) are constructed from
natural numbers using Member, Equal, Nand, and Forall.

[[x ∈ ω; y ∈ ω]] =⇒ ·x ∈ y· ∈ formula

[[x ∈ ω; y ∈ ω]] =⇒ ·x = y· ∈ formula

[[p ∈ formula; q ∈ formula]] =⇒ ·¬(p ∧ q)· ∈ formula

p ∈ formula =⇒ (·∀ p·) ∈ formula

[[x ∈ formula;
∧
x y. [[x ∈ ω; y ∈ ω]] =⇒ P(·x ∈ y·);∧

x y. [[x ∈ ω; y ∈ ω]] =⇒ P(·x = y·);∧
p q. [[p ∈ formula; P(p); q ∈ formula; P(q)]] =⇒ P(·¬(p ∧ q)·);∧
p. [[p ∈ formula; P(p)]] =⇒ P((·∀ p·))]]

=⇒ P(x)

Definitions for the other connectives and the internal existential quantifier are
also provided. For instance, negation:

·¬p· ≡ ·¬(p ∧ p)·

The arity function strictly bounding the free de Bruijn indices of a formula is
defined below:

arity(·x ∈ y·) = succ(x) ∪ succ(y)

arity(·x = y·) = succ(x) ∪ succ(y)

arity(·¬(p ∧ q)·) = arity(p) ∪ arity(q)

arity((·∀ p·)) = pred(arity(p))

We have the satisfaction relation between ∈-models and first order formulas
(given a “environment” list representing the assignment of free variables),

[[nth(i, env) = x; nth(j, env) = y; env ∈ list(A)]]
=⇒ x ∈ y ←→ A, env |= ·i ∈ j·

[[nth(i, env) = x; nth(j, env) = y; env ∈ list(A)]]
=⇒ x = y ←→ A, env |= ·i = j·

env ∈ list(A) =⇒ (A, env |= ·¬(p ∧ q)·) ←→ ¬ ((A, env |= p) ∧
(A, env |= q))

env ∈ list(A) =⇒ (A, env |= (·∀ p·)) ←→ (∀ x∈A. A, Cons(x, env) |= p)

as well as the satisfaction of an arbitrary set of sentences.

A |= Φ ≡ ∀φ∈Φ. A, [] |= φ

The internalized (viz. as elements of the set formula) versions of the axioms are
checked next against the relative statements.

Union_ax(##A) ←→ A, [] |= ·Union Ax·
power_ax(##A) ←→ A, [] |= ·Powerset Ax·
upair_ax(##A) ←→ A, [] |= ·Pairing·
foundation_ax(##A) ←→ A, [] |= ·Foundation·
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extensionality(##A) ←→ A, [] |= ·Extensionality·
infinity_ax(##A) ←→ A, [] |= ·Infinity·

φ ∈ formula =⇒
(M, [] |= ·Separation(φ)·) ←→
(∀ env∈list(M).

arity(φ) ≤ 1 +ω length(env) −→
separation(##M, λx. M, [x] @ env |= φ))

φ ∈ formula =⇒
(M, [] |= ·Replacement(φ)·) ←→ (∀ env. replacement_assm(M, env, φ))

choice_ax(##A) ←→ A, [] |= ·AC·

Finally, the axiom sets are defined as follows.

ZF_fin ≡
{·Extensionality·, ·Foundation·, ·Pairing·, ·Union Ax·, ·Infinity·,
·Powerset Ax·}

ZF_schemes ≡
{·Separation(p)· . p ∈ formula} ∪ {·Replacement(p)· . p ∈ formula}

·Z· ≡ ZF_fin ∪ {·Separation(p)· . p ∈ formula}

ZC ≡ ·Z· ∪ {·AC·}
ZF ≡ ZF_schemes ∪ ZF_fin

ZFC ≡ ZF ∪ {·AC·}

A.3 Relativization of infinitary arithmetic

In order to state the defining property of the relative equipotency relation, we
work under the assumptions of the locale M_cardinals. They comprise a finite
set of instances of Separation and Replacement to prove closure properties of
the transitive class M.

lemma (in M_cardinals) eqpoll_def’:

assumes "M(A)" "M(B)" shows "A ≈M B ←→ (∃ f[M]. f ∈ bij(A,B))"

Below, µ denotes the minimum operator on the ordinals.

lemma cardinalities_defs:

fixes M::"i⇒o"

shows
"|A|M ≡ µ i. M(i) ∧ i ≈M A"

"CardM(α) ≡ α = |α|M"
"κ↑ν,M ≡ |ν →M κ|M"
"(κ+)M ≡ µ x. M(x) ∧ CardM(x) ∧ κ < x"

Analogous to the previous Lemma eqpoll_def’, the next lemma holds under the
assumptions of the locale M_aleph. The axiom instances included are sufficient
to state and prove the defining properties of the relativized Aleph function (in
particular, the required ability to perform transfinite recursions).
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context M_aleph

begin

ℵ0
M = ω

[[Ord(α); M(α)]] =⇒ ℵsucc(α)
M = (ℵα

M+)M

[[Limit(α); M(α)]] =⇒ ℵα
M = (

⋃
j∈α. ℵjM)

end — M_aleph

lemma ContHyp_rel_def’:

fixes N::"i⇒o"

shows
"CHN ≡ ℵ1N = 2↑ℵ0

N,N"

Under appropriate hypotheses (this time, from the locale M_ZF_library),
CHM is equivalent to its fully relational version is_ContHyp. As a sanity check,
we see that if the transitive class is indeed V, we recover the original CH .

M_ZF_library(M) =⇒ is_ContHyp(M) ←→ CHM

is_ContHyp(V) ←→ ℵ1 = 2↑ℵ0

In turn, the fully relational version evaluated on a nonempty transitive A is
equivalent to the satisfaction of the first-order formula ·CH· (since it actually is a
sentence, it does not depend on env, which appears only because the definition
of |= requires that argument).

[[env ∈ list(A); 0 ∈ A]] =⇒ is_ContHyp(##A) ←→ A, env |= ·CH·

B Discipline for relativization

As we said in Sec. 3, in order to force CH and its negation we depended on
having relativized versions of cardinals, Alephs, etc. It was clear for us that our
efforts would be more efficient if we set up a discipline for relativizing sets (terms
of type i) and predicates/relations (terms of type o).

Paulson only had, for each set, the relational version. It seemed clearer to
us to have a functional version of the relativized concept. Going back to our
example in 3.1, for the concept cardinal :: i ⇒ i we want its relative version
cardinal_rel :: (i ⇒ o) ⇒ i ⇒ i and the relational version of the latter
is_cardinal :: (i⇒ o)⇒ i⇒ i⇒ o.

Our first attempt of defining a discipline was inspired by mathematical con-
siderations: if we might prove that is_cardinal is functional and also prove
the existence of a witness c such that M(c) and is_cardinal(M,x,c) then
cardinal_rel(M,x) can be obtained by the operator of definite descriptions.

Soon we realized that resorting to definite descriptions was needed only for
the most primitive concepts. In fact, once we have a relativized concept, we
can use it to define other relativizations. For instance, cardinal_rel depends
on having relative versions of bij. Instead of relationalizing bij to get is_bij
and then prove uniqueness and existence of a witness, we define bij_rel using
inj_rel and surj_rel.



Formalization of ctm forcing 31

C Recursions in cofinality

As we mentioned near the end of Section 8.1, we decided to minimize the require-
ments being formalized in order to achieve our immediate goal. In particular,
the treatment of cofinality in the companion project [55] was left behind.

We already observed that well-founded, and in particular transfinite, recur-
sion is not easily dealt with in Isabelle/ZF. Nevertheless, and mainly as a cu-
riosity, we found out that only one recursive construction is needed for the de-
velopment of the basic theory of cofinality (as in [31, Sect. I.13]), which is used
in the proof of the following “factorization” lemma:

Lemma 1. Let δ, γ ∈ Ord and assume f : δ → γ is cofinal. There exists a
strictly increasing g : cf(γ)→ δ such that f ◦ g is strictly increasing and cofinal
in γ. Moreover, if f is strictly increasing, then g must also be cofinal.

It turns out that the rest of the basic results on cofinality (namely, idempo-
tence of cf, that regular ordinals are cardinals, the cofinality of Alephs, König’s
Theorem) follow easily from the previous Lemma by “algebraic” reasoning only.

We therefore expect that the relativization of these results be straightforward,
when time permits.

D Axioms of Isabelle/ZF

In this appendix we list the complete set of axioms of Isabelle’s metatheory and
logic.

D.1 The metatheory Pure

Pure.abstract rule: (
∧
x. ?f(x) ≡ ?g(x)) =⇒ λx. ?f(x) ≡ λx. ?g(x)

Pure.combination: ?f ≡ ?g =⇒ ?x ≡ ?y =⇒ ?f(?x) ≡ ?g(?y)

Pure.equal elim: PROP ?A ≡ PROP ?B =⇒ PROP ?A =⇒ PROP ?B

Pure.equal intr: (PROP ?A =⇒ PROP ?B) =⇒ (PROP ?B =⇒ PROP ?A) =⇒
PROP ?A ≡ PROP ?B

Pure.reflexive: ?x ≡ ?x

Pure.symmetric: ?x ≡ ?y =⇒ ?y ≡ ?x

Pure.transitive: ?x ≡ ?y =⇒ ?y ≡ ?z =⇒ ?x ≡ ?z

D.2 IFOL and FOL

In the axioms refl, subst, allI, spec, exE, exI,eq reflection there is
a constraint for the type of the variables a, b, x to be in the class term class.

IFOL.FalseE:
∧
P. False =⇒ P

IFOL.refl: (
∧
a. a = a)

IFOL.subst: (
∧
a b P. a = b =⇒ P(a) =⇒ P(b))

IFOL.allI: (
∧
P. (

∧
x. P(x)) =⇒ ∀x. P(x))

IFOL.spec: (
∧
P x. ∀x. P(x) =⇒ P(x))
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IFOL.exE: (
∧
P R. ∃x. P(x) =⇒ (

∧
x. P(x) =⇒ R) =⇒ R)

IFOL.exI: (
∧
P x. P(x) =⇒ ∃x. P(x))

IFOL.conjI:
∧
P Q. P =⇒ Q =⇒ P ∧ Q

IFOL.conjunct1:
∧
P Q. P ∧ Q =⇒ P

IFOL.conjunct2:
∧
P Q. P ∧ Q =⇒ Q

IFOL.disjE:
∧
P Q R. P ∨ Q =⇒ (P =⇒ R) =⇒ (Q =⇒ R) =⇒ R

IFOL.disjI1:
∧
P Q. P =⇒ P ∨ Q

IFOL.disjI2:
∧
P Q. Q =⇒ P ∨ Q

IFOL.eq reflection: (
∧
x y. x = y =⇒ x ≡ y)

IFOL.iff reflection:
∧
P Q. P ↔ Q =⇒ P ≡ Q

IFOL.impI:
∧
P Q. (P =⇒ Q) =⇒ P −→ Q

IFOL.mp:
∧
P Q. P −→ Q =⇒ P =⇒ Q

FOL.classical:
∧
P. (¬ P =⇒ P) =⇒ P

D.3 ZF Base

The following symbols are introduced in this theory:

axiomatization

mem :: "[i, i] ⇒ o" (infixl <∈> 50) — membership relation
and zero :: "i" (<0>) — the empty set
and Pow :: "i ⇒ i" — power sets
and Inf :: "i" — infinite set
and Union :: "i ⇒ i" (<

⋃
> [90] 90)

and PrimReplace :: "[i, [i, i] ⇒ o] ⇒ i"

After the definitions of /∈, ⊆, succ, and relative quantifications are presented,
the following axioms are postulated:

ZF Base.Pow iff:
∧
A B. A ∈ Pow(B) ↔ A ⊆ B

ZF Base.Union iff:
∧
A C. A ∈

⋃
C ↔ (∃B∈C. A ∈ B)

ZF Base.extension:
∧
A B. A = B ↔ A ⊆ B ∧ B ⊆ A

ZF Base.foundation:
∧
A. A = 0 ∨ (∃x∈A. ∀y∈x. y ̸∈ A)

ZF Base.infinity: 0 ∈ Inf ∧ (∀y∈Inf. succ(y) ∈ Inf)

ZF Base.replacement:
∧
A P b. ∀x∈A. ∀y z. P(x, y) ∧ P(x, z) −→ y = z

=⇒ b ∈ PrimReplace(A, P) ↔ (∃x∈A. P(x, b))

D.4 AC

The theory AC is only imported in the theory Absolute Versions; none of the
main results depends on AC . The latter theory shows that some absolute results
can be obtained from the relativized versions on V.

AC.AC:
∧
a A B. a ∈ A =⇒ (

∧
x. x ∈ A =⇒ ∃y. y ∈ B(x)) =⇒

∃z. z ∈ Pi(A, B)

E Lambda replacements

The development of the locale structure of the project was a dynamical process.
As further properties of closure of the ground M were required, we gathered
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the relevant instances of Separation and Replacement into a new locale (always
assuming a class model, for added generality), and proceeded to apply them to
those closure proofs.

This procedure lead to a steady grow in the number of interpretation obli-
gations and therefore, of formula synthesis (since the two axiom schemes were
postulated using codes for formulas). That number would easily surpass the hun-
dred, and the automatic tools at our disposal for that task were rudimentary (as
discussed in Section 8.3).

Facing this situation, we decided that we needed some sort of composition-
ality in order to obtain new instances from the ones already proved: Having
Replacement for class functions F and G does not entail immediately replace-
ment under F ◦ G (unless you use one further instance of Separation, and the
net gain is zero). The solution was to postulate for the relevant F s, instead of
replacement through x 7→ F (x), a lambda replacement through x 7→ ⟨x, F (x)⟩.
The name “lambda” corresponds to the fact that this type of replacement is
equivalent to closure under (λx ∈ A. F (x)) := {⟨x, F (x)⟩ : x ∈ A} for every
A ∈M .

Now, a fixed set of six replacements and one separation (apart from those in
M_basic, which also assumes the Powerset Axiom for the class M) is sufficient
to obtain the lambda replacement under x 7→ ⟨x, F (G(x))⟩ given those for F
and G. To obtain compositions with binary class functions H, it is enough to
assume the lambda replacement x 7→ ⟨x,H(fst(x), snd(x)))⟩. We summarize the
assumptions in Table 1.

No. Name Instance

Replacement Instances
1. lam_replacement_fst x 7→ ⟨x, fst(x)⟩
2. lam_replacement_snd x 7→ ⟨x, snd(x)⟩
3. lam_replacement_Union x 7→ ⟨x,

⋃
(x)⟩

4. lam_replacement_Image x 7→ ⟨x, fst(x)“snd(x)⟩
5. lam_replacement_middle_del x 7→ ⟨x, ⟨fst(fst(x)), snd(snd(x))⟩⟩
6. lam_replacement_prodRepl x 7→ ⟨x, ⟨snd(fst(x)), ⟨fst(fst(x)), snd(snd(x))⟩⟩⟩

Separation Instances
7. middle_separation snd(fst(x)) = fst(snd(x))
8. separation_fst_in_snd fst(snd(x)) ∈ snd(snd(x))

Table 1. Replacement and Separation instances of the locale M_replacement

F 22 replacement instances to rule them all

In Table 2 we show the name of the fourteen formulas involved in the twenty
two instances of replacement needed in our mechanization. The formulas marked
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with (†) are needed twice: one by themselves and the other as the argument for
ground_repl_fm. The ground_repl_fm function maps φ to ψ as described in
Sect. 6.1. These eight instances form the set instances3_fms.

No. Formula’s name Comment

instances1 fms

1. eclose_closed_fm † Closure under iteration of X 7→
⋃

X.

2. eclose_abs_fm † Absoluteness of the previous construction.

3. wfrec_rank_fm † For ∈-rank.
4. transrec_VFrom_fm † For rank initial segments.

instances2 fms

5. wfrec_ordertype_fm † Well-founded recursion for the construc-
tion of ordertypes.

6. omap_replacement_fm † Auxiliary instance for the definition of or-
dertypes.

7. ordtype_replacement_fm † Replacement through the ordertype func-
tion, for Hartogs’ Theorem.

8. wfrec_Aleph_fm † Well-founded recursion to define Aleph.

instances ground fms
9. wfrec_Hcheck_fm Well-founded recursion to define check.

10. wfrec_Hfrc_at_fm. Well-founded recursion for the definition of
forcing for atomic formulas.

11. lam_replacement_check_fm Replacement through x 7→ ⟨x, x̌⟩, for G.

instances ground notCH fms
12. rec_constr_fm Recursive construction of sets using a

choice function.
13. rec_constr_abs_fm Absoluteness of the previous construction.

instances ground CH fms
14. dc_abs_fm Absoluteness of the recursive construction

in the proof of Dependent Choice from AC .

instances3 fms
15-22. ground_repl_fm(φ) one for each formula φ marked with †

Table 2. Replacement Instances used in our mechanization
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