Tableaux for Relation-Changing Modal Logics

Carlos Areces'?, Raul Fervari' and Guillaume Hoffmann'
! FaMAF, Universidad Nacional de Cérdoba, Argentina

{areces, fervari, hoffmann}@famaf.unc.edu.ar

2 CONICET, Argentina

Abstract. We consider dynamic modal operators that can change the
relation of a model during the evaluation of a formula. In this paper, we
extend the basic modal language with modalities that are able to delete,
add or swap pairs of related elements of the domain; and explore tableau
calculi as satisfiability procedures for these logics.

1 Relation-Changing Modal Logics

We investigate modal operators that are suitable for reasoning about dynamic
aspects of a given situation, e.g., how relations involving a set of elements evolve
through time or through the application of certain operations. Instead of mo-
deling the whole space of possible evolutions of the system as a graph, we use
dynamic operators whose semantics directly correspond to the model evolutions
that interest us. One example of such operators is sabotage introduced by Johan
van Benthem in [§]. In the modal logic equipped with the sabotage operator, a
formula can indicate that evaluation should continue in a model identical to the
current one except that some edge has been removed from its relation.

In this article we present tableau methods for various relation-changing modal
logics. We consider the basic modal logic ML [4] extended with the following
operators: the local variant of sabotage (sb) deletes an arrow while traversing
it; the bridge modality (br) adds an arrow from the current state of evaluation
to a non-accessible state and continues the evaluation there; the swap modality
(sw) inverts the direction of an arrow while traversing it. The swap modality
was introduced in [3], and the local sabotage and bridge modalities in [2].

Definition 1 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. The set FORM of formulas over PROP is defined as:

FORM := 1 |p| - | oAt | #p,

where p € PROP, & € {0, (sb), (br), (sw)} and v,v € FORM. Other operators
are defined as usual. In particular, By is defined as —4—p.

Formulas of the basic modal language ML contains only { besides the Boolean
operators. We call ML(#) the extension of ML allowing also the § operator,

for & € {{sb), (br), (sw)}.

2 Areces, Fervari and Hoffmann

Semantically, formulas are evaluated in standard relational models, and the
meaning of the basic modal operators is unchanged. When we evaluate formulas
containing dynamic operators, we need to keep track of the edges that have been
modified. To that end, let us define precisely the models that we use.

Definition 2 (Models and Model Variants). A model is a triple M

(W,R, V), where W is a non-empty set whose elements are called states; R

W xW is the accessibility relation; and V : PROP +— P(W) is a valuation.
Given a model M = (W, R, V') we define the following notation:

(sabotaging) Mg = (W,Rg,V), with Rg = R\S, S CR.
(bridging) ME = (W, R, V), with RE = RUS, S C (WxW)\R.
(swapping) M% = (W,R%, V), with Ry = (R\S™)US, SCW x W.

Nl

Let w be a state in M, the pair (M,w) is called a pointed model; we will
usually drop parenthesis and call M,w a pointed model. A model variant of M
is a model obtained from M by some of the above operations.

In the rest of this article we will use wv as a shorthand for {(w,v)} or (w,v).

Definition 3 (Semantics). Given a pointed model M,w and a formula ¢ we
say that M,w satisfies @, and write M,w = ¢, when

M, w=p iff weV(p)

M,w = —p iff Mow e

MwEpAY iff M,wkE ¢ and MwE= 1

Myw = Op iff for somev € W s.t. Rwv, MvE

M,w = (sb)p iff for somev €W s.t. Rwv, My, vE¢

M,w = (br)yo iff for somev € W s.t. ~Rwv, M v
(

wv?

M,w = (sw)yp iff for somev €W s.t. Rwv, M}, vEe
v 1is satisfiable if for some pointed model M, w we have M, w | ¢.

Adding any of the previous operators to the basic modal logic increases its
expressive power. A basic result for ML [4] shows that it has the tree model
property: every satisfiable formula of ML can be satisfied at the root of a model
where the accessibility relation defines a tree. In [2] we introduced formulas using
the operators above that cannot be satisfied at the root of a tree:

1. ¢ =00T A [sb]OL is true at a state w, only if w is reflexive.
Suppose we evaluate ¢ at some state w of an arbitrary model. On one hand,
the ‘static’ part of the formula $OT ensures it is possible to take two steps
using the accessibility relation. On the other hand, the ‘dynamic’ part of the
formula [sb]OL tells us that after traversing any edge and eliminating it we
arrive to a dead-end. This can only happen if the state w is reflexive and
does not have any other outgoing links.

2. o =0OLA(br)(br)T is only satisfiable in models where the root is a dead-end
and there is a second, unreachable state.

Tableaux for Relation-Changing Modal Logics 3

3. 0 = pA(Ajcics D -p)A(sw)OOp is true at a state w, only if w has a reflexive
successor.
Suppose we evaluate ¢ at a state w in a model. The ‘static’ part of the
formula p A (A;<;<3 f—p) makes p true in w and ensures that no p state
is reachable within three steps from w (also w cannot be reflexive). Because
(sw)OOp is true at w, there is an R-successor v where (Op holds once the
accessibility relation has been updated to R},,. That is, v has to reach a p-
state in exactly two R, -steps. The only p-state sufficiently close is w which
is reachable in one step. As w is not reflexive, v has to be reflexive so that
we can linger at v for one loop and reach p in the correct number of steps.

With respect to computational complexity, satisfiability of ML((sw})) is known
to be undecidable [3], and we conjecture that the same holds for the other two
logics. The finite model property fails for the three logics. For this reason, and as
we will not introduce control mechanism like loop checks, the tableau procedures
we will define not necessarily terminate on all inputs.

In Section 2] we will introduce complete and sound tableau calculi for these
logics. In Section [3] we extend the results to the global counterparts of the ope-
rators. In Section] we discuss a few final issues.

2 Tableau Calculi

We present basic definitions for different tableau algorithms for the relation-
changing modal logics we introduced in the previous section. These algorithms
will rely on the same data structures and will only differ in some of their rules.

Definition 4 (Tableau formulas). Let NOM be an infinite, well ordered set
of symbols we call nominals. A tableau formula is either a prefixed formula, an
equational formula or a relational formula. A prefized formula is of the form
(n,X) : @, withn € NOM, X € NOM?, and ¢ a formula of the considered object
language. An equational formula is a Boolean combination of formulas of the
form n=m or n#m for n,m € NOM. We also use the following notation:

_] _ nméX = \/ nm=zxy
nm=xy = n=r N m=y) Ty€X
nm#Ery = nFr V m#Fy naméX = N\ nm#axy.

zyeX

In particular nm€Q is a notation for L and nmé(?) 18 a notation for T. A
relational formula is of the form Rnm or —Rnm, with n,m € NOM.

The set X of a prefixed formula (n, X) : ¢ is used to describe the model
variant in which the formula ¢ is to be interpreted. According to the logic we
are in this set is to be interpreted differently. This is done by fixing a function
f that, out of a relation R, S C W x W yields another relation R’ = f(R, S).

4 Areces, Fervari and Hoffmann

Definition 5 (Branches and interpretations). A branch is a non-empty
set of tableau formulas. Let M = (W, R, V) be a model, f : W? x W2 s W?2
a relation-changing function and o : NOM — W a mapping from nominals to
states of M. Let X° = {o(a)o(b) | ab € X}, for X C NOM?.

Given M = (W, R, V), let ML, = (W, f(R, X°),V). That is, M. is the
model M updated by the relation-changing function f according to a set of pairs
of nominals X under mapping o.

A branch © is satisfiable if there exists a model M = (W, R, V) and a map-
ping o such that all the formulas of © are satisfiable under model M and mapping
o. That is, they should satisfy the following conditions:

—if (n,X) : ¢ € O then ./\/lg(g,a(n) E o,

— if n=m € O then o(n) = o(m),

— if n#m € O then o(n) # o(m),

— Boolean combinations of equational formulas are interpreted as expected,
— if Rnm € O then Ro(n)o(m),

— if =Rnm € O then —Ro(n)o(m).

A branch is unsatisfiable if it is not satisfiable.

A tableau calculus is a set of rules such that each rule applies to a branch
and yields one or more branches, under certain conditions. These conditions are
called saturation conditions, and stipulate that no rule can be applied twice on
the same premises, and that no formula can be introduced twice in a branch.

A tableau is a tree in which each node defines a tableau branch, and edges
represent applications of tableau rules. A tableau is expanded as much as possible
by the rules of the system (i.e., rules are applied whenever possible according to
the saturation condition). A fully expanded branch is called saturated.

A tableau branch is closed if it contains L, otherwise it is open. A tableau is
closed if all branches are closed, otherwise it is open.

Given a branch O, ~g denotes the equivalence closure of the relation {nm |
n=m € O}, and we write 71 for the smallest nominal x such that ~g n. For
X C€ NOM? we write X = {7/ | nm € X}. Figure |l| presents the rules common
to all the tableau calculus of this work. They are the Boolean rules (A) and (V),
the clashing rules (Latom) and (L), the equational rules (R~) and (Id), and
the unrestricted blocking rule (ub) [7]. We use the unrestricted blocking rule as a
way to saturate branches with equational formulas. These formulas can appear
as premises of tableau rules in the calculi we introduce later.

This result follows easily from the tableau rules:

Lemma 6. Let © be a saturated open branch. If nmé&S is in O then im € S.
If nméeS is in © then nim ¢ S.

When it comes to adequacy of a tableau calculus, we have to consider two
properties: completeness and soundness. Given a tableau calculus 7, let us write
T () to refer to a tableau obtained by running 7 on the input formula (ng, 0) : ¢,
where ng is the smallest nominal in NOM. Then we define:

Tableaux for Relation-Changing Modal Logics 5

X):
(X): on (A) (n, X): oV
(n,X):¢ (V)
(n, X) 11 (n,X):Lp‘(n,X):@Z)
(n,X1):p n~e m
n, Xg): n#+m
(nXa):op (Latom)! M)
L 1
R (n, X): ¢
L Ll PP
Ram (m, X) n=m | n#m
! p € PROP
2 n and m are two different nominals in the branch

Fig. 1. Common tableau rules.

Definition 7 (Completeness). A tableau calculus T is complete if for any
formula @, if T (@) is open then ¢ is satisfiable.

Definition 8 (Soundness). A tableau calculus T is sound if for any formula
o, if v is satisfiable then T (@) is open.

We define models induced from open branches.

Definition 9 (Induced Models). Let © be an open branch. We define M® =
(W€ R®,V®), the induced model for O, as:

We ={n|neco)
R® ={(n,m)| Rnm € 6}
VO(p)={n|n:pecol}

We want to show that a tableau system is sound and complete, i.e., that for
any formula ¢, T () is open if, and only if, ¢ is satisfiable. Moreover, if T (¢)
has an open branch © then M® is a model that satisfies . We present tableau
calculi for ML({sb)), ML({br)) and ML((sw)) in the next sections.

2.1 Sabotage

Figure |2 introduces rules that, in combination with those in Figure [I} form a
complete and sound tableau calculus for ML((sb)). In this calculus, a formula
(n,S) : ¢ is understood as “p holds at the state referred to by n in the model
variant described by the set of sabotaged pairs S”.

We interpret branches of this tableau calculus with the following relation-
changing function: f : (R,S) — R\ S. This means that a formula (n,S) : ¢ in

6 Areces, Fervari and Hoffmann

(n,8):0 n,S):0
FRnm nméS
nmé¢S (O)
(m,S): ¢ (m,S): ¢
(n,) : (sb) n,S) : [sb
T (e e
Rnm nm¢S
nmg S (sb])
(m,SUnm) : ¢ (m,SUnm) : ¢

Fig. 2. Tableau rules for ML((sb)).

a branch © should hold in the induced model variant M% defined as M§ =
(W€, R2,V®) where RS = R® \ S.

The rules involve the notation nméS . nméS specifies that the edge referred
to by the pair of nominals (n,m) should not be deleted in the model variant
described by S. When present as premise of a rule, this condition requires that
one of the disjuncts in nm¢.S is present in the branch, which in turn means that
either n#x or m#y is in the branch for all zy € S.

The (0) rule captures the standard meaning of the ¢ connector, but adds
a new constraint that specifies that the successor has not been deleted at this
point of the branch. (OJ) should also take this into account. For each successor
m of n in the initial model (an), and only if it the edge between n and m has
not been sabotaged (nmeS), ¢ must hold at m in the same model variant. Rule
([sb]) is similar to (O), but ¢ must hold at m in the model variant where the
edge nm is sabotaged. Rule ((sb)) corresponds similarly to ().

Figure [3| presents an example with a satisfiable formula of ML({sb}).

We will now prove completeness and soundness of the calculus for ML((sb)).

Lemma 10. Let © be a saturated, open branch and ¢ an ML({sb))-formula. If
(n,S) : ¢ € O then M§,n = .

Proof. Let (n,S) : ¢ € O. Proceed by structural induction on ¢.

* p: By definition, n € VO(p), then M®, 7 |= p and MG, 7 = p.
e —p: By saturation of (Id), n : —-p € ©. Since © is open, 7 : p ¢ O. By
definition, n ¢ V(p), then M® 7 |£ p and MZ, 7 = p.
e A x and v V x : Trivial by inductive hypothesis.
 O1p: By (0), © contains Rnm, nm¢S and (m, S) : 1. We want to show that
nm € RE. We verify the following:
1. m € R: this is true since Rnm € O.
2. nm ¢ S: this is true since (nm¢S) € © by Lemma @
Since m € RE, and (by (Id)) (m,S) : ¢ € O, we have M, 7 = 1.

Tableaux for Relation-Changing Modal Logics 7

Example: A tableau for 0OT A [sb]OL follows:

(1) | (no,0): 00T A [sb]OL initial node

(2) | (n0,0): 00T (A) on (1)

(3) | (no,0) : [sb]OL

(4) Rnon} (0) on (2)

(5) | nonigd

© |(m.0):0T

(7) | Rnin2 (¢) on (6)

(8) |nina2gd

(9) |(ne,0):T

(10) | (n1,{non1}) : 0L ([st]) on (3) and (4) with trivial
' condition noni &0

(11) noinl | no;énl (ub)

The right branch soon closes since (OJ) applies on (10) and (7) with condition
ninz2&{no,n1} fulfilled by no;:énl, and introduces L. Let us expand the left branch:

(12) ‘nling | n1¥n2 ‘ (ub)

Again the right branch closes by application of () with condition mnzé{no,nl}
fulfilled by ni1#n2. We expand the left branch:

(13) ‘ noing | n07.énz ‘ (ub)

The right branch above closes by rule (L.). Left branch is saturated and open, with
the following induced model:

O

.
o

Fig. 3. Tableau example for ML({sb)).

o (sb)1p: We need to show that ME, 7 |= (sb), i.e., there exists z € VO s.t
Mgupq,x E ¢, where p = n and § = x. This can be checked considering
({sb)) instead of () as for the previous case.

o ep: We only consider states z € W such that nz € RZ. That is, there exists
a,b such that Rab € © and Az = @b, and 7z ¢ S. The condition of rule (CJ)
(nméS) does not prevent it from being applied on such pair of nominals.
By (Id), (7,S) : Oy € O, i.e., (@,S) : (i € O, and also by (R~), Rab € 6.

By (0) we have (b,S) : ¢ € ©. Now, b = x, so M,z |= 1. Hence for all
x € VO such that nx € RE, ME,x =1, e, MG, n = Oy.

e [sb]1p: We need to show that M%7 = [sb]y, i.e., for all z € W® such that
(n,r) € RY, Mgupq, x = 9, where p§ = nz. This can be checked considering
rule ([sb]) instead of (OJ) as for the previous case. O

By the previous lemma we get:

Theorem 11 (Completeness). If T(p) is open, then ¢ is satisfiable.

8 Areces, Fervari and Hoffmann

We now show soundness of the calculus for ML((sb)).

Lemma 12. Let I' be a set of satisfiable tableau formulas, and ¢ € ML({sb)).
If there is a closed tableau T(I'") for I'" = (I' U {—p}), then ¢ is satisfiable.

Proof. Let © be a satisfiable branch. Following Definition [b] © is satisfied by a
model M = (W, R, V) and a mapping o : NOM — W. We write o[m — v] to
refer to the mapping equal to o except, perhaps, o(m) = v.

Assume that there is a closed tableau 7 (I'") such that I = (I' U {—¢}). We
will prove IV unsatisfiable, by induction on the tableau structure.

* (Latom): If this rule applies, then n: a € I'" and n : —a € I'’, for some n, a.
Then I is trivially unsatisfiable.
e Common rules (L), (A), (V), (R~), (Id) and (ub) are easy to check.

It remains to verify, for each remaining rule, that their application to a sat-
isfiable branch generates at least one satisfiable branch. In the present calculus,
all remaining rules are non-branching.

* (0): Suppose (n,S) : Op € T(I"). We know that (n,S) : Op is satisfiable,
then there is a model M = (W, R, V), and a mapping o : NOM — W' s.t.
Mg, ,0(n) = Op. By definition of |=, there exists v € W s.t. o(n)v € R\ S
and Mg,,v |= ¢. The () rule generates Rnm, nméS and (m,S) : ¢, with
m new in the branch. We need to check that the branch containing these
three new formulas is satisfiable. That is, there exists a model and a mapping
satisfying them. Let us consider the mapping ¢’ = o[m — v] and check that
the interpretation M, ¢’ satisfies the new branch:

— Rnm is satisfied since Ro’(n)o’(m), i.e., Ro(n)v, holds.

— Consider nm¢S. It suffices to check that for all zy € S, o'(n)o’(m) #
a'(z)a'(y), i.e., a(n)v # o' (z)o’(y). But o(n)v = ¢'(z)o’(y) would con-
tradict o(n)v € R\ S°.

— M, o’ satisfies (m, S) : ¢ since M__,,0’(m) |= ¢ holds.

* ((sb)): This case is similar to (), except that we need to check that the new
tableau formula (m,S Unm) : ¢ is satisfied. This is done considering the
new mapping o’ = o[m — v] and observing that M_ = . o'(m) = ¢.

¢ (O): Suppose (n, S) : Op and Rnm are in ©, and the condition nméS holds.
This implies that there exists M = (W, R, V) and a mapping o such that
M., 0(n) = Og, and Ro(n)o(m), and there is no pair of nominals 2y € S
such that nm = xy. This means that for all v € W s.t. o(n)v € (R\ S9),
Mg, ,v = ¢ and there exists v € W s.t. Ro(n)v. We verify that (m,S) : ¢ is
satisfied by M, 0. Since o(n)o(m) € (R\ S7), then Mg, ,o(m) |= . Hence
(m, S) : p is satisfied by M, 0.

* ([sb]): This is similar to the (OJ) case, but we have to show that (m, SUnm) : ¢
is satisfied by M, o . This is done by observing that if Mg, ,o(n) |= [sb]y
and Ro(n)o(m) then Mg .. ,0(m) = ¢. O

From the previous lemma we get the following result:

Theorem 13 (Soundness). If ¢ is satisfiable, then T (p) is open.

Tableaux for Relation-Changing Modal Logics 9

(n, B) : Op 1 (n,B) : Oy (n,B) : Oy
: : (©) Rnm nméeEB
Rnm nmeB (a (O2)
(m,B):¢|(m,B):¢ (m,B) : ¢ (m,B):¢
Rnm (n,B) : (br) n : [br
(a,B) : ¢ —SD ((br))* (7573@[; ¥
nméEDB nm¢ B 5 ([br])?
i (R1) (m,BUnm) : ¢ (m,BUnm) : ¢ | Rnm
2mis alre:’;Ldy in the branch.

Fig. 4. Tableau rules for ML({br)).

2.2 Bridge

Figure[4] presents rules for the tableau calculus corresponding to ML((br)) which
should be combined with the common rules of Figure[I} The main difference with
rules for sabotage is that they use as prefix a set of pairs of nominals B to keep
track of edges that have been added to the relation of the original model.

The interpretation function will be f : (R, B) — R U B. This means that a
formula (n, B) : ¢ in a branch © should hold in the induced model variant M%
defined as MG = (W, R, V®), where RS = R® U B. The notation nméB
means that the edge represented by the nominals n and m is one of the edges
added since the initial model in the model variant described by B. When used as
a premise of a rule, the condition nm& B requires that there exists some zy € B
such that n=x and m=y are present in the branch. nm¢B means that the edge
(n,m) has not been added since the initial model in the variant described by B.

Some rules are more involved in this calculus. The rule ({), when applied on
a formula (n, B) : O, has to ensure that in the model variant described by B,
the state referred to by the nominal n has a successor where ¢ holds. This model
variant has a relation that is the union of the relation in the initial model and
B. This is why () is a branching rule that either chooses that the edge (n,m)
belongs to the initial relation or to B.

The rule (O) is the standard box rule for the basic modal logic. It is completed
by a (0z) rule that ensures new edges of model variants are taken into account.

The new clash rule (R,) ensures that whenever some edge nm is present
in a set of new edges B representing some model variant, the same edge is not
present in the original model, i.e., Rnm is forbidden to occur in the branch.

The rule ({(br)) differs from (). This is because the (br) operator jumps to a
state that should not be accessible from the current state, hence the introduction
of nm¢B and (m, BUnm) : ¢ to the branch. This last formula, together with
rule (R), ensures that the edge nm is not in the original model.

10 Areces, Fervari and Hoffmann

The rule ([br]) branches when applied to a formula (n, B) : [br]e. It decides,
for every nominal m such that nméB, whether (m, R Umnm) : ¢ holds, or Rnm
holds. In the first case, together with rule (R,), it ensures that the edge nm is
not in the original model. In the second case, it ensures the contrary, hence no
bridging to m is possible and ¢ does not need to hold at m.

Completeness and soundness of this tableau calculus can be proved as in the
previous section. Figure [5| shows an example of how the rules are used.

Example: Consider the satisfiable formula p A 0—p A [br]p. In the following tableau
we hide the branches that directly close by vacuity of quantification:

(1) | (no,0):p A O—p A [br]p initial node
(2) | (n0,0):p (A) on (1)
(3) | (n0,0) : O—p

(4) | (o, 8) - [brlp

(5) Rnona, (nl, @) T p . ((}) on (3)
(6) | no=n1 \ no#n1 | (ub)

Left branch closes due to (Id) and (Latom). Right branch:
(M) | (n1,{nom}):p | Bnony | ([br]) on (3), m

Left branch closes by (Latom) on (n1,{noni}) : p and (n1,0) : =p. Right branch:
(8) ‘ (no, {nono}) : p | Rnono ‘ ([br]) on (4), no

Both branches are open and saturated. We have the following two induced models:

p p
o— o Etoe——> 0
) 1 no ni

Fig. 5. Tableau example for ML({br)).

2.3 Swap

Rules for the swap calculus are given in Figure[6] to be used in combination with
the rules in Figure[T]

These rules have to handle the fact that swapping edges in a model can make
some edges of the original model no longer usable (as when using the sabotage
modality), and can make new edges usable (as with bridge). The set S that
prefixes formulas of the calculus has to be understood as the pairs of states that
no longer are part of the relation of the model variant. S~' contains the edges
that should be added to the model.

The interpretation function for this calculus is f : (R, S) = (R\S)US~!. This
means that a formula (n,S) : ¢ in a branch © should hold in the induced model
variant Mg defined as M§ = (W€ REZ, V), where R = (R® \ S) u S~

Tableaux for Relation-Changing Modal Logics 11

(n,9): 0 n.S) -
nm nm . nméS nme (DQ)
nmgS m,S): e . .
(m,S?é:go ()ie (m,S) : ¢ ©) (m,5) : ¢
(n, S) : [sw]e . ‘52”15“’]90 (n,S): [g’w]@
S ([sw]) Nl wzzey
(n,5): M [— ([sw]3)

(m, Sunm) : ¢ (el) (@ S\ayoum) - ¢

(n,5) : {suby oy
Rnn an \/zyes(niy A (z, S\zyUyz):p)
(n,S) : ¢ n#m
nmg(SUS™1)
(m, SUnm) : ¢

L m is new.

Fig. 6. Tableau rules for ML({sw)).

In this calculus, S is kept irreflexive and asymmetric. Moreover, it will not
contain two different pairs of nominals that refer to the same edge in the induced
model. This guarantees that the names in S can be manipulated by the calculus
as expected, in particular when a swapped edge must be swapped again. nmé&S
means that nm is no longer present in the model variant represented by S.
nméS™! means that nm has been added to the S model variant.

Let us examine the rules. (¢) is a combination of the (¢) rules for sabotage
and bridge. It satisfies the formula (n,S) : ¢ in a state that is either accessible
through the initial relation or through a new swapped edge (as in the bridge
calculus). In the case of being accessible through the initial relation, the rule
ensures that the edge used has not been deleted in the current model variant
(as in the sabotage calculus). The (O) rule, as in the sabotage calculus, works
with all states accessible from n in the initial model variant, except when they
have been made inaccessible in the current model variant. The (Oz) rule, as in
the bridge calculus, ensures that newly accessible states receive the formula .

The remaining (swapping) rules deserve more careful explanation. The three
rules that handle formulas of the form [sw]e handle the case of swapping a
reflexive edge, swapping an irreflexive edge that has never been swapped (nor
its inverse), and swapping again an edge. ([sw]) swaps reflexive edges, for which
the S set does not need to be modified since swapping a reflexive edge leaves it
unchanged. ([sw]z) swaps irreflexive edges that have never been swapped before,
i.e., usable edges (not in S) that are not in S~!. This rule ensures that S is

12 Areces, Fervari and Hoffmann

irreflexive (n#m), asymmetric (nmésS ~1) and that it does not contain two pairs
of nominals that refer to the same edge in the induced model (nméS). Finally,
([sw]s) traverses and swaps around edges of S~!. If n=y is in the branch and
xy € S then we swap again the link yx and end up at z. Hence it removes zy
from S and adds yx. This preserves the three properties of the set S (irreflexivity,
asymmetry and no-redundant-names).

There is only one ({sw)) rule but it handles three possibilities of satisfying a
swap-diamond formula similarly to the rules for swap-box formulas. The ({sw}))
rule can satisfy a formula (n,S) : (sw)e in three possible ways. First, through
a reflexive edge, having ¢ true at n in the same model variant. In that case S
remains unchanged. Or it satisfies it by adding an irreflexive edge to the initial
relation (Rnm, n;«.ém), specifying that in the model variant S it is not removed
nor is a new edge added by swapping (nmé(SUS ~1)), and then satisfying ¢ at
m in the model variant S U nm. Finally, it can satisfy the antecedent formula
by swapping again a swapped edge, updating S appropriately. The meaning of
the last branch of this rule is to properly maintain the set S when an edge is
swapped more than once. When an edge zy € S is swapped again, we update S
by removing xy and adding yx, instead of adding a new pair of nominals.

Figure [7] shows the use of the tableau rules in an example.

Now we are going to prove completeness for the ML((sw)) calculus. Sound-
ness can be shown similarly as for sabotage.

Lemma 14. Let © be a saturated, open branch and ¢ a ML({sw))-formula. If
(n,S) : ¢ € O then M§,n = .

Proof. Let (n,S) : ¢ € O, we proceed by structural induction on ¢. Propositional
and Boolean cases are exactly the same that for ML((sb)).

e O1p: We have two cases:)

1. Rnm € O, nm¢S € O and (m,S) : ¢ € . Since Rnm € O, we have
(7,/m) € R®. On the other hand, since nm¢S € © and the branch is
saturated and open, by Lemma @ nm ¢ S. Then am € Rg and (by
(Id)) (m,S) : ¢ € 6. Hence, M, 7 = Ov.

2. nmé€S™! € © and (m, S) : ¢ € 6. From the fist sentence, by Lemma@,
we have im € S, hence nmm € RY. With the same argument that the
previous item, we have M, 7 = Q).

e (sw)1p: ((sw)) rule has three branches:

1. Rnn € © and (n, S) € O. In this case in € RE, and by (Id) (n,S) : ¢ €
O, so we have M, 7 = (sw)y. _

2. In the second branch, the following formulas belong to ©: a) Rnm,
b) n#m, ¢) nm¢(S U S~Y) and d) (m,S Unm) : ¥. b) holds since
we are not in the previous case. By a) and ¢) (and Lemma [6), we have
nm € RE. By (Id) and d), (m, SUnm) : ¢ € ©. Hence, ME, 7 = (sw).

3. In the third branch, there are z,y € W®, such that y=n € © and
(z,S\ zyUyz) € O.. Then y=n € O and by definition yz € RY ®. But,
(z,8 \ xy Uyz) : ¢ € O, therefore M%, Z |= 1. Then, since this

S\zyUyz’
last condition and ®, we have M§, 1 = (sw)1.

Tableaux for Relation-Changing Modal Logics 13

Example: Consider the formula —p A (sw)Op.

(1) | (n0,0) : =p A (sw)Op initial node
(2) | (n0,0) : —p (A) on (1)
(3) | (0. 8) : {sw)op | |

(4) | Rnono, (no,0) : Op | Rnoni, no#na, (n1, {non1}) : Op | ({(sw)) on (3)
Let us expand the left branch:

(5a) | Rnoni, non1¢0, (n1,0) : p) (0) on (4)
(6a) | no=n1 | no#na | (ub)

The left branch closes by (Id) and (Latom), while the right branch is fully expanded
and open, with the following induced model:

p
e .
no ni1

Let us go back to line (4) and expand the right branch:

(5b) | Rnina, nina¢{non.} | ninz€{nino} | () on (4)
(6b) | (n2, {nom1}) : p | (n2, {non1}) : p

In the right branch, by nin2€{nino} we have na=ng. Then by (Id) and (Latom), we
have a clash. The left branch is open, and ni1n2¢{non1} is a notation for no7n1 v
n1#ng, with no#n, already occurring in the branch (line (4), right branch).

(7b) ‘ no=ns | no#na ‘ (ub)

Left branch closes by (Id) and (Latom). Right branch:

(8b) ‘ n1=ns | ni#ns ‘ (ub)
Both branch are open and saturated and produce the following induced models:
p p
O —— > 0D [] > 0 > @
no n1 no ni n2

Fig. 7. Tableau example for ML({sw)).

o Cp: for all m € W such that Rnm and nméS € 6, we have (m, S) : ¢ € 6.
Because @ is open and saturated, by Lemma@ it holds that nm ¢ S, which
implies nm € RY. Otherwise, if nm € S~1, then also (by definition) 7m €
RE. In both cases, we have (m,S) : ¢ € ©. Hence, MZ, 7 = O¢.

o [sw]e: the reflexive case is the same as for 0. If we have in © that Rnm, n#m
and nmé (S U S~1), then fim € RZ. Also we have (m,SUnm) : 9 € 6. On
the other hand, if 2y€S and n=y are both in O, (by definition) yz € R,
and (z, S\zyUyx):p € ©. With the three cases, we get ME, 7 = [sw]y. O

By the previous lemma we get:

Theorem 15 (Completeness). If T(p) is open, then ¢ is satisfiable.

14 Areces, Fervari and Hoffmann

3 Global Relation-Changing Operators

In previous sections we considered only local operators that modify the model
relation from the current state of evaluation. In particular, the sabotage and swap
modalities traverse an existing accessibility relation from the current state. The
bridge modality is local in the sense that it creates a new link also from the
current state.

We now consider the global counterparts of these three modalities. These
new versions can change the accessibility relation in any part of the model,
and leave the evaluation state unchanged. One motivation to consider these
global operators is, again, van Benthem’s original sabotage operator [§], which
is actually global.

The semantics of the three global operators is formally defined as follows:

M, w = (gsb)p iff for some u,v € W, s.t. Ruv, M,,,wE= ¢
M,w = (gbr)p iff for some u,v € W s.t. =“Ruv, M}, ,w ¢
M, w = (gsw)p iff for some u,v € W s.t. Ruv, M3, w = .

Adapting the calculi presented in Section [2| we can obtain tableau methods
for the global operations. For each logic, the corresponding () and (OJ) rules
are the same ones as for its local version. One can easily verify that the rules
for ML({gsb)) and ML({gbr)) in Figure [§] are direct adaptations of the rules
for ML((sb)) and ML({br)). The rules for ML({gsw)) are shown in Figure [9).
Notice that ([gsw]3) and (the last branch produced by) ({gsw)) are simpler than
([sw]s) and ({sw)). This is because swapping an already swapped edge in any
place is a generalization of doing it only from the evaluation state.

n,S) : (gs
()_ tsble ((gsb))* (n,B) : (gbr)e)
Rpq : ({gbr))
pq¢ s pq¢B
(n,SUpq) : ¢ (n, BUpa): ¢
(50 Losble (n. B) : [ghr]g
: B
pEs)
(n,SUpq) : ¢ (n,BUpq) : ¢ | Rpq
! p and ¢ are new to the branch.

Fig. 8. Tableau rules for ML((gsb)) and ML({gbr)).

The resulting calculi are sound and complete. The complexity for the satis-
fiability of these logics is still open but we conjecture they are undecidable (a
close variant of ML({gsb)) is undecidable [6]). Applying similar arguments as
for the local operators, it is possible to at least enforce infinite models.

Tableaux for Relation-Changing Modal Logics 15

(n, 5) : [gsw]e
(n,S) : [gswlep Rpq (n,5) : [gsw]p
— TP (gsu)) s — S (gl
(n,S): ¢ pgE(SUS™) (lgsw]2) (n, S\zyUyz) : ¢
(n, SUpq) : ¢

(n,5) : (gsw)e

({gsw))"

Rpp Rpg | V,yes(n S\zyUya):p
(n,S) | p#q
pag(SUS™)
(n, SUpq) : ¢

! p and ¢ are new to the branch.

Fig. 9. Tableau rules for ML({gsw)).

4 Ending Remarks

In this article we considered a number of dynamic operators which can add,
delete and swap edges in the accessibility relation, both locally and globally.
We introduced sound and complete tableau procedures for all of them to check
satisfiability.

A natural question is whether it is possible to combine these calculi into
a unique calculus that would support modal logic equipped with all the dy-
namic operators at once. We can easily obtain local-global combinations of
calculi for operators of the same kind: ML({sb), (gsb)), ML({br), (gbr)) and
ML({sw), (gsw)), by combining the corresponding rules from Section and Sec-
tion [3| However, further combination seems to require deep changes since every
kind of dynamic logic (sabotage, bridge, swap) requires distinct rules for the
connectors ¢ and .

As can be seen from their corresponding calculi, the logics presented here
involve equality reasoning on named states. They are actually related to hybrid
logics [BII]. In particular ML({sw)) is strictly less expressive than H(:,]) [3].
The same can be shown about ML((sb)) and H(:,]). Let S € NOM? and 2/, ¢’ €
NOM. Define ()%, a translation from formulas of ML((sb)) to formulas of H(:,)
as (for the non-trivial cases):

(Op)s =12".0ly'.(= V (@"any"y) N (9)s)

zyeS
((sb)e)s = 1"y (= \/S(x’ZMZ/iy) A (P)suary)
TYE
where 2’ and 3’ are nominals that do not appear in S. With this translation it
holds that for any formula ¢ of ML((sb)) and pointed model M, w, we have
Mw | ¢ iff M,w = (¢)5. On the other hand, translation for the four
remaining logics involve the global modality E.

16 Areces, Fervari and Hoffmann

All of the logics we considered can force infinite models. As a result, the
tableau calculi not necessarily terminate on all inputs, given that they do not
implement any kind of loop checking. Our ongoing research aims to establish the
undecidability of all the presented logics using techniques from [3], showing in
this way that non-termination is unavoidable.

As future work, we plan to investigate constructive interpolation results in
hybrid versions of the logics we presented here.

Acknowledgments: This work was partially supported by grants ANPCyT-PICT-
2008-306, ANPCyT-PICT-2010-688, the FP7-PEOPLE-2011-IRSES Project “Mobil-
ity between Europe and Argentina applying Logics to Systems” (MEALS) and the
Laboratoire International Associé “INFINIS”.

References

1. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem,
J. (eds.) Handbook of Modal Logics, pp. 821-868. Elsevier (2006)

2. Areces, C., Fervari, R., Hoffmann, G.: Moving arrows and four model checking
results. In: Proceedings of WoLLIC 2012. Buenos Aires, Argentina (September 2012)

3. Areces, C., Fervari, R., Hoffmann, G.: Swap logic. To appear in the Logic Journal
of IGPL (2013)

4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theo-
retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

5. Blackburn, P., Seligman, J.: Hybrid languages. Journal of Logic, Language and
Information 4, 251-272 (1995)

6. Loding, C., Rohde, P.: Model checking and satisfiability for sabotage modal logic. In:
Pandya, P., Radhakrishnan, J. (eds.) FSTTCS. Lecture Notes in Computer Science,
vol. 2914, pp. 302-313. Springer (2003)

7. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide expressive description logics
with role negation. Lecture Notes in Computer Science, vol. 4825, pp. 438-451.
Springer (2007)

8. van Benthem, J.: An essay on sabotage and obstruction. In: Mechanizing Mathe-
matical Reasoning. pp. 268-276 (2005)

	Tableaux for Relation-Changing Modal Logics

