The present work refines previous results by Cabessa and other authors concerning the expressive power of *recurrent neural networks (RNN)*, by looking at the topological complexity of the ω -language accepted by them. The *deterministic* RNN model comprises input and output cells holding, at any time $t \in \mathbb{N}$, Boolean vectors $\vec{u} = (u_1, \ldots, u_P) \in \{0, 1\}^P = \mathbb{B}^P$ and \vec{y} (respectively) and inner sigmoid cells which hold a vector \vec{x} with real values between 0 and 1. The dynamics of the RNN has the following form

$$\vec{x}(t+1) := \sigma(F_t(\vec{u}(t), \vec{x}(t))) \vec{y}(t+1) := \chi_{[1,\infty)}(G_t(\vec{u}(t), \vec{x}(t))),$$

where χ is the indicator function, σ is the "linear-sigmoid" with range [0, 1], and F_t and G_t are linear functions with coefficients depending on t. A sequence $\{\vec{u}(t)\}_{t\in\mathbb{N}}$ is *accepted* if the set of output states $\vec{y}(t)$ that appear infinitely often through the evolution belongs to a prescribed fixed family of sets. In a totally analogous manner to nondeterministic Turing machines, *nondeterministic* RNN are defined.

Cabessa and Villa [MR3521994] proved that if the F_t and G_t above do not depend on t and have rational coefficients, the language accepted by the RNN is a Boolean combination of (lightface) Π_2^0 subsets of the Cantor space $(\mathbb{B}^P)^{\mathbb{N}}$. If we allow at least one coefficient $\alpha(t)$ depending on t with values in $\{0, 1\}$, or at least one irrational constant coefficient r, all Boolean combinations of G_{δ} subsets of $(\mathbb{B}^P)^{\mathbb{N}}$ are obtained. On the other hand, Cabessa and Duparc [MR3447446] studied nondeterministic RNN and obtained analogous results but with analytic subsets instead of Boolean combinations of Π_2^0 .

In this work, the authors prove relative versions of the results of the previous paragraph, referring to the coefficient $\alpha \in \mathbb{B}^{\mathbb{N}}$ or the real r. For instance, $L \subseteq (\mathbb{B}^P)^{\mathbb{N}}$ belongs to $\Sigma_1^1(\alpha)$ if and only if it is accepted by a nondeterministic RNN with only α as the only coefficient depending on t, if and only if it is accepted by a nondeterministic RNN with constant coefficients and with the only (eventually) irrational coefficient being $r_{\alpha} := \sum_{i=1}^{\infty} \frac{2\alpha_i + 1}{4^i}$.