The present work refines previous results by Cabessa and other authors concerning the expressive power of recurrent neural networks ($R N N$), by looking at the topological complexity of the ω-language accepted by them. The deterministic RNN model comprises input and output cells holding, at any time $t \in \mathbb{N}$, Boolean vectors $\vec{u}=\left(u_{1}, \ldots, u_{P}\right) \in\{0,1\}^{P}=\mathbb{B}^{P}$ and \vec{y} (respectively) and inner sigmoid cells which hold a vector \vec{x} with real values between 0 and 1 . The dynamics of the RNN has the following form

$$
\begin{aligned}
\vec{x}(t+1) & :=\sigma\left(F_{t}(\vec{u}(t), \vec{x}(t))\right) \\
\vec{y}(t+1) & :=\chi_{[1, \infty)}\left(G_{t}(\vec{u}(t), \vec{x}(t))\right),
\end{aligned}
$$

where χ is the indicator function, σ is the "linear-sigmoid" with range $[0,1]$, and F_{t} and G_{t} are linear functions with coefficients depending on t. A sequence $\{\vec{u}(t)\}_{t \in \mathbb{N}}$ is accepted if the set of output states $\vec{y}(t)$ that appear infinitely often through the evolution belongs to a prescribed fixed family of sets. In a totally analogous manner to nondeterministic Turing machines, nondeterministic RNN are defined.

Cabessa and Villa [MR3521994] proved that if the F_{t} and G_{t} above do not depend on t and have rational coefficients, the language accepted by the RNN is a Boolean combination of (lightface) Π_{2}^{0} subsets of the Cantor space $\left(\mathbb{B}^{P}\right)^{\mathbb{N}}$. If we allow at least one coefficient $\alpha(t)$ depending on t with values in $\{0,1\}$, or at least one irrational constant coefficient r, all Boolean combinations of G_{δ} subsets of $\left(\mathbb{B}^{P}\right)^{\mathbb{N}}$ are obtained. On the other hand, Cabessa and Duparc [MR3447446] studied nondeterministic RNN and obtained analogous results but with analytic subsets instead of Boolean combinations of Π_{2}^{0}.

In this work, the authors prove relative versions of the results of the previous paragraph, referring to the coefficient $\alpha \in \mathbb{B}^{\mathbb{N}}$ or the real r. For instance, $L \subseteq\left(\mathbb{B}^{P}\right)^{\mathbb{N}}$ belongs to $\Sigma_{1}^{1}(\alpha)$ if and only if it is accepted by a nondeterministic RNN with only α as the only coefficient depending on t, if and only if it is accepted by a nondeterministic RNN with constant coefficients and with the only (eventually) irrational coefficient being $r_{\alpha}:=\sum_{i=1}^{\infty} \frac{2 \alpha_{i}+1}{4^{i}}$.

