
CHAIN BOUNDING

AND THE LEANEST PROOF OF ZORN’S LEMMA

GUILLERMO L. INCATASCIATO AND PEDRO SÁNCHEZ TERRAF

Abstract. We present an exposition of the Chain Bounding Lemma, which is

a common generalization of both Zorn’s Lemma and the Bourbaki-Witt fixed
point theorem. The proofs of these results through the use of Chain Bounding

are amongst the simplest ones that we are aware of. As a by-product, we

show that for every poset P and a function f from the powerset of P into P ,
there exists a maximal well-ordered chain whose family of initial segments is

appropriately closed under f .

We also provide a “computer formalization” of our main results using the
Lean proof assistant.

1. Introduction

This paper grew out of the search of an elementary proof of Zorn’s Lemma. One
such proof was obtained by the first author, which is similar to the one by Lewin
[6].

After a careful examination, the authors realized that the method of proof actu-
ally yielded a pair of new, similar principles: Chain Bounding and the Unbounded
Chain Lemma, which state the impossibility of finding strict upper bounds of lin-
early ordered subsets of posets. The first one is more fundamental, since it does not
depend on the Axiom of Choice (AC); but coupled with the latter, it implies the
second one and then Zorn’s Lemma. Chain Bounding also implies the Bourbaki-
Witt fixed point theorem; all these results are expounded in Section 3.

The original proof of Chain Bounding proceeded by contradiction, where a few
relevant concepts were defined; this proof is essentially the one that appears in
Appendix A, where it is used to show Zorn’s Lemma in a self-contained manner.
We realized that it was better instead to present those concepts (“good chains”
and their comparability) independently to obtain positive results. These appear
in Section 2, and Chain Bounding is now proved as a consequence of its main
Theorem 4, the existence of a greatest good chain. Nevertheless, the main advantage
of Chain Bounding in comparison to Theorem 4 is its straightforward statement
and consequences, which make it more appealing as a “quotable principle”.

We also include, in Section 4, a brief description of a “computer formalization”
of our results in the Lean proof assistant.

Universidad Nacional de Córdoba. Facultad de Matemática, Astronomı́a, F́ısica y Com-
putación.

Centro de Investigación y Estudios de Matemática (CIEM-FaMAF), Conicet. Córdoba. Ar-

gentina.
Supported by Secyt-UNC project 33620230100751CB and Conicet PIP project

11220210100508CO.

1

2 G.L. INCATASCIATO AND P. SÁNCHEZ TERRAF

2. The greatest good chain

We introduce some notation. Let P be a poset and C ⊆ P ; we say that s ∈ P
is a strict upper bound of C if ∀c ∈ C, c < s. Furthermore, if S ⊆ C, we say that
S is an initial segment of C (“S ⊑ C”) if for all x ∈ C, x ⩽ y ∈ S implies x ∈ S.
We will usually omit the word “initial” and simply say “S is a segment of C”. The
strict version of the segment relation is denoted by S ⊏ C, that is, S ⊑ C and
S ̸= C. Finally, P(X) denotes the powerset of the set X.

Definition 1. Let g : P(P) → P(P) be given. We say that a chain C ⊆ P is good
for g if for all S ⊏ C, S ⊏ g(S) ⊑ C.

When understood from the context, we omit “for g”. We have the following key
result.

Lemma 2 (Comparability). Let P be a poset and g : P(P) → P(P). If C1 and
C2 are good chains, one is a segment of the other.

Proof. Let S be the family of mutual segments of both C1 and C2. Hence
⋃

S
is also a mutual segment. If

⋃
S is different from both C1 and C2, then g(

⋃
S)

should be a mutual segment since both are good; but this contradicts the fact that
g(
⋃

S) ̸⊆
⋃

S. □

Lemma 3. The union of a family F of good chains is a good chain.

Proof. The union U :=
⋃

F is a chain by Comparability.
Note that every good chain D such that D ⊆ U is a segment of U : Suppose that

c ∈ U and c < d ∈ D. Then c ∈ C for some good C ∈ F. If C is a segment of D, we
have c ∈ D and are done. Otherwise, the converse relation holds by Comparability
and then we also have c ∈ D.

We will see that U is good. Let S ⊊ U be a proper segment of U . Then, there
exists d ∈ U such that ∀c ∈ S, c < d. Let D be a good chain such that d ∈ D.
Since D is a segment of U , all those c belong to D. We conclude S ⊆ D, and since
S is a segment of U , it is a segment of D and it is proper because d ∈ D∖S. Then
g(S) is segment of D, and hence g(S) is a segment of U . □

By considering the union of all good chains, we readily obtain:

Theorem 4 (Greatest Good Chain). Let P be a poset and g : P(P) → P(P). The
family of all good chains has a maximum under inclusion. □

3. Chain Bounding and applications

We now present the main character of this work.

Lemma 5 (Chain Bounding). Let P be a poset. There is no assignment of a strict
upper bound to each chain in P .

Proof. Assume, by way of contradiction, that f(C) is a strict upper bound of C for
each chain C ⊆ P . Hence C is a proper segment of g(C) := C∪{f(C)}; extend this
g arbitrarily to the rest of the subsets of P . By Theorem 4, there exists a greatest
good chain U for g. But this is a contradiction, since g(U) is easily seen to be a
good chain, but g(U) ̸⊆ U . □

The wording of the Chain Bounding Lemma is a bit awkward, since it is actually
a negation. A more natural statement is the following:

CHAIN BOUNDING AND THE LEANEST PROOF OF ZORN’S LEMMA 3

Lemma 6 (Unbounded Chain). Assume AC. For every poset P there exists a
chain C ⊆ P with no strict upper bound.

Proof. By way of contradiction, assume that for every chain C ⊆ P there exists
a strict upper bound. Using AC , let f assign to each C such a bound. But this
contradicts Chain Bounding. □

Nevertheless, it should be noted that any proof of this last result requires an
application of AC (Corollary 8), unlike Chain Bounding.

We now turn to applications. The first one is possibly the simplest proof of
Zorn’s Lemma (obviously taking into account the proof of the lemmas proved so
far).

Corollary 7 (Zorn). If a poset P contains an upper bound for each chain, it has
a maximal element.

Proof. By the Unbounded Chain Lemma, take C ⊆ P without strict upper bounds.
Then any upper bound of C must be maximal in P . □

A direct, self-contained proof of Zorn’s Lemma condensing all the ideas discussed
up to this point appears in Appendix A below. This includes some simplifications
that also apply to a direct proof of Chain Bounding; for instance, the definition of
good chain is a bit shorter and one only needs to show that the union of all good
chains is good.

Since Zorn’s Lemma implies AC , we immediately have.

Corollary 8. The Unbounded Chain Lemma is equivalent to AC over Zermelo-
Fraenkel set theory. □

Kunen points out in [4] that, for those not familiar with set theory, it may not
be clear why Zorn’s Lemma should be true, since the best-known proofs make use
of ordinals and transfinite recursion. Our highest hope is that after seeing our
proof, the old joke turns into “AC is obviously true, the Well-Ordering Theorem is
obviously false, and Zorn’s Lemma. . . holds by Chain Bounding!”.

Lewin, in [6], provides a very short proof without the need for ordinals or re-
cursion, but making use of well-ordered chains. In [5], Lang presents a proof using
the Bourbaki-Witt fixed point theorem of order theory, without even employing the
concept of well-ordered set. Finally, Brown [1] gives a beautiful and simple proof
inspired by Lang’s but without the need for Bourbaki-Witt. This proof is slightly
indirect since it actually proves the Hausdorff Maximal Principle and considers
“closed” subsets in the poset of chains of the original poset ordered by inclusion.

The proof we presented here is not as short as Lewin’s but it is more elementary
since there is no use of (the basic theory of) well-orders in an explicit way. The
main difference in method that allows to avoid them is to generalize his definition
of “conforming chains” by considering general initial segments instead of principal
ones (i.e., of the form {x ∈ P | x ⩽ p} for some p ∈ P). This move allows to
use the stronger expressiveness achieved by talking of general segments (indirectly
referring to the powerset of P), but avoids talking of “second order” chains (i.e.,
chains in the poset of chains).

In spite of this simplification, it should be strongly emphasized the fundamental
character of the concepts of well-order and well-foundedness in general. These are
unavoidable in a sense; actually good chains for functions that add at most one
element (such as the one in the proof of Chain Bounding) are well-ordered:

4 G.L. INCATASCIATO AND P. SÁNCHEZ TERRAF

Proposition 9. Let (P,<) be poset, f : P(P) → P and let g(C) := C ∪ {f(C)}.
Every good chain for g is well-ordered by <.

Proof. We leave to the reader the verification of the fact, under the assumptions,
that every segment D of a good chain is good.

Let C be a good chain and assume X ⊆ C is nonempty. Let S be the set of strict
lower bounds of X in C. Since X ̸= ∅, S is a proper segment of C, and goodness
ensures that S ̸= g(S) = S ∪ {f(S)} is also a segment of C. Since f(S) /∈ S,
there is some x ∈ X such that x ⩽ f(S). We claim that any such x must be equal
to f(S) and hence it is the minimum element of X. For this, consider the good
subchain D := {c ∈ C | c ⩽ x} of C. Since S is likewise a proper segment of D,
f(S) ∈ g(S) ⊆ D and hence we obtain the claim. □

Moreover, it can be shown that a chain of a poset P is well-ordered if and only
it is a good chain for some g as above.

Our second application is the aforementioned fixed point theorem.

Corollary 10 (Bourbaki-Witt). Let P be a non-empty poset such every chain
C ⊆ P has a least upper bound. If h : P → P satisfies x ⩽ h(x) for all x ∈ P , then
h has a fixed point, i.e., there is some x ∈ P such that x = h(x).

Proof. Assume by way of contradiction that x < h(x) for all x ∈ P . But then
f(C) := h(supC) immediately contradicts Chain Bounding. □

Note that the greatest good chain for C
g7−→ C∪{h(supC)} is the least complete

subposet of P closed under h, and its ordinal length is (the successor of) the number
of iterations of h needed to reach its least fixed point starting from the bottom
element of P .

It is relevant here that Chain Bounding does not depend on AC , since Bourbaki-
Witt can be proved without using it. This is another reason why we consider Chain
Bounding the central item of this work.

4. A computer formalization in Lean

Although Lewin’s proof is short, it could be debatable whether it is more straight-
forward for a general audience, as seen in the answers to [8] and [3].

A similar doubt could arise with our combo Chain-Bounding/Zorn: Some tricky
details could still have been swept under the rug—or, even worse, some mistake.

The “Formal Methods” community in Computer Science developed modern pro-
gramming technologies, proof assistants (PAs), that allow to write a mathematical
proof in a formal language and the computer can then verify it for correctness. This
is exactly the tool to assess the worries of the last paragraph.

The second author and collaborators discuss PAs in [2], where the reader will
also find many pointers to other papers on the subject. Our formalization, which
is available at

https://github.com/sterraf/ChainBounding,

is written using the PA and programming language Lean [7]. The website

https://leanprover-community.github.io/learn.html

has many indications on how to start using Lean, and the online forum

https://leanprover.zulipchat.com/

https://github.com/sterraf/ChainBounding
https://leanprover-community.github.io/learn.html
https://leanprover.zulipchat.com/

CHAIN BOUNDING AND THE LEANEST PROOF OF ZORN’S LEMMA 5

fosters the growing community of users and is very welcoming to newcomers.
The formalization of the main results of the paper takes up 420 lines of code.

For the remainder of this section, we will focus on explaining only a fraction of the
details involved (and in particular, some notations will not be dealt with); our main
objective is to make a point that it is possible to translate mathematical reasoning
into the computer, in a way that at least partially resembles the way it is done on
paper. We hope that the reader’s curiosity will be sufficiently motivated in order
to visit the mentioned resources and to learn more about formalization and Lean.

We start our Lean file by importing basic results on chains, and the definition of
complete partial orders (which appear in the Bourbaki-Witt Theorem).

import Mathlib.Order.Chain

import Mathlib.Order.CompletePartialOrder

variable {α : Type*}

The last line above indicates that we will be talking about a “type” α (which, in the
type theory of Lean roughly corresponds to a set, or perhaps more appropriately,
a set underlying some structure). Greek letters are commonly used for types, and
here this α will replace our P from above.

We highlight some of the basic definitions. For instance, “S is a (proper) segment
of C” is defined in the following way:

def IsSegment [LE α] (S C : Set α) : Prop := S ⊆ C ∧ ∀ c ∈ C, ∀ s ∈ S, c

⩽ s → c ∈ S

def IsPropSegment [LE α] (S C : Set α) : Prop := IsSegment S C ∧ S ̸= C

The arguments S and C appear declared as belonging to the powerset of α, which in
Lean is written as Set α. The declaration in square brackets is an implicit argument
stating that α belongs to the class of types having the ⩽ notation defined (which
is the bare minimum to be able to interpret the right hand side). After a few more
lines, the declaration variable [PartialOrder α] states that we will be assuming a
partial order structure on α.

We can actually set up infix notation for IsSegment and IsPropSegment in order
to be able to write expressions as S ⊑ C and S ⊏ C, as shown below.

After a new concept is introduced, a customary requisite is to write some ex-
tremely basic lemmas which allow one to work with it. These are referred to by the
name API, an acronym for “application programming interface”, a concept that
comes from Computer Science. In our formalization, part of the API comprises all
the possible transitivity lemmas involving ⊑, ⊏, or both.

We describe the formalization of the fact, used at the beginning of the proof of
Lemma 2, that the union of a family of segments is a segment. The formalized
statement is the following (where

⋃
0 denotes the operator of union of a family),

and the by keyword signals the start of the (tactic) proof:

lemma sUnion_of_IsSegment {F : Set (Set α)} (hF : ∀M ∈ F, M ⊑ C) :
⋃

0 F

⊑ C := by

Since
⋃

0 F ⊑ C is defined by a conjunction, its justification is constructed by
providing proofs for each conjunct. Each of those proofs appear indented and
signaled by “·” below. We will analyze the first sub-proof line by line.

6 G.L. INCATASCIATO AND P. SÁNCHEZ TERRAF

constructor

· intro s sInUnionF

obtain ⟨M, MinF, sinM⟩ := sInUnionF

exact (hF M MinF).1 sinM

· intro c cinC s sInUnionF cles

obtain ⟨M, MinF, sinM⟩ := sInUnionF

exact ⟨M, MinF, (hF M MinF).2 c cinC s sinM cles⟩

Right after writing constructor and the subsequent dot, the VS Code editor echoes:

α : Type u_1

inst � : PartialOrder α

C : Set α

F : Set (Set α)

hF : ∀ M ∈ F, M ⊑ C

⊢
⋃

0 F ⊆ C

This “InfoView” lists all terms available to work (hypotheses are also included
as “Propositional” terms), and the current goal (which, for this sub-proof, is the
inclusion on the last line).

The natural way of producing a proof of that inclusion (defined by ∀ {|s|}, s ∈⋃
0 F → s ∈ C), is to introduce two new variables named s and sInUnionF,

· intro s sInUnionF

whose types (“α” and “s ∈
⋃

0 F”, respectively) are deduced from the previous
goal. Now the InfoView turns into

α : Type u_1

inst � : PartialOrder α

C : Set α

F : Set (Set α)

hF : ∀ M ∈ F, M ⊑ C

s : α

sInUnionF : s ∈
⋃

0 F

⊢ s ∈ C

From sInUnionF, which states by definition that s belongs to some element of F,
we obtain such an element M and further terms/hypothesis that state the relations
among them with the next line (where the “:=” can be read as “from”):

obtain ⟨M, MinF, sinM⟩ := sInUnionF

After this tactic, the propositional variables MinF and sinM state that M ∈ F and
s ∈ M, respectively. Finally, we combine all the elements available by using some
of the benefits of the type-theoretic framework:

• Logical constructs like implications and universal quantifiers behave as
functions. For instance, the hypothesis hF (of type ∀ M, M ∈ F → M ⊑
C) can be fed with the term M to obtain the implication hf M (having type
M ∈ F → M ⊑ C) and the latter can be applied to MinF (a term for the
antecedent) to obtain a term hf M MinF for the consequent M ⊑ C.

• The conjunction behaves as a Cartesian product, where components corre-
spond to each conjunct. Hence the first component (hf M MinF).1 is a term
justifying M ⊆ C = ∀ {|s|}, s ∈ M → s ∈ C.

CHAIN BOUNDING AND THE LEANEST PROOF OF ZORN’S LEMMA 7

By applying the last term obtained to sinM, we obtain exactly what we were
looking for, and the sub-proof ends.

exact (hF M MinF).1 sinM

For the definition of goodness, we declare our own class consisting of types
supporting a partial order, and we add an otherwise unspecified g. A special type
of comment (a docstring) describes the concept introduced:

/--

A partial order with an *expander* function from subsets to subsets. In

main applications, the

expander actually returns a bigger subset.

-/

class OrderExpander (α : Type*) [PartialOrder α] where

g : Set α → Set α

Assuming the appropriate structures on α we are finally able to write down the
definition.

variable [PartialOrder α] [OrderExpander α]

def Good (C : Set α) := IsChain (· ⩽ ·) C ∧ ∀ {S}, S ⊏ C → S ⊏ g S ∧ g

S ⊑ C

A further class concerns partial orders with an “f”,

class OrderSelector (α : Type*) [PartialOrder α] where

f : Set α → α

and a statement that each type supporting it is an “instance” of OrderExpander in

a canonical way. This is justified by presenting C
g7−→ C ∪ {f(C)} as the witness.

instance [PartialOrder α] [OrderSelector α] : OrderExpander α := ⟨fun C =>

C ∪ {OrderSelector.f C}⟩

We skip directly to the statement of the Unbounded Chain Lemma,

lemma unbounded_chain [PartialOrder α] [Inhabited α] :

∃ C, IsChain (· ⩽ ·) C ∧ ¬ ∃ sb : α, ∀ a ∈ C, a < sb

which moreover assumes α to be nonempty (more precisely, that has a designated
element) for simplicity, and the proof of Zorn’s Lemma using it:

lemma zorn [PartialOrder α] [Inhabited α]

(ind : ∀ (C : Set α), IsChain (· ⩽ ·) C → ∃ ub, ∀ a ∈ C, a ⩽ ub) : ∃
(x : α), IsMaximal x := by

obtain ⟨C, chain, subd⟩ := unbounded_chain (α := α)

push_neg at subd

obtain ⟨ub, hub⟩ := ind C chain

existsi ub

intro z hz

by_contra zneub

obtain ⟨a, ainC, anltz⟩ := subd z

exact anltz $ lt_of_le_of_lt (hub a ainC) $ lt_of_le_of_ne’ hz zneub

8 G.L. INCATASCIATO AND P. SÁNCHEZ TERRAF

We comment briefly on some of the tactics employed in this elementary proof.
As before, obtain decomposes the statement of unbounded_chain, and in particular
subd is a term asserting the truth of ¬ ∃ sb : α, ∀ a ∈ C, a < sb. The tactic
push_neg applies the De Morgan rules transforming it into ∀ (sb : α), ∃ a ∈
C, ¬a < sb. The obtained upper bound ub for the (strictly) unbounded chain is
presented as a witness to the existential quantifier of the conclusion by using the
existsi tactic. After introducing variables h and hz, the by_contra tactic starts a
proof by contradiction where the new hypothesis (the negation of the goal appearing
immediately before) is stored in the variable zneub.

Appendix A. Zorn’s on its own

For ease of reference, we streamline the arguments above to obtain a compact
version of the proof.

Recall that for a poset P , s ∈ P is a strict upper bound of C ⊆ P if ∀c ∈ C, c < s;
and that S ⊆ C is a segment of C if for all x ∈ C, x ⩽ y ∈ S implies x ∈ S.

Lemma (Zorn). If a poset P contains an upper bound for each chain, it has a
maximal element.

Proof. Assume by way of contradiction that (P,⩽) does not have a maximal ele-
ment. Hence, for every chain C ⊆ P there exists a strict upper bound (otherwise,
any upper bound of C would be maximal). Using the Axiom of Choice, let g assign
C ∪ {s} to each chain C ⊆ P , where s is any such bound.

A chain C ⊆ P is deemed to be good whenever

(*) If S ̸= C is a segment of C, then g(S) also is.

We need the following property of good chains:

(Comparability) If C1, C2 are good, one is a segment of the other.

To prove it, let S be the family of mutual segments of both C1 and C2. Hence
⋃

S is
also a mutual segment. If

⋃
S is different from both C1 and C2, then g(

⋃
S) should

be a mutual segment by (*); but this contradicts the fact that g(
⋃

S) ̸⊆
⋃

S.
Let U be the union of all good chains, which is a chain by Comparability.
Note that every good chain D is a segment of U : Suppose that c ∈ U and

c < d ∈ D. Then c ∈ C for some good C. If C were not a segment of D, then the
converse relation would hold by Comparability and then we would also have c ∈ D.

We will see that U is good. Let S ⊊ U be a proper segment of U . Then, there
exists d ∈ U such that ∀c ∈ S, c < d. Let D be a good chain such that d ∈ D.
Since D is a segment of U , all those c belong to D. We conclude S ⊆ D, and since
S is a segment of U , it is a segment of D and it is proper because d ∈ D∖S. Then
g(S) is segment of D, and hence g(S) is a segment of U .

We reach a contradiction, since g(U) is also a good chain, but g(U) ̸⊆ U . □

References

[1] K. Brown, Zorn’s Lemma, Mathematics 6310, (2010). https://pi.math.cornell.
edu/~kbrown/6310/zorn.pdf.

[2] E. Gunther, M. Pagano, P. Sánchez Terraf, M. Steinberg, The formal verifi-
cation of the ctm approach to forcing, Annals of Pure and Applied Logic 175 (2024).

[3] C. Harumi, Proof of Zorn’s lemma clarification, Mathematics Stack Exchange, (2019).
https://math.stackexchange.com/q/3269781 (version: 2019-06-21).

https://pi.math.cornell.edu/~kbrown/6310/zorn.pdf
https://pi.math.cornell.edu/~kbrown/6310/zorn.pdf
https://math.stackexchange.com/q/3269781

CHAIN BOUNDING AND THE LEANEST PROOF OF ZORN’S LEMMA 9

[4] K. Kunen, “Set Theory”, Studies in Logic, College Publications (2011), second edi-
tion. Revised edition, 2013.

[5] S. Lang, “Real and Functional Analysis”, Graduate Texts in Mathematics, Springer
New York, NY (2012).

[6] J. Lewin, A simple proof of Zorn’s Lemma, The American Mathematical Monthly 98:
353–354 (1991).

[7] L. de Moura, S. Ullrich, The Lean 4 theorem prover and programming language, in:
A. Platzer, G. Sutcliffe (Eds.), Automated Deduction - CADE 28 - 28th International
Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings,
Lecture Notes in Computer Science 12699, Springer: 625–635 (2021).

[8] WillG, Question on a step of a simple proof of Zorn’s Lemma by Lewin, Mathemat-
ics Stack Exchange, (2020). https://math.stackexchange.com/q/3616209(version:
2020-04-28).
Email address: guillermo.incatasciato@mi.unc.edu.ar

Email address: psterraf@unc.edu.ar

https://math.stackexchange.com/q/3616209 (version: 2020-04-28)
https://math.stackexchange.com/q/3616209 (version: 2020-04-28)

	1. Introduction
	2. The greatest good chain
	3. Chain Bounding and applications
	4. A computer formalization in Lean
	Appendix A. Zorn's on its own
	References

