Logics for Markov Decision Processes

Pedro Sánchez Terraf
Joint work with P.R. D’Argenio and N. Wolovick

SLALM, UniAndes, 04 / 06 / 2012
Contents

1 Introduction
 - Labelled Transition Systems (LTS)
 - Modal Logics

2 Labelled Markov Processes (LMP) and its Non Deterministic version
 - Analytic Spaces and Unique Structure
 - Proving Completeness

3 Results
 - Logics for non-deterministic processes
 - Some counterexamples

4 Future Work
Labelled Transition Systems (LTS)

A toy model

\[\langle S, L, T \rangle \text{ such that } T_a : S \rightarrow \text{Pow}(S) \text{ for each } a \in L. \]
Labelled Transition Systems (LTS)

\[\langle S, L, T \rangle \text{ such that } T_a : S \rightarrow \text{Pow}(S) \text{ for each } a \in L. \]

Zig-zag morphism

A surjective \(f : S \rightarrow S' \) such that for all \(a \in L \) and every \(s \in S \),
\[\text{Pow}(f) \circ T_a = T'_a \circ f. \]
Labelled Transition Systems (LTS)

\[\langle S, L, T \rangle \text{ such that } T_a : S \rightarrow \text{Pow}(S) \text{ for each } a \in L.\]

Zig-zag morphism

A surjective \(f : S \rightarrow S' \) such that for all \(a \in L \) and every \(s \in S \),
\[\text{Pow}(f) \circ T_a = T'_a \circ f.\]

We say that \(s \) simulates \(t \) because \(s \) can perform every “sequence of actions” that \(t \) can.
Simulation and Bisimulation on LTS

Simulation

It is a relation R such that if $s_1 \rightarrow t_1$ and $t_1 \xrightarrow{a} t_2$ then there is s_2 such that $s_1 \xrightarrow{a} s_2$ and $s_2 \rightarrow t_2$. In that case we say that s_1 simulates s_2.
Simulation and Bisimulation on LTS

Simulation

It is a relation R such that if $s_1 R t_1$ and $t_1 \xrightarrow{a} t_2$ then there is s_2 such that $s_1 \xrightarrow{a} s_2$ and $s_2 R t_2$. In that case we say that s_1 simulates s_2.

Bisimulation

It is a symmetric simulation. We’ll say that s_1 is bisimilar to t_1 if there exists a bisimulation R such that $s_1 R t_1$.

Note: Bisimulation is finer than “double simulation”. That’s to say, if s_1 is bisimilar to t_1, then s_1 simulates t_1 and t_1 simulates s_1, but not conversely.
Coalgebraic presentation of processes and bisimulation

One categorical counterpart of a relation is a span of morphisms

Bisimilarity (span)
Coalgebraic presentation of processes and bisimulation

One categorical counterpart of a relation is a span of morphisms

Bisimilarity (span)

Behavioral equivalence (cospan)

There is a correspondence between cospans and logics
Coalgebraic presentation of processes and bisimulation

One categorical counterpart of a relation is a *span* of morphisms

Bisimilarity (span)

\[\begin{array}{ccc}
S & \xrightarrow{f} & S_1 \\
\downarrow & & \downarrow \\
S & \xrightarrow{g} & S_2 \\
\end{array} \]

Behavioral equivalence (cospan)

\[\begin{array}{ccc}
S_1 & \xrightarrow{\rightarrow} & S_2 \\
\downarrow & & \downarrow \\
T & \xleftarrow{\rightarrow} & T \\
\end{array} \]

There is a correspondence between cospans and logics

Semipullbacks

A category *has semipullbacks* if every cospan can be completed to a commutative diagram with a span.
Coalgebraic presentation of processes and bisimulation

One categorical counterpart of a relation is a \textit{span} of morphisms

\begin{center}
\begin{tikzpicture}

\t\node (S) at (0,0) {S};
\t\node (S1) at (-1.5,-1) {S_1};
\t\node (S2) at (1.5,-1) {S_2};

\t\draw[->] (S) to node[above] {f} (S1);
\t\draw[->] (S) to node[above] {g} (S2);
\end{tikzpicture}
\end{center}

\begin{center}
\begin{tikzpicture}

\t\node (S1) at (-1.5,-1) {S_1};
\t\node (S2) at (1.5,-1) {S_2};
\t\node (T) at (0,0) {T};

\t\draw[->] (S1) to node[above] {} (T);
\t\draw[->] (S2) to node[above] {} (T);
\end{tikzpicture}
\end{center}

There is a correspondence between cospans and logics

Semipullbacks

A category \textit{has semipullbacks} if every cospan can be completed to a commutative diagram with a span.

It is the \textbf{Amalgamation Property} in the opposite category.
Logics for Bisimulation

Hennessy-Milner Logic (HML)

\[\varphi \equiv \top \mid \neg \varphi \mid \bigwedge_{i} \varphi_{i} \mid \langle a \rangle \psi \]
Simulation and Bisimulation on LTS

Simulation

It is a relation R such that if $s_1 R t_1$ and $t_1 \xrightarrow{a} t_2$ then there is s_2 such that $s_1 \xrightarrow{a} s_2$ and $s_2 R t_2$. In that case we say that s_1 simulates s_2.

Bisimulation

It is a **symmetric** simulation. We’ll say that s_1 is **bisimilar** to t_1 if there exists a bisimulation R such that $s_1 R t_1$.

“t_1 can make an a-transition after which a c-transition is not possible”.

$t_1 \models \langle a \rangle \neg \langle c \rangle \top$

$s_1 \not\models \langle a \rangle \neg \langle c \rangle \top$
Logics for Bisimulation

Hennessy-Milner Logic (HML)

$$\varphi \equiv \top | \neg \varphi | \bigwedge_{i} \varphi_i | \langle a \rangle \psi$$

Logical Characterization of Bisimulation

Two states in a LTS are bisimilar iff they satisfy the same HML formulas.
Labelled Markov Processes (LMP) and Non Determinism

LMP (Desharnais et al.)

\(\langle S, S, L, t \rangle \) such that \(t_a(s) \in \mathbf{P}(S) \) for each \(s \in S \) and \(a \in L \), where

- \(\langle S, S \rangle \) is a measurable space;
- \(\mathbf{P}(S) \) is the space of (sub)probability measures over \(\langle S, S \rangle \);
- \(t_a : S \rightarrow \mathbf{P}(S) \) is measurable.

NLMP (D'Argenio and Wolovick)

\(\langle S, S, L, T \rangle \) such that \(T_a(s) \subseteq \mathbf{P}(S) \) for each \(s \in S \) and \(a \in L \), where:

- \(\langle S, S \rangle \), \(\mathbf{P}(S) \) as before;
- For each \(s \), \(T_a(s) \) is measurable. I.e., \(T_a : S \rightarrow \mathbf{P}(S) \).
Labelled Markov Processes (LMP) and Non Determinism

LMP (Desharnais et al.)
\[
\langle S, S, L, t \rangle \text{ such that } t_a(s) \in \mathbf{P}(S) \text{ for each } s \in S \text{ and } a \in L, \text{ where}
\]
- \langle S, S \rangle \text{ is a measurable space;}
- \mathbf{P}(S) \text{ is the space of (sub)probability measures over } \langle S, S \rangle;
- t_a : S \rightarrow \mathbf{P}(S) \text{ is measurable.}

NLMP (D’Argenio and Wolovick)
\[
\langle S, S, L, T \rangle \text{ such that } T_a(s) \subseteq \mathbf{P}(S) \text{ for each } s \in S \text{ and } a \in L, \text{ where:}
\]
- \langle S, S \rangle, \mathbf{P}(S) \text{ as before;}
- For each } s, \text{ } T_a(s) \text{ is measurable. I.e., } T_a : S \rightarrow \mathbf{P}(S).
- T_a : S \rightarrow \mathbf{P}(S) \text{ is a measurable map.
A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An analytic topological space is the continuous image of a Borel set (v.g., of reals).
Analytic Spaces and Unique Structure

A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An *analytic* topological space is the continuous image of a Borel set (v.g., of reals).

An measurable space is *analytic* if it is isomorphic to $\langle A, B(A) \rangle$ for some analytic topological space A.
A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An *analytic* topological space is the continuous image of a Borel set (v.g., of reals).

An measurable space is *analytic* if it is isomorphic to $\langle A, \mathcal{B}(A) \rangle$ for some analytic topological space A.

Examples

- The convex hull of a Borel set in \mathbb{R}^n;
- The relation of isomorphism between countable structures.
Analytic Spaces and Unique Structure

A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An *analytic* topological space is the continuous image of a Borel set (v.g., of reals).

An measurable space is *analytic* if it is isomorphic to $\langle A, \mathcal{B}(A) \rangle$ for some analytic topological space A.

Examples

- The convex hull of a Borel set in \mathbb{R}^n;
- The relation of isomorphism between countable structures.

Unique Structure Theorem

If a sub-σ-algebra $\mathcal{S} \subseteq \mathcal{B}(A)$ is countably generated and separates points, then it is $\mathcal{B}(A)$.
Introduction

Labelled Markov Processes (LMP) and its Non Deterministic version

Results

Future Work

Proving Completeness

Logics for bisimulation on LMP

HML_q (Larsen and Skou, Danos et al.)

ϕ ≡ T | ϕ_1 ∧ ϕ_2 | ⟨a⟩_q ϕ, q ∈ Q
Proving Completeness

Logics for bisimulation on LMP

HML_q (Larsen and Skou, Danos et al.)

\[\varphi \equiv \top \mid \varphi_1 \land \varphi_2 \mid \langle a \rangle_q \varphi, \quad q \in Q \]

Logical Characterization of Bisimulation for LMP (Danos et al.)

Two states in a LMP \(\langle S, S, L, t \rangle \) with \(\langle S, S \rangle \) analytic are bisimilar iff they satisfy the same HML_q formulas.
Proving Completeness

Logics for bisimulation on LMP

\[HML_q (\text{Larsen and Skou, Danos et al.}) \]
\[\varphi \equiv \top \mid \varphi_1 \land \varphi_2 \mid \langle a \rangle_q \varphi, \quad q \in \mathbb{Q} \]

Logical Characterization of Bisimulation for LMP (Danos et al.)

Two states in a LMP \(\langle S, S, L, t \rangle \) with \(\langle S, S \rangle \) analytic are bisimilar iff they satisfy the same \(HML_q \) formulas.

Proof Strategy (D’Argenio, Celayes, PST)

This results holds for every process with an analytic state space and a logic \(L \) that satisfies: 1) \(L \) it contains \(\top \) and \(\land \); 2) for every \(\varphi \in L \), \(\llbracket \varphi \rrbracket \) is measurable; 3) \(L \) is countable; and 4) \(L \) separates transitions “locally”.

\[\top \land \varphi \]
Logics for non-deterministic processes

Logics for bisimulation on LMP

L_f (D’Argenio et al.)

\[\varphi \equiv \top \lor \varphi_1 \land \varphi_2 \lor \langle a \rangle \{ \varphi_i, p_i \}_{i=1}^n, \quad p_i \in \mathbb{Q}, \ n \in \mathbb{N} \]
Logics for non-deterministic processes

Logics for bisimulation on LMP

L_f (D’Argenio et. al)

\[
\phi \equiv \top \mid \phi_1 \land \phi_2 \mid \langle a \rangle \{\phi_i, p_i\}_{i=1}^n, \quad p_i \in Q, \ n \in \mathbb{N}
\]

The proof strategy immediately gives

Logical Characterization of Bisimulation for image finite NLMP

Two states in a image finite NLMP $\langle S, S, L, t \rangle$ with $\langle S, S \rangle$ analytic are bisimilar iff they satisfy the same L_f formulas.
Logics for non-deterministic processes

Logics for bisimulation on LMP

\mathcal{L}_f (D’Argenio et. al)

$$\varphi \equiv \top \mid \varphi_1 \land \varphi_2 \mid \langle a \rangle \{ \varphi_i, p_i \}_{i=1}^n, \quad p_i \in \mathbb{Q}, \; n \in \mathbb{N}$$

The proof strategy immediately gives

Logical Characterization of Bisimulation for image finite NLMP

Two states in a image finite NLMP $\langle S, S, L, t \rangle$ with $\langle S, S \rangle$ analytic are bisimilar iff they satisfy the same \mathcal{L}_f formulas.

Δ (D’Argenio et. al)

$$\varphi \equiv \top \mid \varphi_1 \land \varphi_2 \mid \langle a \rangle \psi$$

$$\psi \equiv \bigvee_{i \in I} \psi_i \mid \neg \psi \mid [\varphi]_{\geq q}$$
Some counterexamples

Analiticity is necessary

The category of LMP over arbitrary measurable spaces does not have semipullbacks and HMLₜ does not characterize bisimilarity (PST, *Inf & Comp.* 209 2011)

Introduction

Labelled Markov Processes (LMP) and its Non Deterministic version

Results

Future Work
Some counterexamples

Analiticy is necessary

The category of LMP over arbitrary measurable spaces does not have semipullbacks and HML_q does not characterize bisimilarity (PST, *Inf& Comp.* 209 2011).

At least image-countable is necessary

Logics for bisimulation on LMP

HML_q (Larsen and Skou, Danos et al.)

\[\varphi \equiv \top \mid \varphi_1 \land \varphi_2 \mid \langle a \rangle_q \varphi, \quad q \in \mathbb{Q} \]

Logical Characterization of Bisimulation for LMP (Danos et al.)

Two states in a LMP \(\langle S, S, L, t \rangle \) with \(\langle S, S \rangle \) analytic are bisimilar iff they satisfy the same HML_q formulas.

Proof Strategy (D’Argenio, Celayes, PST)

This results holds for every process with an analytic state space and a logic \(\mathcal{L} \) that satisfies: 1) \(\mathcal{L} \) it contains \(\top \) and \(\land \); 2) for every \(\varphi \in \mathcal{L}, \llbracket \varphi \rrbracket \) is measurable; 3) \(\mathcal{L} \) is countable; and 4) \(\mathcal{L} \) separates transitions “locally”.
Future Work

- To decide whether there is a nice logical characterization of bisimulation for countable NLMP. **Is there a countable logic for countable LTS?**
Future Work

- To decide whether there is a nice logical characterization of bisimulation for countable NLMP. Is there a countable logic for countable LTS?
- If possible, to extend the logical characterization to Radon spaces \(\langle S, \mathcal{S} \rangle \) (i.e., \(\mathcal{S} \subseteq \text{universally measurable sets} \)).
Thank You!
References

[2006] V. Danos, J. Desharnais, F. Laviolette, and P. Panangaden
Bisimulation and cocongruence for probabilistic systems.
Inf. & Comp., vol. 204, pp. 503–523.

[1999] J. Desharnais
Labelled Markov Processes.
Ph.D. dissertation, McGill University.

[1991] K. Larsen and A. Skou
Bisimulation through Probabilistic Testing,