
Moving Arrows and Four Model Checking
Results

Carlos Areces1,2, Raul Fervari1 and Guillaume Hoffmann1

1 FaMAF, Universidad Nacional de Córdoba, Argentina
{careces, fervari, hoffmann}@famaf.unc.edu.ar

2 CONICET, Argentina

Abstract. We study dynamic modal operators that can change the
model during the evaluation of a formula. In particular, we extend the
basic modal language with modalities that are able to swap, delete or
add pairs of related elements of the domain, while traversing an edge
of the accessibility relation. We study these languages together with the
sabotage modal logic, which can arbitrarily delete edges of the model. We
define a suitable notion of bisimulation for the basic modal logic extended
with each of the new dynamic operators and investigate their expressive
power, showing that they are all uncomparable. We also show that the
complexity of their model checking problems is PSpace-complete.

1 Introduction

Modal logics [2,4] are particularly well suited to describe graphs, and this is for-
tunate as many situations can be modeled using graphs: an algebra, a database,
the execution flow of a program or, simply, the arbitrary relations between a
set of elements. This explains why modal logics have been used in many, diverse
fields. They offer a well balanced trade-off between expressivity and computa-
tional complexity (model checking the basic modal language ML is only poly-
nomial, while its satisfiability problem is PSpace-complete). Moreover, the range
of modal logics known today is extremely wide, so that it is usually possible to
pick and choose the right modal logic for a particular application.

But if we want to describe and reason about dynamic aspects of a given
situation, e.g., how the relations between a set of elements evolve through time
or through the application of certain operations, the use of modal logics (or
actually, any kind of logic with classical semantics) becomes less clear. We can
always resort to modeling the whole space of possible evolutions of the system as
a graph, but this soon becomes unwieldy. It would be more elegant to use truly
dynamic modal logics with operators that can mimic the changes that structure
will undergo. This is not a new idea, and a clear example of this kind of logics
is the sabotage logic introduced by Johan van Benthem in [12].

Consider the following sabotage game. It is played on a graph with two play-
ers, Runner and Blocker. Runner can move on the graph from node to accessible
node, starting from a designated point, and with the goal of reaching a given

2 Areces, Fervari and Hoffmann

final point. He should move one edge at a time. Blocker, on the other hand, can
delete one edge from the graph, every time it is his turn. Of course, Runner
wins if he manages to move from the origin to the final point in the graph, while
Blocker wins otherwise. van Benthem discusses in [12] how to transform the sa-
botage game into a modal logic. van Benthem’s original idea has been studied
in several other works [6,10] where the sabotage operator is defined as:

M, w |= 〈gs〉ϕ iff there is a pair (u, v) of M such that M−{(u,v)}, w |= ϕ,

where M−{(u,v)} is identical to M except that the edge (u, v) has been removed

from the accessibility relation.

It is clear that the 〈gs〉 operator changes the model in which a formula is eva-
luated. As van Benthem puts it, 〈gs〉 is an “external” modality that takes evalua-
tion to another model, obtained from the current one by deleting some transition.
It has been proved that solving the sabotage game is PSpace-hard, while the
model checking problem of the associated modal logic is PSpace-complete and
the satisfiability problem is undecidable. The logic fails to have both the finite
model property and the tree model property [6,10].

In this article, we will investigate various model changing operators. The first
one, 〈sw〉, has the ability to swap the direction of a traversed arrow. The 〈sw〉
operator is a ♦ operator — to be true at a state w it requires the existence of an
accessible state v where evaluation will continue— but it changes the accessibility
relation during evaluation — the pair (w, v) is deleted, and the pair (v, w) added
to the accessibility relation. A picture will help understand the dynamics of 〈sw〉.
The formula 〈sw〉♦> is true in a model with two related states:

w

〈sw〉♦>

v w v

♦>

As we can see in the picture, evaluation starts at state w with the arrow pointing
from w to v, but after evaluating the 〈sw〉 operator, it continues at state v with
the arrow now pointing from v to w. We will investigate two other dynamic
operators in this article. 〈ls〉, for local sabotage, is a ♦ operator that destroys the
traversed arrow, while 〈br〉, for bridge, models the opposite situation: it adds an
arrow to an inaccessible point of the model and moves over there.

We have chosen these model changing operators with the intention of covering
a sufficiently varied sample of alternatives. The goal is to investigate whether the
differences among them lead to different properties of the logics they defined,
and how they vary in expressive power. Clearly, other operators could have
been included in this exploration, and actually some alternative choices have
been already investigated in the literature, e.g., the adjacent sabotage operator
discussed in [10].

Summing up then, we will study and compare the expressive powers of
ML(〈sw〉), ML(〈gs〉), ML(〈ls〉) and ML(〈br〉), and we provide complexity
results for their model checking problems.

Moving Arrows and Four Model Checking Results 3

2 Syntax and Semantics

The syntax of the dynamic modal logics we will study is a straightforward ex-
tension of the basic modal logic (see [2]):

Definition 1 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. Then the set FORM of formulas over PROP is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | �ϕ,

where p ∈ PROP, � ∈ {♦, 〈sw〉, 〈gs〉, 〈ls〉, 〈br〉} and ϕ,ψ ∈ FORM. Other opera-
tors are defined as usual. In particular, �ϕ is defined as ¬�¬ϕ.

Formulas of the basic modal language ML are those that contains only the ♦
operator beside the Boolean operators. We call ML(�) to the extension of ML
allowing also the � operator, for � ∈ {〈sw〉, 〈gs〉, 〈ls〉, 〈br〉}.

Semantically, formulas of ML(〈sw〉), ML(〈gs〉), ML(〈ls〉) and ML(〈br〉)
are evaluated in standard relational models, and the meaning of all the operators
of the basic modal logic is unchanged. When we evaluate formulas containing
dynamic operators, we will need to keep track of the edges that have been mo-
dified. To that end, let us define precisely the models that we will use. In the
rest of this article we will use wv as a shorthand for {(w, v)} or (w, v). Context
will always disambiguate the intended use.

Definition 2 (Models and Model Updates). A model M is a triple M =
〈W,R, V 〉, where W is a non-empty set whose elements are called points or states;
R ⊆W×W is the accessibility relation; and V : PROP 7→ P(W) is a valuation.

Given a model M = 〈W,R, V 〉, we define the following notations:

(swapping) M∗vw = 〈W,R∗vw, V 〉, with R∗vw = (R\wv)∪vw, wv ∈ R.
(sabotaging)M−wv = 〈W,R−wv, V 〉, with R−wv = R\wv, wv ∈ R.
(bridging) M+

wv = 〈W,R+
wv, V 〉, with R+

wv = R ∪ wv, wv ∈ (W×W)\R.

Let w be a state in M, the pair (M, w) is called a pointed model; we will
usually drop parenthesis and call M, w a pointed model.

We are now ready to introduce the semantics.

Definition 3 (Semantics). Given a pointed model M, w and a formula ϕ we
say that M, w satisfies ϕ, and write M, w |= ϕ, when

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w 2 ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= ♦ϕ iff for some v ∈W s.t. wRv,M, v |= ϕ
M, w |= 〈sw〉ϕ iff for some v ∈W s.t. wRv,M∗vw, v |= ϕ
M, w |= 〈gs〉ϕ iff for some v, u ∈W, s.t. vRu,M−vu, w |= ϕ
M, w |= 〈ls〉ϕ iff for some v ∈W s.t. wRv,M−wv, v |= ϕ
M, w |= 〈br〉ϕ iff for some v ∈W s.t. ¬wRv,M+

wv, v |= ϕ.

4 Areces, Fervari and Hoffmann

ϕ is satisfiable if for some pointed model M, w we have M, w |= ϕ.
We write M, w ≡L N , v when both models satisfy the same L-formulas, i.e.,

for all ϕ ∈ L, M, w |= ϕ if and only if N , v |= ϕ. We will drop the L subindex
when no confusion arises.

Once syntax and semantics are in place, the following result that distinguishes
the dynamic logics from ML can be easily established. A basic result for ML
shows that it has the tree model property : every satisfiable formula of ML can
be satisfied at the root of a model where the accessibility relation defines a tree
(i.e., there is a root, the relation is irreflexive, all elements different from the
root can be reached from the root via the transitive closure of the accessibility
relation, and no element has two different predecessors).

Theorem 4. ML(�) does not have the tree model property, for � ∈ {〈sw〉, 〈gs〉,
〈ls〉, 〈br〉}

Proof. For details see the appendix. We present formulas that ensure that the
accessibility relation does not define a tree. The 〈gs〉 case has already been proved
in [6]. Suppose the following formulas hold at some point w:

1. p ∧ (
∧

1≤i≤3 �
i¬p) ∧ 〈sw〉♦♦p, then w has a reflexive successor;

2. ♦♦> ∧ [ls]�⊥, then w is reflexive;
3. ♦♦> ∧ [gs]�⊥, then w is reflexive;
4. �⊥ ∧ 〈br〉�⊥, then w and some different point v are unconnected.

In each case, the formula cannot be satisfied in a tree. ut

As the four logics we introduced are conservative extensions of ML, the
formulas above show that each is strictly more expressive than ML. A natural
question is whether these dynamic logics are different from each other. We will
use bisimulations to answer this question.

Because we need to keep track of the changes on the accessibility relation that
the dynamic operators can introduce, we will define bisimulations as relations
that link a point of evaluation together with the current accessibility relation.

Definition 5 (Bisimulations). Given models M = 〈W,R, V 〉 and M′ = 〈W ′,
R′, V ′〉, together with points w ∈W and w′ ∈W ′ we say that they are bisimilar
and write M, w ↔ M′, w′ if there is a relation Z ⊆ (W × P(W 2)) × (W ′ ×
P(W ′2)) such that (w,R)Z(w′, R′) satisfying conditions from Figure 1. Which
conditions have to be satisfied depends on the operators present in the language.

If needed, we write ↔L to indicate that the bisimulation corresponds to L.

Theorem 6 (Invariance for Dynamic Logics.). ForML(�),� ∈ {〈sw〉, 〈gs〉,
〈ls〉, 〈br〉}, M, w ↔ML(�)M′, w′ implies M, w ≡ML(�)M′, w′.

Proof. We will only prove the ML(〈sw〉) case by structural induction.
The base case holds by (agree), and the ∧ and ¬ cases are trivial.

[♦ϕ case:] Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉. Suppose M, w |= ♦ϕ.
Then there is v in W s.t. wRv and M, v |= ϕ. Since Z is a bisimulation, by

Moving Arrows and Four Model Checking Results 5

always (nontriv) Z is not empty

always (agree) If (w, S)Z(w′, S′), w and w′ make the same propositional variables
true.

♦ (zig) If wSv, there is v′∈W ′ s.t. w′S′v′ and (v, S)Z(v′, S′)

(zag) If w′S′v′, there is v∈W s.t. wSv and (v, S)Z(v′, S′)

〈sw〉 (sw -zig) If wSv, there is v′∈W ′ s.t. w′S′v′ and (v, S∗vw)Z(v′, S′∗v′w′)

(sw -zag) If w′S′v′, there is v∈W s.t. wSv and (v, S∗vw)Z(v′, S′∗v′w′)

〈gs〉 (gs-zig) If vSu, there is v′, u′∈W ′ s.t. v′S′u′ and (w, S−vu)Z(w′, S′−v′u′)

(gs-zag) If v′S′u′, there is v, u∈W s.t. vSu and (w, S−vu)Z(w′, S′−v′u′)

〈ls〉 (ls-zig) If wSv, there is v′∈W ′ s.t. w′S′v′ and (v, S−wv)Z(v′, S′−w′v′)

(ls-zag) If w′S′v′, there is v∈W s.t. wSv and (v, S−wv)Z(v′, S′−w′v′)

〈br〉 (br -zig) If ¬wSv, there is v′∈W ′ s.t. ¬w′S′v′ and (v, S+
wv)Z(v′, S′+w′v′)

(br -zag) If ¬w′S′v′, there is v∈W s.t. ¬wSv and (v, S+
wv)Z(v′, S′+w′v′)

Fig. 1. Conditions for ML(�)-bisimulations.

(zig) we have v′ ∈ W ′ s.t. w′R′v′ and (v,R)Z(v′, R′). By inductive hypothesis,
M′, v′ |= ϕ and by definition M′, w′ |= ♦ϕ. For the other direction use (zag).

[〈sw〉ϕ case:] For the left to the right direction suppose M, w |= 〈sw〉ϕ. Then
there is v ∈ W s.t. wRv and M∗vw, v |= ϕ. Because Z is a bisimulation, by
(sw -zig) we have v′ ∈ W ′ s.t. w′R′v′ and (v,R∗vw)Z(v′, R′∗v′w′). By inductive
hypothesis, M′∗v′w′ , v′ |= ϕ and by definition M′, w′ |= 〈sw〉ϕ. For the other
direction use (sw -zag). ut

3 Expressive Power

With the appropriate notions of bisimulation at hand we can now start the
comparison of the expressive power of the different dynamic modal logics we
introduced. We will use the following standard definition of when a logic is at
least as expressive as another.

Definition 7 (L ≤ L′). We say that L′ is at least as expressive as L (notation
L ≤ L′) if there is a function Tr between formulas of L and L′ such that for
every model M and every formula ϕ of L we have that

M |=L ϕ iff M |=L′ Tr(ϕ).

M is seen as a model of L on the left and as a model of L′ on the right, and we
use in each case the appropriate semantic relation |=L or |=L′ as required.

We say that L and L′ are uncomparable if L � L′ and L′ � L.

By inspecting suitable models we can establish the following result.

Theorem 8. For all �1,�2 ∈ {〈sw〉, 〈gs〉, 〈ls〉, 〈br〉} with �1 6= �2, ML(�1)
and ML(�2) are uncomparable.

6 Areces, Fervari and Hoffmann

M M′ Distinct by Bisimilar for

w
w′

〈br〉〈br〉>
〈gs〉>

ML(〈ls〉)
ML(〈sw〉)

w w′
〈ls〉♦>
〈gs〉♦>

ML(〈sw〉)
ML(〈br〉)

w w′

〈sw〉〈sw〉♦♦♦�⊥
[br][br]⊥

ML(〈gs〉)
ML(〈ls〉)

w
. w′

. . . 〈sw〉♦�⊥ ML(〈br〉)

w

. . .

. . .

w′

. . .

. . .

〈ls〉♦�⊥ ML(〈gs〉)

Fig. 2. Bisimilar models and distinguishing formulas.

Proof. In Figure 2 we summarize our results by presenting pairs of models that
are bisimilar for a given logic and distinguishable by another. More precisely,
the formulas given in the third column are false at M, w and true at M′, w′.

That the models are bisimilar for the given logics can be easily verified for
the first two rows. In the third row, the given models are bisimilar forML(〈gs〉)
and ML(〈ls〉) because they are bisimilar for ML, they are acyclic and (for
ML(〈gs〉)) they contain the same number of edges. In the fourth row, both
models are ML(〈br〉)-bisimilar since they are infinite, hence one can add as
many links as needed to points that are modally bisimilar.

Finally, the pointed models of the last row are the same graph with a different
evaluation point. The graph is a star that has infinitely many ingoing branches,
and infinitely many ingoing-outgoing branches. w is a point located at the end
of an ingoing branch, and w′ is at the end of an ingoing-outgoing branch. Let us
present the ML(〈gs〉)-bisimulation as a game between Spoiler and Duplicator.
If Spoiler moves to the center of the star, Duplicator can do the same and
both situations become undistinguishable. If Spoiler deletes one of the ingoing
edges that has w or w′ as origin, then Duplicator does the same on the other
graph, and any further edge deletion can also be imitated. If Spoiler deletes the
outgoing edge that goes from the center of the graph towards w′, then Duplicator
can delete any outgoing edge without changing the graph, given that there are
infinitely many edges of both kinds. ut

4 Model Checking Dynamic Logics

In this section we establish complexity results for the model checking task in the
various dynamic modal logics we presented. All the results are established using a

Moving Arrows and Four Model Checking Results 7

similar argument: hardness proofs are done by encoding the satisfiability problem
of Quantified Boolean Formulas (QBF) [8] as the model checking problem of each
logic. While the idea behind the encoding is the same for all the logics involved,
the encoding needs to be slightly modified in each case taking into consideration
the semantics of the various dynamic operators.

PSpace-hardness for global sabotage was already proved in [7,6], but we
provide here a more direct proof.

Theorem 9. For � ∈ {〈sw〉, 〈gs〉, 〈ls〉, 〈br〉}, model checking for any of the log-
ics ML(�) is PSpace-hard.

Proof. We will reduce the PSpace-complete satisfiability problem of Quantified
Boolean Formulas (QBF) to the model checking problem of each of these logics.
For a complete proof of the case of ML(〈sw〉), consult the appendix.

Consider ML(〈sw〉). Let α be a QBF formula with variables {x1, . . . , xk}.
Without loss of generality we can assume that α has no free variables and no
variable is quantified twice. One can build in polynomial time the relational
structure Mk = 〈W,R, V 〉 over a signature with one relational symbol and
propositions {p>, p1, . . . , pk}, where:

W = {w} ∪ {w1
i , w

0
i | 1 ≤ i ≤ k}

V (pi) = {w1
i , w

0
i }

V (p>) = {w1
i | 1 ≤ i ≤ k}

R = {(w,w1
i), (w,w0

i) | 1 ≤ i ≤ k} p1

p>

p1
. . . pk

p>

pk

Let ()′ be the following linear translation from QBF to ML(〈sw〉)

(∃xi.α)′ = 〈sw〉(pi ∧ ♦(α)′)
(xi)

′ = ¬♦(pi ∧ p>)
(¬α)′ = ¬(α)′

(α ∧ β) = (α)′ ∧ (β)′.

It remains to see that α is satisfiable if, and only if, Mk, w |= (α)′ holds.
This part of the proof is in the appendix. This shows that the model checking
problem of ML(〈sw〉) is PSpace-hard.

For ML(〈gs〉) and ML(〈ls〉), we use the following model:

W = {w} ∪ {w1
i , w

0
i | 1 ≤ i ≤ k}

V (pi) = {w1
i , w

0
i }

V (p>) = {w1
i | 1 ≤ i ≤ k}

R = {(w,w1
i), (w,w0

i), (w1
i , w), (w0

i , w)
| 1 ≤ i ≤ k}

p1

p>

p1
. . . pk

p>

pk

Let ()′ be the following linear translation from QBF to ML(〈ls〉):

(∃xi.α)′ = 〈ls〉(pi ∧ ♦(α)′)
(xi)

′ = ¬♦(pi ∧ p>)
(¬α)′ = ¬(α)′

(α ∧ β) = (α)′ ∧ (β)′.

8 Areces, Fervari and Hoffmann

From QBF to ML(〈gs〉), we provide the following translation:

(∃xi.α)′ = 〈gs〉((¬♦(pi ∧ p>) ∨ ¬♦(pi ∧ ¬p>)) ∧ ♦(pi ∧ ♦(α)′))
(xi)

′ = ¬♦(pi ∧ p>)
(¬α)′ = ¬(α)′

(α ∧ β) = (α)′ ∧ (β)′.

In both cases, showing that a QBF formula α is satisfiable if, and only if,
Mk, w |= (α)′ holds can be done similarly to the case of ML(〈sw〉).

Finally, to prove PSpace-hardness for ML(〈br〉), build the following model:

W = {w} ∪ {w1
i , w

0
i | 1 ≤ i ≤ k}

V (pi) = {w1
i , w

0
i }

V (p>) = {w1
i | 1 ≤ i ≤ k}

R = {(w1
i , w), (w0

i , w) | 1 ≤ i ≤ k} p1

p>

p1
. . . pk

p>

pk

And use the following linear translation ()′:

(∃xi.α)′ = 〈br〉(pi ∧ ♦(α)′)
(xi)

′ = ♦(pi ∧ p>)
(¬α)′ = ¬(α)′

(α ∧ β) = (α)′ ∧ (β)′. ut

Theorem 10. Model checking for ML(〈sw〉, 〈gs〉, 〈ls〉, 〈br〉) is in PSpace.

Proof. The evaluation of the truth of a formula in a model can be done by a
polynomial space algorithm that follows Definition 3.

The algorithm works on the same copy of the model, except when dealing
with formulas whose main connector is 〈sw〉, 〈gs〉, 〈ls〉 or 〈br〉 (i.e., dynamic
operators). In such cases, by proceeding depth-first among at most |W | possible
choices, the algorithm only allocates as much additional space as the size of the
initial model to store the modified copy. This memory can be reclaimed once
the result of the recursive call is known. The maximum number of copies of the
input model in memory is bounded by the nesting of dynamic operators of the
input formula. Hence the algorithm runs using only polynomial space. ut

With the previous results we get:

Theorem 11. For � ∈ {〈sw〉, 〈gs〉, 〈ls〉, 〈br〉}, model checking for any of the
logics ML(�) is PSpace-complete.

5 Conclusions

In this article we investigate dynamic modal logics that can modify the model
during the evaluation of a formula. Dynamic Epistemic Logics (DEL) as those
investigated in [9,5,11,13] are well known examples of languages which can also
update the model during evaluation. The standard update operation used in
DELs is to move evaluation to a submodel defined by a certain ‘announcement’,

Moving Arrows and Four Model Checking Results 9

e.g., to the model representing the fact that ϕ is now known, obtained as the
restriction to all the nodes satisfying a formula ϕ. Instead, in this article we
investigate logics that can explicitly modify the accessibility relation, as the
sabotage logics first introduced by van Benthem in [12].

We introduce a number of operators with both local and global effects, and
which can add, delete and modify edges in the accessibility relation. The goal
was to investigate the different degrees of liberty that the operators offered, and
how much overlap there was between the logics they defined, and the models
they could describe.

We show in Sections 2 and 3 that the languages obtained by the extension of
the basic modal logic with each of the dynamic operators can be characterized
using bisimulations. Actually, even though each operator requires a particular
pair of zig and zag conditions, the definition is modular and the set up homo-
geneous. All the bisimulations involved are of the same type, linking a pair of
point of evaluation and accessibility relation in one model, with a similar pair
in the other. Moreover, a suitable definition of bisimulation for the basic modal
logic extended with any combination of the new dynamic operators can be ob-
tained by using the adequate zig and zag conditions associated to the operators
involved. Summing up then, even though the logics obtained are different in each
case, they are all amenable to fairly classical modal analysis.

In Section 4 we turn to model checking, and show that the complexity of this
reasoning task is PSpace-complete for all the logics considered. Once more, the
proofs are fairly homogeneous in all cases. The general set up is the encoding
of the PSpace-complete QBF satisfiability problem in each of the logics. In each
case, a suitable representation for the assignment and the concrete translation
used needs to be defined, but once this is done the proof is similar.

More precisely, we established the complexity of the combined model check-
ing task, measured in function of the length of an input model and an input
formula. It is also possible to consider the task of model checking against a fixed
model, measuring its complexity in function of the size of an input formula (this
is known as the formula complexity). One can also fix a formula and measure
the complexity of model checking in function of the length of an input model
(known as the program complexity or data complexity). Both notions were in-
troduced in [14], and it has been shown in [6] that the formula complexity and
the program complexity ofML(〈gs〉) are respectively linear and polynomial. We
believe that the proof generalizes to ML(〈ls〉), ML(〈sw〉) and ML(〈br〉) with
identical results.

Another natural direction for future research would be to investigate the
complexity of the satisfiability problem of these logics. From [6], we already know
that ML(〈gs〉) is undecidable. We conjecture that using techniques from [3,1],
it is possible to prove that the problem is undecidable in all remaining cases.

Acknowledgments: This work was partially supported by grants ANPCyT-
PICT-2008-306, ANPCyT-PIC-2010-688, the FP7-PEOPLE-2011-IRSES Project

10 Areces, Fervari and Hoffmann

“Mobility between Europe and Argentina applying Logics to Systems” (MEALS)
and the Laboratoire Internationale Associé “INFINIS”.

References

1. Areces, C., Figueira, D., Figueira, S., Mera, S.: The expressive power of memory
logics. Review of Symbolic Logic 4(2), 290–318 (2011)

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2001)

3. Blackburn, P., Seligman, J.: Hybrid languages. Journal of Logic, Language and
Information 4, 251–272 (1995)

4. Blackburn, P., Wolter, F., van Benthem, J. (eds.): Handbook of Modal Logics.
Elsevier (2006)

5. Gerbrandy, J.: Bisimulations on Planet Kripke. Ph.D. thesis, University of Ams-
terdam (1999), ILLC Dissertation series DS-1999-01

6. Löding, C., Rohde, P.: Model checking and satisfiability for sabotage modal logic.
In: Pandya, P., Radhakrishnan, J. (eds.) FSTTCS. Lecture Notes in Computer
Science, vol. 2914, pp. 302–313. Springer (2003)

7. Löding, C., Rohde, P.: Solving the sabotage game is PSPACE-hard. In: Mathemat-
ical Foundations of Computer Science 2003, Lecture Notes in Computer Science,
vol. 2747, pp. 531–540. Springer, Berlin (2003)

8. Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)
9. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)

10. Rohde, P.: On games and logics over dynamically changing structures. Ph.D. thesis,
RWTH Aachen (2006)

11. van Benthem, J.: Logics for information update. In: TARK’01: Proceedings of the
8th Conference on Theoretical Aspects of Rationality and Knowledge. pp. 51–67.
Morgan Kaufmann Publishers Inc. (2001)

12. van Benthem, J.: An essay on sabotage and obstruction. In: Mechanizing Mathe-
matical Reasoning. pp. 268–276 (2005)

13. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Kluwer
(2007)

14. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In:
Lewis, H.R., Simons, B.B., Burkhard, W.A., Landweber, L.H. (eds.) STOC. pp.
137–146. ACM (1982)

Appendix

Theorem 4. ML(�) does not have the tree model property, for � ∈ {〈sw〉, 〈gs〉,
〈ls〉, 〈br〉}

Proof. We are going to list formulas that force no-treelike models:

1. The formula
ϕ = p ∧ (

∧
1≤i≤3

�i¬p) ∧ 〈sw〉♦♦p

is true at a state w in a model, only if w has a reflexive successor.

Moving Arrows and Four Model Checking Results 11

Suppose we evaluate ϕ at some state w of an arbitrary model. The ‘static’
part of the formula p∧(

∧
1≤i≤3 �

i¬p) makes sure that p is true in w and that
no p state is reachable within three steps from w (in particular, w cannot be
reflexive).
Because 〈sw〉♦♦p is true at w, there should be an R-successor v where ♦♦p
holds once the accessibility relation has been updated to R∗vw. That is, v has
to reach a p-state in exactly two R∗vw-steps. But the only p-state sufficiently
close is w which is reachable in one step. As w is not reflexive, v has to be
reflexive so that we can linger at v for one loop and reach p in the correct
number of states.

2. The formula
ϕ = ♦♦> ∧ [ls]�⊥

is true at a state w in a model, only if w is reflexive.
Suppose we evaluate ϕ at some state w of an arbitrary model. On one hand,
the ‘static’ part of the formula ♦♦> ensures it is possible to take two ac-
cessibility relations. On the other hand, the ‘dynamic’ part of the formula
[ls]�⊥ tells us that after taking any accessibility relation and eliminating
it, it is no longer possible to go anywhere else. This can only happen if the
point w is reflexive and does not have any other outgoing links.

3. The formula
ϕ = ♦♦> ∧ [gs]�⊥

(from [6]) is true at a state w in a model, only if w is reflexive.
4. The formula

ϕ = �⊥ ∧ 〈br〉�⊥

is only satisfiable in models that have at least two unconnected points. ut

Theorem 11. Model checking for ML(〈sw〉) is PSpace-hard.

Proof. We will reduce the PSpace-complete satisfiability problem of Quantified
Boolean Formulas (QBF) to the model checking problem of ML(〈sw〉).

Let α be a QBF formula with variables {x1, . . . , xk}. Without loss of generali-
ty we can assume that α has no free variables and no variable is quantified twice.
One can build in polynomial time the relational structureMk = 〈W,R, V 〉 over
a signature with one relational symbol and propositions {p>, p1, . . . , pk}, where:

W = {w} ∪ {w1
i , w

0
i | 1 ≤ i ≤ k}

V (pi) = {w1
i , w

0
i }

V (p>) = {w1
i | 1 ≤ i ≤ k}

R = {(w,w1
i), (w,w0

i) | 1 ≤ i ≤ k} p1

p>

p1
. . . pk

p>

pk

Let ()′ be the following linear translation from QBF to ML(〈sw〉)

(∃xi.α)′ = 〈sw〉(pi ∧ ♦(α)′)
(xi)

′ = ¬♦(pi ∧ p>)
(¬α)′ = ¬(α)′

(α ∧ β) = (α)′ ∧ (β)′.

12 Areces, Fervari and Hoffmann

It remains to see that α is satisfiable iff Mk, w |= (α)′ holds. Let us write
v |=qbf α if valuation v : {x1, . . . , xk} → {0, 1} satisfies α. For a model M with
relation R we define vR : {x1, . . . , xk} as “vR(xi) = 1 iff (w,w1

i) 6∈ R”, in the
present case, iff the link between w and w1

i has been swapped.
Let β be any subformula of α. We will show by induction on β thatM, w |=

(β)′ iff vR |=qbf β. The first observation is that R satisfies i) if xi is free in β,
then (w,w1

i) 6∈ R or (w,w0
i) 6∈ R but not both, and ii) if xi is not free in β then

(w,w1
i) ∈ R and (w,w0

i) ∈ R. From here it will follow that Mk, w |= (α)′ iff
v |=qbf α for any v since α has no free variables, iff α is satisfiable.

For the base case, vR |=qbf xi iff (w,w1
i) 6∈ R which implies (from the de-

finition of Mk) M, w |= (xi)
′. For the other direction, suppose M, w 6|= (xi)

′.
Hence M, w |= ♦(pi ∧ p>) which implies (w,w1

i) ∈ R and uR 6|=qbf xi.
The boolean cases follow directly from the inductive hypothesis.
Consider the case β = ∃xi.γ. Since no variable is bound twice in α we know

(w,w1
xi

) ∈ R and (w,w0
i) ∈ R. We have vR |=qbf β iff (vR[xi 7→ 0] |=qbf γ or

vR[xi 7→ 1] |=qbf γ) iff (vR∗
w0

i
w
|=qbf γ or vR∗

w1
i
w
|=qbf γ). By inductive hypothesis,

this is the case if and only if (M∗
w0

iw
, w0

i |= ♦(γ)′ or M∗
w1

iw
, w1

i |= ♦(γ)′) iff

M, w |= 〈sw〉(pi ∧ ♦(γ)′) iff M, w |= (∃xi.γ)′. ut

	Moving Arrows and Four Model Checking Results

