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Abstract. We study dynamic modal operators that can change the ac-
cessibility relation of a model during the evaluation of a formula. In par-
ticular, we extend the basic modal language with modalities that are able
to delete, add or swap an edge between pairs of elements of the domain.
We define a generic framework to characterize this kind of operations.
First, we investigate relation-changing modal logics as fragments of clas-
sical logics. Then, we use the new framework to get a suitable notion of
bisimulation for the logics introduced, and we investigate their expres-
sive power. Finally, we show that the complexity of the model checking
problem for the particular operators introduced is PSpace-complete, and
we study two subproblems of model checking: formula complexity and
program complexity.
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1 Introduction

Modal logics [10,11] are particularly well suited to describe graphs, and this is for-
tunate as many situations can be modeled using graphs: an algebra, a database,
the execution flow of a program or, simply, the arbitrary relations between a
set of elements. This explains why modal logics have been used in many, diverse
fields. They offer a well balanced trade-off between expressivity and computa-
tional complexity (the problem of model checking the basic modal languageML
has only polynomial complexity, while the complexity of its satisfiability prob-
lem is PSpace-complete). Moreover, the range of modal logics known today is
extremely wide, so that it is usually possible to pick and choose the right modal
logic for a particular application.

But if we want to describe and reason about dynamic aspects of a given
situation, e.g., how the relations between a set of elements evolve through time
or through the application of certain operations, the use of modal logics (or
actually, any kind of logic with classical semantics) becomes less clear. We can
always resort to modeling the whole space of possible evolutions of the system
as a graph, but this soon becomes unwieldy. It would be more elegant to use
truly dynamic modal logics with operators that can mimic the changes that the



structure will undergo. This is not a new idea, and an early example of this kind
of logics is the sabotage logic introduced by Johan van Benthem in [40].

Consider the following sabotage game. It is played on a graph with two play-
ers, Runner and Blocker. Runner can move on the graph from node to accessible
node, starting from a designated point, and with the goal of reaching a given final
point. He should move one edge at a time. Blocker, on the other hand, can delete
one edge from the graph, every time it is his turn. Of course, Runner wins if he
manages to move from the origin to the final point in the graph, while Blocker
wins otherwise. Van Benthem discusses in [40] how to transform the sabotage
game into a modal logic. This original idea has been studied in several other
works [28,34,21] where the semantics of the (global) sabotage operator ♦·gsb is
defined as:

M, w |= ♦·gsbϕ iff there is a pair (u, v) of M such that M−(u,v), w |= ϕ,

where M−(u,v) is identical to M except that the edge (u, v) has been removed

from the accessibility relation.
It is clear that the ♦·gsb operator changes the model in which a formula is

evaluated. As Van Benthem puts it, ♦·gsb is an “external” modality that takes
evaluation to another model, obtained from the current one by deleting some
transition. It has been proved that solving the sabotage game is PSpace-hard,
while the model checking problem of the associated modal logic is PSpace-
complete and the satisfiability problem is undecidable. The logic fails to have
both the finite model property and the tree model property [28,34].

In this article, we investigate various model changing operators. For example,
♦·sb, for local sabotage, is a ♦ operator that destroys the traversed arrow. In
contrast, the bridge operator ♦·br adds an arrow to an inaccessible state of the
model and moves evaluation over there. We also consider ♦·sw which has the
ability to swap the direction of a traversed arrow. The ♦·sw operator is a ♦
operator — to be true at a state w it requires the existence of an accessible state
v where evaluation continues — but it changes the accessibility relation during
evaluation: the pair (w, v) is deleted, and the pair (v, w) added to the accessibility
relation (see [3] for details). A picture will help understand the dynamics of ♦·sw.
The formula ♦·sw♦> is true in a model with two related states:

w

♦·sw♦>
v w v

♦>swapping

As we can see in the picture, evaluation starts at state w with the arrow pointing
from w to v, but after evaluating the ♦·sw operator, it continues at state v with
the arrow now pointing from v to w.

More generally, let M = 〈W,R, V 〉 be a relational model and let fW be a
function that takes an element w of W and the current accessibility relation
R over W and returns a set of pairs (v, S), where v ∈ W is the new state of
evaluation and S is the new accessibility relation to be used. In this article we
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focus on binary accessibility relations and, hence, fW :W ×2W
2 7→ 2W×2

W2

, but
of course the idea generalizes to modalities of arbitrary arity. In each modelM,
each different function fW defines a dynamic operator. For example, ♦·sw would
be defined by the function fW (w,R) = {(v,R\{(w, v)}∪ {(v, w)}) | (w, v) ∈ R}.

Clearly, the modalities defined in this form do not cover all possible dynamic
modal operators. For instance, dynamic modal operators investigated in differ-
ent dynamic epistemic logics [47] change the set of states in the model, or the
valuation function (see [4] for a more general, but complex framework). But,
as we discussed, the present framework covers Van Benthem’s original sabotage
operator and other variants investigated in, e.g., [34].

In the next sections we, first, formally introduce the framework we just out-
lined; then, we investigate the logics obtained as fragments of classical logics,
and we introduce the tools needed to investigate their expressive power. We also
investigate the complexity of their model checking problem. We present both
specific results for concrete operators, and general results that can be proved
when the defining functions satisfy certain constraints. This article collects and
extends results previously published in [2,3,16].

1.1 Related Work

There exists previous work that investigates operators which change a model
during the evaluation of a formula, applied in different contexts. In the field
of Belief Revision, the theories of belief change that have been developed are
usually not presented as logics, in the proper sense, but rather as (more or less
formal) axiomatic theories. The AGM approach [1], for example, is presented by
means of a number of postulates in natural language that characterize the math-
ematical structures under study. In [13], the authors suggest representing belief
change within the logical framework of a dynamic modal logic. This idea led to
the development of Dynamic Doxastic Logic [36,37], which is an extension of
traditional doxastic logic (see [23]) with dynamic operators representing various
kinds of transformations of the agent’s doxastic state. The main goal of basic dy-
namic doxastic logic is to describe an agent that has opinions about the external
world and that can change these opinions in the light of new information.

Model changing operators have also been used in the field of Dynamic Epis-
temic Logics. One of the most used dynamic epistemic language is Action Model
Logic (see [9]). This logic uses entities called action models as part of its syn-
tax, which themselves use formulas of action model logic to define pre- and
post-conditions. In this way, action models can be used to specify changes in
the epistemic state of a group of agents. The epistemic models representing the
knowledge of certain agents are updated according to the information repre-
sented by action models. In epistemic logic the knowledge of an agent is repre-
sented by the accessibility relation of the epistemic model. Epistemic updates
correspond to the shrinking or expansion of each agent’s accessibility to possible
states of the world represented in the epistemic model.

Belief revision was investigated also in an epistemic setting, combining the
works mentioned in the previous paragraphs. Belief revision and epistemic logics
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are two different approaches to information change, and the main idea is to take
advantage of dynamic epistemic operators such as public announcements and
action models to represent belief revision operations. Some complex forms of
belief revision such as, for instance, iterated, revocable and higher-order revision
can be formalized in this setting in a natural way (see, e.g., [7,45,44]).

In [8], some relation-changing operators are investigated as data structure
modifiers. They can also be used to reason about changes in a graph. Two logics
are introduced: one only involves global modifications (of some state label, or of
some edge label) anywhere in the graph; the second allows for modifications that
are local to states. The global version generalizes logics of public assignments
(see, e.g., [12,46]) and public announcements (see, e.g., [32,25]), as well as logics
of preference modification [42]. By means of reduction axioms they show that
this logic is as expressive as the underlying logic without global modifiers. They
also show that adding local modifiers dramatically increases the power of the
logic turning the satisfiability problem undecidable.

In [26,27], arrow update logic is introduced as a theory of epistemic access
elimination, that can be used to reason about multi-agent belief change. Arrow
update logic generalizes the public announcement logic introduced in [20], in
which a statement eliminates access to all epistemic possibilities in which the
statement does not hold. It is inspired by the arrow pre-condition language pro-
posed in [33], as well as other works about access elimination (see e.g., [12,8,40]).
Arrow update logic is an extension of the basic epistemic logic with updates to
eliminate edges according to certain conditions on their nodes. While the belief-
changing updates of arrow logic can be transformed into equivalent updates with
action models [9,47], arrow updates are sometimes exponentially more succinct
than action models. The main difference between arrow updates and the sabo-
tage operator à la Van Benthem is that arrow updates remove edges according to
a pre and a post-condition, and sabotage removes arbitrary edges in the model.

The different lines of work we mentioned in this section are examples of the
use of relation-changing modal logics. In this article, we investigate a general
framework which encompasses a wide family of relation-changing modal logics.
One of the main differences of the new logics investigated, with respect to the
ones previously mentioned, is their high expressive power. For example, many
dynamic epistemic logics (see, e.g., [43,42,41,24]) have reduction axioms into
basic modal logic (i.e., each formula can be rewritten to an equivalent formula
in the basic modal logic). Instead, we will show that the general framework
we define includes logics which are strictly more expressive that the basic modal
logic (actually, it has been previously shown that in some cases, their satisfiability
problem is undecidable, see [28,3,16]).

2 Basic Definitions

The syntax of the dynamic modal logics we study is a straightforward extension
of the basic modal logic (see [10]):
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Definition 1 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. The set FORM of formulas over PROP is defined as:

FORM : : = ⊥ | p | ¬ϕ | ϕ ∧ ψ | ♦ϕ, | ♦·iϕ,
where p ∈ PROP, ♦·i ∈ DYN a set of dynamic operators, and ϕ,ψ ∈ FORM.
Other operators are defined as usual. In particular, �ϕ is defined as ¬♦¬ϕ and
�·iϕ is defined as ¬♦·i¬ϕ.

Formulas of the basic modal language ML are those that contains only the ♦
operator besides the Boolean operators. For S ⊆ DYN a set of dynamic operators,
we call ML(S) the extension of ML allowing also the operators in S. If S is a
singleton set S = {♦·}, we write ML(♦·) instead of ML({♦·}).

In the rest of the article we refer to the modal depth (md) and the dynamic
modal depth (dmd) of a formula. These two measures are defined as follows:

md(p) = 0 dmd(p) = 0
md(¬ϕ) = md(ϕ) dmd(¬ϕ) = dmd(ϕ)

md(ϕ ∧ ψ) = max{md(ϕ),md(ψ)} dmd(ϕ ∧ ψ) = max{dmd(ϕ), dmd(ψ)}
md(♦) = 1 + md(ϕ) dmd(♦ϕ) = dmd(ϕ)

md(♦·f ) = 1 + md(ϕ) dmd(♦·fϕ) = 1 + dmd(ϕ).

Semantically, formulas ofML(S) are evaluated in standard relational models,
and the meaning of all the operators of the basic modal logic is unchanged.

Definition 2 (Models). A modelM is a tripleM = 〈W,R, V 〉, where W is the
domain, a non-empty set whose elements are called points or states; R ⊆W ×W
is the accessibility relation; and V : PROP 7→ 2W is the valuation. For M a
model, we usually write |M| for its domain.

Let w be a state in M, the pair (M, w) is called a pointed model; we usually
drop parentheses and call M, w a pointed model.

In this article, we restrict ourselves to models with only one accessibility
relation (i.e., the underlying modal language has only one modal operator). A
generalization to models with multiple accessibility relations is possible, but
leads to further choices concerning the definition of the dynamic operators (e.g.,
which relation is affected by a given dynamic operator).

Definition 3 (Model update functions). Given a domain W , a model up-

date function for W is a function fW :W × 2W
2 → 2W×2

W2

, that takes a state
in W and a binary relation over W and returns a set of possible updates to the
state of evaluation and accessibility relation.

Let C be a class of models, a family of model update functions f is a class
of model update functions, one for each domain of a model in C:

f = {fW | 〈W,R, V 〉 ∈ C}.

C is closed under a family of model update functions f if whenever M =
〈W,R, V 〉 ∈ C, then {〈W,R′, V 〉 | fW ∈ f, w ∈W, (v,R′) ∈ fW (w,R)} ⊆ C.
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Clearly, the class of all pointed models is closed under any family of model
update functions. In the rest of the article we only discuss the class of all models.

Notice, in the definition above, that a model update function is defined rela-
tive to a domain. We specifically require that all models with the same domain
have the same model update function. This constraint limits the number of op-
erators that can be captured in the framework, but at the same time leads to
operators with a more uniform behavior. We will discuss this issue further after
we introduce the formal semantics of the relation-changing operators below.

We now introduce the semantics for the general case.

Definition 4 (Semantics). Let C be a class of models, M = 〈W,R, V 〉 be a
model in C, w ∈ W a state, f a family of model update functions for C and ♦·f
its associated dynamic operator. Let ϕ be a formula in ML(♦·f ). We say that
M, w satisfies ϕ, and write M, w |= ϕ, when

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iffM, w 6|= ϕ
M, w |= ϕ ∧ ψ iffM, w |= ϕ and M, w |= ψ
M, w |= ♦ϕ iff for some v ∈W s.t. (w, v) ∈ R, M, v |= ϕ
M, w |= ♦·fϕ iff for some (v,R′) ∈ fW (w,R), 〈W,R′, V 〉, v |= ϕ.

The definition extends to languages with many modal dynamic operators in
the obvious manner. ϕ is satisfiable if for some pointed model M, w we have
M, w |= ϕ. We write M, w ≡L N , v when both models satisfy the same L-
formulas, i.e., for all ϕ ∈ L, M, w |= ϕ if and only if N , v |= ϕ. We drop the L
subindex when no confusion arises.

Notice, in the semantic definition, how the relation-changing modal operator
♦·f potentially changes both the state of evaluation and the accessibility relation.
On the other hand, the model domain remains the same, and hence all ♦·f
operators in a formula are evaluated using the same model update function.

Consider the following model update functions. To simplify notation we use
wv as a shorthand for {(w, v)} or (w, v); context will always disambiguate the
intended use. Given a binary relation R define the following notation:

R−wv = R\wv
R+
wv = R ∪ wv

R∗wv = (R\vw) ∪ wv.

Define now the following six model update functions, which give rise to nat-
ural dynamic modal operators: Van Benthem’s sabotage operator ♦·gsb, and a
local version ♦·sb that deletes an existing edge between the current state of eval-
uation and a successor state; a “bridge” operator ♦·gbr that adds an edge between
two previously unconnected states, and a local version ♦·br that links the current
state of evaluation and an inaccessible state; and the global and local versions
(♦·gsw and ♦·sw, respectively) of the swap operator we discussed above. Let W be
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a domain and R a binary relation over W ,

f sbW (w,R) = {(v,R−wv) | wv ∈ R} fgsbW (w,R) = {(w,R−uv) | uv ∈ R}
fbrW (w,R) = {(v,R+

wv) | wv 6∈ R} fgbrW (w,R) = {(w,R+
uv) | uv 6∈ R}

f swW (w,R) = {(v,R∗vw) | wv ∈ R} fgswW (w,R) = {(w,R∗vu) | uv ∈ R}.

In the next sections we investigate dynamic logics that can be defined in the
framework we introduced, with particular focus on the six concrete operators
♦·sb, ♦·gsb, ♦·br, ♦·gbr, ♦·sw and ♦·gsw associated to the six families of model update
functions we just introduced. As mentioned, ♦·gsb in Van Benthem’s sabotage
operator. The other operators also have natural properties. For example, local
sabotage and local swap are logically stronger than the diamond operator when
restricted to non-dynamic predicates, as the formulas ♦·sbp→ ♦p and ♦·swp→ ♦p
are valid. The operators are very expressive and, as we discuss in Section 4, they
can force non-tree models. For example, the formula �·sb�⊥ means that any
local sabotage leads to a dead-end, hence the formula ♦♦> ∧ �·gsb�⊥ can only
be true at a reflexive state, a property that cannot be expressed in the basic
modal language.

3 Translations

In this section we discuss relation-changing modal logics as fragments of better
known logics. We start by defining a generic translation from any logicML(♦·f )
into second-order logic, where ♦·f is defined by a family of model update functions
f . We then show that in some cases a translation into first-order logic is possible.
Finally, we discuss how relation-changing modal logics can be seen as multi-
modal logics over particular classes of models.

3.1 The Standard Translation

It is a well known result that the basic modal logic ML can be translated into
first-order logic using, for example, the following (standard) translation ST.

Definition 5. The correspondence language for the basic modal language ML
is a relational language with a unary relation symbol p for each propositional
symbol p and a binary relation symbol r for the modality ♦.

Let ST be the following function that translates formulas from ML into its
correspondence language:

STx(p) = p(x)
STx(¬ϕ) = ¬STx(ϕ)

STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ)
STx(♦ϕ) = ∃y.(r(x, y) ∧ STy(ϕ)),

where y is a variable which has not been used yet in the translation.
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ST mimics the conditions for the satisfiability of a formula in a model and
the resulting first-order formula is equivalent to the original modal formula [10].

Proposition 1. Let ϕ ∈ ML then M, w |= ϕ if and only if M, gxw |= STx(ϕ),
where g is an arbitrary first-order assignment and gxw is identical to g except
perhaps in that gxw(x) = w.

Notice, in the theorem above, that M = 〈W,R, V 〉 can be used to interpret
STx(ϕ), with the accessibility relation R interpreting the relation symbol r and
V (p) interpreting p. The translation ST can be extended to relation-changing
modal operators when the family of model update functions can be defined in
the language and we allow second-order quantification. The intuition is that
the second-order quantifier, with the help of the formula defining the family of
model update functions, can redefine the accessibility relation that should be
used when translating a dynamic operator.

Definition 6. Let f be a family of model update functions, and let δf (v1, V1, v2,
V2) be a formula over the appropriate correspondence language with only the
first-order variables v1, v2 and the second-order binary variables V1,V2 free. We
say that δf defines f if in every model M = 〈W,R, V 〉, for every w ∈ W , and
for every second-order assignment g,

for all v, S, (v, S) ∈ fW (w,R) iff M, (((gv1w )V1

R )v2v )V2

S |= δf .

Given a family of model update functions f , and δf a formula that defines
f , define STx,r as follows

STx,r(p) = p(x)
STx,r(¬ϕ) = ¬STx,r(ϕ)

STx,r(ϕ ∧ ψ) = STx,r(ϕ) ∧ STx,r(ψ)
STx,r(♦ϕ) = ∃y.(r(x, y) ∧ STy,r(ϕ))

STx,r(♦·fϕ) = ∃y.∃s.(δf [v1/x,
V1/r,

v2/y,
V2/s] ∧ STy,s(ϕ)),

where θ[x/y] is the formula obtained by replacing all free occurrences of x by y
in θ, and y, s are variables which have not been used yet in the translation.

It is not difficult to prove by induction that these translation functions pre-
serve the meaning of formulas in a model.

Proposition 2. Let ϕ ∈ ML(♦·f ) and let δf be a formula defining f . Then
M, w |= ϕ if and only if M, gxw |= STx,r(ϕ), where g is an arbitrary second-
order assignment and gxw is identical to g except perhaps in that gxw(x) = w.

The function ST translatesML(♦·f )-formulas into second-order formulas. It
has been proved in [3,16] thatML(♦·sw) is a proper fragment of first-order logic,
but the translation we give in this section provides a more general framework.

It is easy to define the formula ϕ♦ which characterizes the operator ♦:

δ♦
.
= V1(v1, v2) ∧ ∀z.∀z′.(V1(z, z′)↔ V2(z, z′)).
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The formula above clearly establishes that the current state has a successor, and
that the accessibility relation does not change. A formula characterizing ♦·sb is:

δ♦·sb .
= V1(v1, v2)∧¬V2(v1, v2)∧∀z.∀z′.((v1, v2) 6= (z, z′)→ (V1(z, z′)↔ V2(z, z′))).

For ♦·gsb, we need to specify that the update is in any part of the model, and the
evaluation state does not change:

δ♦·gsb .
= (v1 = v2)∧∃z.∃z′.(V1(z, z′) ∧ ¬V2(z, z′)∧

∀w.∀w′.((z, z′) 6= (w,w′)→ (V1(w,w′)↔ V2(w,w′)))).

The formulas for the bridge operator are similar.

δ♦·br .= ¬V1(v1, v2)∧V2(v1, v2)∧∀z.∀z′.((v1, v2) 6= (z, z′)→ (V1(z, z′)↔ V2(z, z′))).

δ♦·gbr .= (v1 = v2) ∧ ∃z.∃z′.(¬V1(z, z′) ∧ V2(z, z′)∧
∀w.∀w′.((z, z′) 6= (w,w′)→ (V1(w,w′)↔ V2(w,w′)))).

The formulas for ♦·sw and ♦·gsw are only slightly more involved. In all cases, the
resulting function translates formulas into second-order logic. More interestingly,
for these particular six concrete relation-changing operators it is possible to
define translations into first-order logic as we show in the next section.

3.2 Explicit Translations to First-Order Logic

Let us first observe that, in general, not all relation-changing modal operators can
be translated into first-order logic. For instance consider the operator #+ with
the following semantics: 〈W,R, V 〉, w |= #+ϕ iff 〈W,R+, V 〉, w |= ϕ. Its intuitive
semantics is that ϕ is evaluated after replacing the current accessibility relation
by its transitive closure. As stated by the following proposition,ML(#+) is not
compact and hence it cannot be translated into first-order logic.

Proposition 3. ML(#+) is not compact.

Proof. The argument is similar to the one used for Propositional Dynamic Logic
(see [11] for details). Consider the infinite set Γ = {#+♦p} ∪ {�n¬p | n ≥ 0}.
Every finite subset of Γ is satisfiable, but Γ is not.

We present now translations fromML(♦·), ♦· ∈ {♦·sb,♦·br,♦·sw,♦·gsb,♦·gbr,♦·gsw}
to first-order logic, inspired by the translation of ML(♦·gsb) presented in [34].

Let VAR be a totally ordered set of first-order variables. We consider a set
S ⊆ VAR×VAR to be interpreted as the set of modified edges in the model,
according to the logic we are translating. We write xy for (x, y), and use the
following notation:

nm = xy is defined as n = x ∧m = y
nm 6= xy is defined as n 6= x ∨ m 6= y
nm ∈ S is defined as

∨
xy∈S

nm = xy, and

nm /∈ S is defined as
∧

xy∈S
nm 6= xy,
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where S is a finite set of pairs of variables. In particular nm ∈ ∅ is a notation
for ⊥ and nm /∈ ∅ is a notation for >. For S a set of pairs of variables, define
S−1 = {mn | nm ∈ S}.

We present the non-trivial cases of the translation forML({♦·sb,♦·gsb}) (which
shares the case for the basic modality ♦):

STx,S(♦ϕ) = ∃y.(r(x, y) ∧ xy /∈ S ∧ STy,S(ϕ))
STx,S(♦·sbϕ) = ∃y.(r(x, y) ∧ xy /∈ S ∧ STy,S∪xy(ϕ))
STx,S(♦·gsbϕ) = ∃y.∃z.(r(y, z) ∧ yz /∈ S ∧ STx,S∪yz(ϕ)),

where y and z are variables which have not been used yet in the translation.
Notice that S is not a relational symbol but a set of pairs of variables, that

refer to deleted edges in the model. It does not appear in the final formula and
is used only during the translation.

Proposition 4. Given ϕ a formula of ML(♦·sb) or ML(♦·gsb) and M, w a
pointed model, we have M, w |= ϕ iff M, gxw |= STx,∅(ϕ), where g is an ar-
bitrary first-order assignment and gxw is identical to g except perhaps in that
g(x) = w.

Proof. Let M = 〈W,R, V 〉 be a model, X ⊆ W×W , S ⊆ VAR×VAR and g :
VAR 7→ W be an assignment. We say that the tuple 〈g, S,X〉 is adequate if
the mapping (x, y) 7→ (g(x), g(y)) is bijective from S to X. We write M−X for
〈W,R\X,V 〉.

By structural induction on the formula, we show that for all ϕ,M = 〈W,R, V 〉,
w ∈W , X ⊆W×W , S ⊆ VAR×VAR and an assignment g :VAR 7→W such that
〈g, S,X〉 is adequate:

M−X , w |= ϕ iff M, gxw |= STx,S(ϕ).

First, the case for p is trivial, as are ¬ϕ, and ϕ ∧ ψ by inductive hypothesis.
Consider the case ♦ψ. We need to show that for all M, w, and all adequate

〈g, S,X〉, M−X , w |= ♦ψ iff M, gxw |= STx,S(♦ψ). Assume the left part of the
equivalence, i.e.,M−X , w |= ♦ψ. That is, there exists v such that (w, v) ∈ (R\X)
and M−X , v |= ψ. Then by inductive hypothesis, M, gyv |= STy,S(ψ), with ade-
quate 〈g, S,X〉.

We can assume without loss of generality that there exists some x ∈ VAR
such that g(x) = w. This is because either it exists, or we can use some arbitrary
x that does not appear in STy,S(♦ψ) and modify g such that g(x) = w. In any
case, since (w, v) ∈ (R\X), this implies M, gyv |= r(x, y) ∧ xy /∈ S. This is
equivalent to M, (gxw)yv |= STx,S(♦ψ), which is what we wanted.

For the right-to-left direction, assumeM, gxw |= STx,S(♦ψ) with some assign-
ment g, and some set of pairs S and X such that 〈g, S,X〉 is adequate. We have
M, gxw |= ∃y.(r(x, y) ∧ xy /∈ S ∧ STy,S(ψ)). This implies M, (gxw)yv |= r(x, y),
M, (gxw)yv |= xy /∈ S and M, (gxw)yv |= STy,S(ψ). The first two formulas imply
that (w, v) ∈ (R\X), and by inductive hypothesis, the third one implies that
M−X , v |= ψ, thus M−X , w |= ♦ψ.

10



Now consider the case where ϕ = ♦·sbψ. We need to show that for all M, w,
and adequate 〈g, S,X〉, M−X , w |= ♦·sbψ iff M, gxw |= STx,S(♦·sbψ).

Assume M−X , w |= ♦·sbψ. There exists v such that (w, v) ∈ (R\X) and
M−X∪wv, v |= ψ. Then by inductive hypothesis, M, gyv |= STy,T (ψ), with ad-
equate 〈g, T,X∪wv〉. Again, we can assume there exists x ∈ VAR such that
g(x) = w without loss of generality. Let us call S the set such that T = S∪xy.

Since 〈g, S∪xy,X∪wv〉 is adequate and g maps xy to wv, then 〈g, S,X〉 is also
adequate. Thus we have, given that (w, v) ∈ (R\X), M, gyv |= r(x, y) ∧ xy /∈ S.
With the previous formulas this entails M, gxw |= STx,S(♦·sbψ).

For the right-to-left direction, assume M, gxw |= STx,S(♦·sbψ) and let X
a set such that 〈g, S,X〉 is adequate. We have M, gxw |= ∃y.(r(x, y) ∧ xy /∈
S ∧ STy,S∪xy(ψ)). Since y is a new variable, we can assume without loss of gen-
erality that g(y) = v, thus: M, gxw |= r(x, y), M, gxw |= xy /∈ S, and M, gxw |=
STy,S∪xy(ψ)). The first two formulas imply that (w, v) ∈ (R\X). From the last
formula, and by inductive hypothesis, we have: M−X∪gxw(x)gxw(y), g(y) |= ψ, i.e.,

M−X∪wv, v |= ψ. This implies that M−X , w |= ♦·sbψ.
The case for ♦·gsbψ can be proved similarly. ut

The translations for the bridge and swap operations also use an intermediate
set of variable pairs to represent modifications in the model. ForML({♦·br,♦·gbr}),
the set S represents the edges added to the model. We define:

STx,S(♦ϕ) = ∃y.((r(x, y) ∨ xy ∈ S) ∧ STy,S(ϕ))
STx,S(♦·brϕ) = ∃y.(¬(r(x, y) ∨ xy ∈ S) ∧ STy,S∪xy(ϕ))
STx,S(♦·gbrϕ) = ∃y.∃z.(¬(r(y, z) ∨ yz ∈ S) ∧ STx,S∪yz(ϕ)).

ForML({♦·sw,♦·gsw}), S refers to the edges swapped in the model. We define:

STx,S(♦ϕ) = ∃y.(((r(x, y) ∧ xy /∈ S) ∨ xy ∈ S−1) ∧ STy,S(ϕ))
STx,S(♦·swϕ) = (r(x, x) ∧ STx,S(ϕ))

∨ ∃y.(x 6= y ∧ r(x, y) ∧ xy /∈ (S∪S−1) ∧ STy,S∪xy(ϕ))
∨

∨
yz∈S(x = z ∧ STy,S\yz∪zy(ϕ))

STx,S(♦·gswϕ) = (∃y.r(y, y) ∧ STx,S(ϕ))
∨ ∃y.∃z.(y 6= z ∧ r(y, z) ∧ yz /∈ (S∪S−1) ∧ STx,S∪yz(ϕ))
∨

∨
yz∈S STx,S\yz∪zy(ϕ).

We show that these translations also preserve equivalence.

Proposition 5. GivenM, w some pointed model and ϕ a formula ofML(♦·br),
ML(♦·gbr), ML(♦·sw) or ML(♦·gsw), we have M, w |= ϕ iff M, gxw |= STx,∅(ϕ),
where g is an arbitrary first-order assignment and gxw is identical to g except
perhaps in that g(x) = w.

Proof. We use an inductive hypothesis similar to the one in the previous proof.
For ML(♦·br) and ML(♦·gbr), the difference is that the standard translation
maintains S as a set of variables referring to added edges in the model.

For ML(♦·sw) and ML(♦·gsw), the translation is more complicated. It main-
tains the following invariant: the set S is irreflexive, and when an edge xy belongs
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to S, it means that xy is removed from the relation of the original model, and
yx is added. That is, xy is no longer in the model because it has been swapped.

STx,S(♦·swϕ) is the disjunction of three cases. Either the swap operation
occurs on a reflexive edge, in which case the set S is not modified (since swapping
a reflexive edge leaves it unchanged). Or, swapping occurs at some edge xy, such
that neither xy is in S, nor its inverse yx. In this case swapping is remembered
simply by adding xy to the set S. We require yx not to be in S to avoid naming
twice the same edge in the translation. This makes re-swapping (the next case)
doable. Finally, swapping occurs by traversing some edge zy present in S−1.
That is, we swap again a swapped edge. In this case we remove yz from S, add
zy, and continue the translation standing at the state stored in y.

STx,S(♦·gswϕ) is a generalization of the previous case for swapping occurring
anywhere in the model. ut

3.3 Unfolding

We now show a different kind of translation. We no longer translate only formu-
las, but also the models in which they are to be evaluated. Moreover, we do not
translate to first- or second-order logic, but to the basic modal logic, albeit with
two modalities. The key idea is the use of model unfolding.

Suppose we start with a modelM and a formula ϕ of a dynamic modal logic
like ML(♦·sw):

w

ϕ

Starting fromM, we can explicitly build the variants obtained by successive
applications of the dynamic operator ♦·sw:

w
ϕ♦

This unfolded model has two accessibility relations: one represents the re-
lation in each update model, the another is an “external” relation that links
updated model. At the syntactic level, we can rewrite ϕ into a modal formula
ϕ♦ in the basic modal language ML with two classic modalities interpreted us-
ing the relations in the unfolded model. In general, we can always define the
following translation:

Definition 7 (Bi-modal translation). Consider the language ML(♦·f ) for a
family of model update functions f . Define the following translation from this

12



language to the basic modal language with two modalities:

(p)♦ = p
(ϕ ∧ ψ)♦ = ϕ♦ ∧ ψ♦

(¬ϕ)♦ = ¬ϕ♦

(♦ϕ)♦ = ♦1ϕ♦

(♦·fϕ)♦ = ♦2ϕ♦.

Define relation updates as follows:

Definition 8 (Relation updates). Let W be a domain, R a relation on W ,
fW a model update function for W , and n a natural number. Define RfW ,n, the
set of all possible relation updates obtained applying n times the function fW on
the relation R as:

RfW ,0 = {R}
RfW ,n+1 = RfW ,n ∪ {T | (v, T ) ∈ fW (w, S), S ∈ RfW ,n, w ∈W}.

Define the set of all relation variants obtained applying fW on the relation R as

RfW =
⋃
n<ω

RfW ,n.

We can now define the unfolding of a model.

Definition 9 (Model unfolding). Let M = 〈W,R, V 〉 and let f be a family
of model update functions. Define Mf,n = 〈W ′, {R′1, R′2}, V ′〉 the n-bounded
unfolding of M as follows. For n = 0, let

W ′ = W × {R}
R′1 = {((s,R), (t, R)) | (s, t) ∈ R}
R′2 = ∅
V ′(p) = {(s,R) | s ∈ V (p)}.

While for n+ 1, let

W ′ = W ×RfW ,n+1

R′1 = {((s, S), (t, S)) | (s, t) ∈ S, S ∈ RfW ,n+1}
R′2 = {((s, S), (t, T )) | (t, T ) ∈ f(s, S), S ∈ RfW ,n}
V ′(p) = {(s, S) | s ∈ V (p), S ∈ RfW }.

The unbounded unfolding of a model is Mf = 〈W ′, {R′1, R′2}, V ′〉, where

W ′ = W ×RfW
R′1 = {((s, S), (t, S)) | (s, t) ∈ S, S ∈ Rf}
R′2 = {((s, S), (t, T )) | (t, T ) ∈ fW (s, S), S ∈ RfW }
V ′(p) = {(s, S) | s ∈ V (p), S ∈ RfW }.

We can prove the equivalence between satisfiability of a dynamic formula in
a model, and satisfiability of its bi-modal translation in the bounded unfolding:
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Proposition 6. Let M = 〈W,R, V 〉, and ϕ ∈ ML(♦·f ). Then M, w |= ϕ iff
Mf,dmd(ϕ), (w,R) |= ϕ♦.

Proof. By induction on the complexity of ϕ. ut

This translation reflects the idea that relation-changing operators can be seen
as external modalities, that move evaluation of a formula to a different model.

4 Bisimulations and Expressivity

In modal model theory, the notion of bisimulation is a crucial tool. Typically, a
bisimulation is a binary relation linking elements of the domains that have the
same atomic information, and preserving the relational structure of the model.
Because we need to keep track of the changes on the accessibility relation that
the dynamic operators can introduce, we will define bisimulations as relations
that link pairs of a state together with the current accessibility relation.

Definition 10 (Bisimulations). Let M = 〈W,R, V 〉, M′ = 〈W ′, R′, V ′〉 be
two models, and f a family of model update functions. A non empty relation
Z ⊆ (W × 2W

2

) × (W ′ × 2W
′2

) is an ML(♦·f )-bisimulation if it satisfies the
following conditions. If (w, S)Z(w′, S′) then

(atomic harmony) for all p ∈ PROP, w ∈ V (p) iff w′ ∈ V ′(p);
(zig) if (w, v) ∈ S, there is v′∈W ′ s.t. (w′, v′) ∈ S′ and (v, S)Z(v′, S′);
(zag) if (w′, v′) ∈ S′, there is v∈W s.t. (w, v) ∈ S and (v, S)Z(v′, S′);
(f-zig) if (v, T ) ∈ fW (w, S), there is (v′, T ′) ∈ fW ′(w′, S′) s.t. (v, T )Z(v′, T ′);
(f-zag) if (v′, T ′) ∈ fW ′(w′, S′), there is (v, T ) ∈ fW (w, S) s.t. (v, T )Z(v′, T ′).

Given two pointed models M, w and M′, w′ they are ML(♦·f )-bisimilar (no-
tation,M, w ↔ML(♦·f )M′, w′) if there is anML(♦·f )-bisimulation Z such that

(w,R)Z(w′, R′) where R and R′ are respectively the relations of M and M′.

For instance, according to the above definition, besides (atomic harmony),
(zig) and (zag), instantiating f with f sb we get the following conditions:

(f sb-zig) If (w, v) ∈ S, there is v′∈W ′ s.t. (w′, v′) ∈ S′ and (v, S−wv)Z(v′, S′−w′v′);
(f sb-zag) If (w′, v′) ∈ S′, there is v∈W s.t. (w, v) ∈ S and (v, S−wv)Z(v′, S′−w′v′).

In the same way, we can instantiate f with any of the concrete model update
functions mentioned in Section 2.

Theorem 1 (Invariance.). Let f be a family of model update functions, then
M, w ↔ML(♦·f )M′, w′ implies M, w ≡ML(♦·f )M′, w′.
Proof. We prove the theorem by structural induction. The base case holds by
(atomic harmony), and the ∧ and ¬ cases are trivial.

LetM = 〈W,R, V 〉 andM′ = 〈W ′, R′, V ′〉, and Z such that (w,R)Z(w′, R′).
[♦ϕ case:] Suppose M, w |= ♦ϕ. Then there is v in W s.t. (w, v) ∈ R and
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M, v |= ϕ. Since Z is a bisimulation, by (zig) we have v′ ∈ W ′ s.t. (w′, v′) ∈
R′ and (v,R)Z(v′, R′). By inductive hypothesis, M′, v′ |= ϕ and by definition
M′, w′ |= ♦ϕ. For the other direction use (zag).

[♦·fϕ case:] Suppose 〈W,R, V 〉, w |= ♦·fϕ. Then there is (v, S) ∈ fW (w,R)
s.t. 〈W,S, V 〉, v |= ϕ. Because Z is a bisimulation, by (f -zig) we have (v′, S′) ∈
fW ′(w

′, R′) s.t. (v, S)Z(v′, S′). By inductive hypothesis, 〈W ′, S′, V ′〉, v′ |= ϕ and
by definition 〈W ′, R′, V ′〉, w′ |= ♦·fϕ. For the other direction use (f -zag). ut

Clearly the result holds when we extend ML with any set of relation-
changing modal operators. It suffices to require that the bisimulation comply
with the various (f -zig) and (f -zag) conditions corresponding to all operators.

The Invariance Theorem proves that bisimilarity defines an equivalence re-
lation that is as least as fine as the one defined by modal equivalence. Over
certain classes of models the two notions actually coincide. These classes are
usually called Hennessy-Milner classes and the theorem stating the equivalence
is called a Hennessy-Milner Theorem [38].

A well known result establishes that ω-saturated models are a Hennessy-
Milner class for many modal languages (see [10] for details). We will define a
suitable notion of ω-saturation for relation-changing modal logics and prove a
Hennessy-Milner Theorem with respect to the corresponding class of models.

Definition 11 (f-saturation). Let M = 〈W,R, V 〉 be a model, X ⊆W×2W
2

,
f a family of model update functions and Σ a set of ML(♦·f )-formulas. Σ is
satisfiable over X in M if there is some (u, S) ∈ X such that 〈W,S, V 〉, u |= ϕ,
for all ϕ ∈ Σ (we will not mention M when it is obvious from context). Σ is
finitely satisfiable over X in M if each finite subset of Σ is satisfiable over X.

We say that M = 〈W,R, V 〉 is f -saturated if for all Σ, and for all pairs
(s, S) ∈ Img(fW ) ∪ {(w,R) | w ∈ W} whenever Σ is finitely satisfiable over
X = {(t, T ) | (t, T ) ∈ fW (s, S)} then it is satisfiable over X; and for all w ∈
W whenever Σ is finitely satisfiable over X = {(t, S) | (w, t) ∈ S} then it is
satisfiable over X.

The definition of f -saturation is a variation of the standard definition of ω-
saturation and intuitively, requires ω-saturation in each possible updated model,
and also with respect to the set of possible model updates in each state.

Proposition 7. Let f be a family of model update functions, and let M, w,
M′, w′ be two f -saturated models. Then M, w ≡ML(♦·f ) M′, w′ implies M, w

↔
ML(♦·f )M′, w′.

Proof. We prove that when two f -saturated pointed models satisfy the same
formulas, they are bisimilar.

Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be given, and let f be a fam-
ily of model update functions. Define the relation !ML(♦·f ) over Img(fW ) ∪
{(w,R)} × Img(fW ′) ∪ {(w′, R′)} such that (v, S) !ML(♦·f ) (v′, S′) holds if
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and only if 〈W,S, V 〉, w ≡ML(♦·f ) 〈W ′, S′, V ′〉, w′. Notice that (w,R)!ML(♦·f )
(w′, R′) by hypothesis. We show that !ML(♦·f ) is an ML(♦·f )-bisimulation.

We only prove the f -zig condition. Assume (s, S)!ML(♦·f ) (s′, S′) and let

(t, T ) ∈ fW (s, S), we should prove that there is (t′, T ′) ∈ fW (s′, S′) such that
(t, T )!ML(♦·f ) (t′, T ′).

Let Σ = {ϕ | 〈W,T, V 〉, t |= ϕ}, for every finite ∆ ⊆ Σ we have 〈W,S, V 〉, s |=
♦·f ∧∆. By!ML(♦·f ), 〈W ′, S′, V ′〉, s′ |= ♦·f ∧∆, then there is some (t′∆, T

′
∆) ∈

f(s′, S′) such that 〈W ′, T ′∆, V ′〉, t′∆ |=
∧
∆, i.e., Σ is finitely satisfiable over

X ′ = {(t′∆, T ′∆) | ∆ ∈ Σ}. Then, by f -saturation, Σ is satisfiable over X ′. Take
(t′, T ′) ∈ X ′ as the pair that satisfies Σ we have (t, T )!ML(♦·f ) (t′, T ′). ut

The notion of model unfolding we introduced in Section 3.3 also gives rise to
Hennessy-Milner classes.

Proposition 8. Let M and M′ be two models and let f be a family of model
update functions. Assume that the unfolded modelsMf andM′f are image-finite
(i.e., each state has a finite number of immediate successors). Then for every
w ∈W and w′ ∈W ′, M, w ≡ML(♦·f )M′, w′ implies M, w ↔ML(♦·f )M′, w′.
Proof. We prove that the relation ≡ML(♦·f ) is a bisimulation. The (atomic har-

mony) condition is immediate.

For (f -zig), assume that 〈W,R, V 〉, w ≡ML(♦·f ) 〈W ′, R′, V ′〉, w′ and there

exists some (v, S) ∈ fW (w,R). To create a contradiction, let us assume that there
is no (v′, S′) ∈ fW ′(w′, R′) such that 〈W,S, V 〉, v ≡ML(♦·f ) 〈W ′, S′, V ′〉, v′. First

note that fW ′(w
′, R′) is non-empty, otherwise ♦·f> would hold at 〈W,R, V 〉, w

but not at 〈W ′, R′, V ′〉, w′, which would contradict our assumption. Furthermore,
by assumption, fW ′(w

′, R′) is image-finite (sinceM′f is image-finite). Let us call
{(u1, T1), . . . , (un, Tn)} = fW ′(w

′, R′). By assumption, for every i there exists a
formula ϕi such that 〈W,S, V 〉, v |= ϕi and 〈W ′, T ′i , V ′〉, ui 6|= ϕi.

Then 〈W,R, V 〉, w |= ♦·f (ϕ1∧. . .∧ϕn) and 〈W ′, R′, V ′〉, w′ 6|= ♦·f (ϕ1∧. . .∧ϕn)
which is a contradiction.

The (f -zag), (zig) and (zag) conditions can be shown in similar ways. ut

Note that the condition requiring image-finiteness of the unfolded models
can easily fail. For instance, for fbr, the unfolding of a model that is image-finite
and infinite is image-infinite. This happens because we have an infinite supply of
inaccessible states to which we can build new edges. On the other hand, a model
update function on a finite domain is always image-finite. This implies that finite
models guarantee image-finiteness of their corresponding unfolded models.

Proposition 9. LetM, w andM′, w′ be finite pointed models. Let f be a family
of model update functions. ThenM, w ≡ML(♦·f )M′, w′ impliesM, w ↔ML(♦·f )
M′, w′.
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4.1 Expressivity and Ehrenfeucht-Fräıssé Games

Adding relation-changing modal operators to the basic modal logic increases its
expressive power. A basic result for ML [10] shows that it has the tree model
property : every satisfiable formula ofML can be satisfied at the root of a model
where the accessibility relation defines a tree (i.e., there is a root, the relation
is irreflexive, all elements different from the root can be reached from the root
via the transitive closure of the accessibility relation, and no element has two
different immediate predecessors). We will show thatML extended with any of
the six concrete relation-changing modal operators introduced in Section 2 lacks
the tree model property.

Proposition 10. ML(♦·) does not have the tree model property, for ♦· ∈ {♦·sb,
♦·br, ♦·sw, ♦·gsb, ♦·gbr, ♦·gsw}.
Proof. We show formulas that ensure that the accessibility relation is not a tree.
For ♦·gsb, the result has already been proved in [28], for ♦·sw in [3] and for ♦·sb
and ♦·br in [2]. Suppose the following formulas hold at some state w in a model:

1. ♦♦> ∧ �·sb�⊥, then w is reflexive;
2. ♦♦> ∧ �·gsb�⊥, then w is reflexive;
3. �⊥ ∧ ♦·br�⊥, then w and some different state v are unconnected;
4. �⊥ ∧ ♦·gbr�⊥, then w and some different state v are unconnected;
5. p ∧ (

∧
1≤i≤3�

i¬p) ∧ ♦·sw♦♦p, then w has a reflexive successor;
6. �⊥ ∧ ♦·gsw♦>, then w has an incoming edge.

In each case, the formula cannot be satisfied at the root of a tree.

1) The formula ϕ = ♦♦> ∧ �·sb�⊥ is true at a state w in a model, only if w
is reflexive. Suppose we evaluate ϕ at some state w of an arbitrary model. The
static part of the formula ♦♦> ensures it is possible to take two steps in the
accessibility relation. The dynamic part of the formula �·sb�⊥ tells us that after
moving through any edge in the accessibility relation and eliminating it, we are
at a dead end. This can only happen if the state w is reflexive and does not have
any other outgoing links.

2) Similar to the previous case.

3) The formula ϕ = �⊥∧♦·br�⊥ is only satisfiable in models that have at least
two unconnected states. The static part of the formula (�⊥) establishes that the
evaluation state has no successors. The dynamic part (♦·br�⊥) tells us that after
we create a new arrow from the evaluation state to an inaccessible state, we are
at a dead end. In both cases, the �⊥ part guarantees that the corresponding
evaluation state has no successors, then it follows that they are not connected.

4) Similar to the previous case.

5) The formula ϕ = p∧ (
∧

1≤i≤3�
i¬p)∧♦·sw♦♦p is true at a state w in a model,

only if w has a reflexive successor. Suppose we evaluate ϕ at some state w of an
arbitrary model. The static part of the formula p ∧ (

∧
1≤i≤3�

i¬p) makes sure
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that p is true at w and that no p state is reachable within three steps from w
(in particular, w cannot be reflexive). Because ♦·sw♦♦p is true at w, there should
be an R-successor v where ♦♦p holds once the accessibility relation has been
updated to R∗vw. That is, v has to reach a p-state in exactly two R∗vw-steps. But
the only p-state sufficiently close is w, which is reachable in one step. As w is
not reflexive, v has to be reflexive so that we can linger at v for one loop and
reach p in the correct number of steps.

6) The formula ϕ = �⊥ ∧ ♦·gsw♦> is true at a state with an incoming edge.
Indeed, �⊥ tells us that we are at a dead end, but ♦·gsw♦> establishes that after
swapping around some edge in the model, we are not longer in a dead end. This
happens if in the original model, the evaluation state has an incoming edge. ut

As the six logics we introduced are conservative extensions of ML, we have
shown that each is strictly more expressive than ML. Now, a natural question
is whether these dynamic logics are different from each other.

We have presented bisimulations in a relational perspective. However, it is
sometimes difficult to argue that two models are bisimilar, as the bisimulation
may be too unwieldy to define and verify. An alternative, equivalent, notion of in-
distinguishability can be defined in terms of Ehrenfeucht-Fräıssé Games [14,35].

Definition 12 (Ehrenfeucht-Fräıssé Games). LetM = 〈W,R, V 〉 andM′ =
〈W ′, R′, V ′〉 be two models, w ∈ W , w′ ∈ W ′ and let f be a family of model
update functions. Let S ⊆ W 2 and S′ ⊆ W ′2, an Ehrenfeucht-Fräıssé game
EF♦·f (M,M′, (w, S), (w′, S′)) is defined as follows. There are two players called

Spoiler and Duplicator. The game stops and Duplicator immediately loses if w
and w′ do not satisfy the same propositional symbols. Otherwise, the game starts,
with the players moving alternatively. Spoiler always makes the first move in a
turn of the game, starting by choosing in which model he will make a move. The
game continues in one of the following ways:

1. Spoiler chooses v such that (w, v) ∈ S. If there is no such v, the game
stops and Duplicator wins. Otherwise, Duplicator has to choose v′ such that
(w′, v′) ∈ S′, with v and v′ satisfying the same propositional symbols. If
there is no such v′, Spoiler wins. Otherwise the game continues with the
configuration EF♦·f (M,M′, (v, S), (v′, S′)). If Spoiler starts by choosing an

element inM′, the same process has to be followed by exchanging the models
where each player has to choose.

2. Spoiler chooses (v, T ) such that (v, T ) ∈ fW (w, S). If there is no such (v, T ),
the game stops and Duplicator wins. Otherwise, Duplicator has to choose
(v′, T ′) such that (v′, T ′) ∈ fW (w′, S′), with v and v′ satisfying the same
propositional symbols. If there is no such (v′, T ′), Spoiler wins. Otherwise
the game continues with the configuration EF♦·f (M,M′, (v, T ), (v′, T ′)). If

Spoiler starts by choosing an element in M′, the same process has to be
followed by exchanging the models where each player has to choose.

Duplicator wins on infinite runs.
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The winning conditions for EF♦·f (M,M′, (w, S), (w′, S′)) establish that be-

fore the game begins, Duplicator immediately loses if w and w′ do not coincide
in the propositional symbols. In subsequent rounds, if Duplicator responds with
a successor that differs in the atomic propositions with respect to the point cho-
sen by Spoiler, Duplicator loses. If one player cannot move, the other wins, and
Duplicator wins on infinite runs. Given these conditions, observe that exactly
one of Spoiler or Duplicator wins each game. Given two models M = 〈W,R, V 〉
and M′ = 〈W ′, R′, V ′〉, w ∈ W and w′ ∈ W ′, we write M, w ≡EF

♦·f M′, w′ when

Duplicator has a winning strategy for EF♦·f (M,M′, (w,R), (w′, R′)).

There is an obvious resemblance between the conditions for bisimulations
and the rules of the games.

Proposition 11. Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be two mod-
els, w ∈ W , w′ ∈ W ′ and let f be a family of model update functions. Then
M, w ≡EF

♦·f M′, w′ iff M, w ↔ML(♦·f )M′, w′.
Proof. Let Z be a bisimulation between M and M′. Duplicator can answer
correctly every move of Spoiler by choosing the appropriate pair in Z. The (zig),
(zag), (f -zig) and (f -zag) conditions ensure that she always has a correct move
available. In the other direction, a winning strategy defines a correct move for
Duplicator, as a response to each possible move of Spoiler. A relation between
M and M′ can be defined in terms of this information, which will satisfy the
conditions for bisimulation. ut

Proposition 11 establishes that bisimulations and Ehrenfeucht-Fräıssé Games
define the same notion of indistinguishability for the family of languages we are
investigating. In this way, Ehrenfeucht-Fräıssé Games give us an operational
way to check if two models are bisimilar, which is a fundamental tool for the
comparison of the expressive power of relation-changing modal logics. In the rest
of the section, we will decide whether the logics obtained by extended the basic
modal logic with ♦·sb, ♦·br, ♦·sw, ♦·gsb, ♦·gbr and ♦·gsw are all pairwise distinct in
terms of expressive power.

We use the following standard definition of when a logic is at least as expres-
sive as another.

Definition 13 (L ≤ L′). We say that L′ is at least as expressive as L (notation
L ≤ L′) if there is a function Tr between formulas of L and L′ such that for every
model M and every formula ϕ of L we have that

M |=L ϕ iff M |=L′ Tr(ϕ).

M is seen as a model of L on the left and as a model of L′ on the right, and we
use in each case the appropriate semantic relation |=L or |=L′ as required.

We say that L and L′ are incomparable if L � L′ and L′ � L.

According to this definition, to prove that L 6≤ L′, it suffices to exhibit two
models which are bisimilar for L′ and distinguishable by L. Formally, we need
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models M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 and states w ∈ W,w′ ∈ W ′

such that (w,R) and (w′, R′) belong to an L′-bisimulation betweenM andM′,
together with an L formula ϕ such that M, w and M′, w′ disagree on it.

Proposition 12. The expressive power of all pairs of different logics among
ML(♦·sb), ML(♦·br), ML(♦·sw), ML(♦·gsb), ML(♦·gbr) and ML(♦·gsw) are in-
comparable, except perhaps for the pair of ML(♦·sw) and ML(♦·gsw).

Proof. Most of the results are summed up in Figure 1. For every pair of pointed
models M, w and M′, w′ shown in the figure, and for all formulas ϕ of the
column “Differentiated by”, we have that M, w 6|= ϕ and M′, w′ |= ϕ. For all
corresponding logics L of the column “Bisimilar for”, we have that M, w is L
bisimilar toM′, w′. For each pair of different logics mentioned in the Proposition,
it is possible to find in the table a pair of bisimilar models and differentiating
formulas proving L 6≤ L′.

We treat the case ofML(♦·gbr) 6≤ ML(♦·br) separately as the model involved
is complex. For this case, we give the description of an infinite model M with
two states w and v such that M, w and M, v are ML(♦·br)-bisimilar and there
is an ML(♦·gbr)-formula ϕ such that M, w |= ϕ and M, v 6|= ϕ.

Let a piece be a part of a model with a finite and non-zero number of states
and some relation between them. Let a collection be the disjoint union of an
infinite number of copies of the same piece. Let M be the disjoint union of all
collections obtained from all pieces involved. Let w be the root of the following
piece: • → •, and v the root of the following piece: • ← • → •. First, notice that
♦·gbr�♦> is true at M, w and false at M, v. Now we show that M, w and M, v
are ML(♦·br)-bisimilar using Ehrenfeucht-Fräıssé games. We present a winning
strategy for Duplicator. M, w and M, v are bisimilar for the basic modal logic.
We show that after any ♦·br move in any model, it is possible to do a ♦·br move
in the other model that leads to a modally bisimilar part of the model. Assume
Spoiler does a bridge to some part of the model. As the model consist of pieces
of finite size, evaluation moves to a finite connected component. Duplicator only
needs to do a bridge to a finite connected component of the same shape.

We now discuss all other cases, and provide some further details on the models
and formulas shown in Figure 1. That the pairs of models shown disagree on the
given formulas can be easily verified. That the models are bisimilar for the given
logics is also easily verified in most cases, except for the following (we will use
Ehrenfeucht-Fräıssé games to check bisimilarity).

Row 1. The models are bisimilar for ML(♦·sb) and ML(♦·sw) since the eval-
uation states have no successors.

Row 2. The models are bisimilar for ML(♦·br) and ML(♦·gbr) since they are
bisimilar for the basic modal logic and their relations is complete. They are also
bisimilar for ML(♦·sw) and ML(♦·gsb) since swapping a reflexive arrow has no
effect (and can be done in both models), and swapping non-reflexive arrows on
the rightmost model cannot create dead-ends.

Row 3. The models are bisimilar for ML(♦·gsb) and ML(♦·sb) because they
are bisimilar for ML, they are acyclic and (for ML(♦·gsb)) they contain the
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M, w M′, w′ Differentiated by Bisimilar for

w
w′

♦·br♦·br>
♦·gbr♦·gbr>
♦·gsb>
♦·gsw>

ML(♦·sb)
ML(♦·sw)

w w′

♦·sb♦>
♦·gsb♦>

ML(♦·sw)
ML(♦·br)
ML(♦·gsw)
ML(♦·gbr)

w w′ ♦·sw♦♦♦�⊥
♦♦·gsw♦♦♦�⊥
♦·br♦·br>
♦·6gbr♦·gbr>

ML(♦·gsb)
ML(♦·sb)

w
. . .. . . w′

. . .
♦·sw♦�⊥
♦·gsw�⊥ ML(♦·br)

ML(♦·gbr)
w

. . .

. . .

w′

. . .

. . .

♦·sb♦�⊥ ML(♦·gsb)

w w′
♦·3br>
♦·3gbr> ML(♦·gsw)

w

. . .
w′

. . .
♦·br> ML(♦·gbr)

Fig. 1. Bisimilar models and distinguishing formulas.

same number of edges. Then each time that Spoiler moves to some successor, or
deletes an edge, Duplicator can mimic the move.

Row 4. The models are ML(♦·br)-bisimilar since they are infinite, hence for
every link that Spoiler adds, Duplicator answers by adding a new link to a
modally bisimilar component.

Row 5. The models are identical except for the point of evaluation. The graph
is a star that has infinitely many ingoing branches, and infinitely many ingoing-
outgoing branches. w is a point located at the end of an ingoing branch, and w′

is at the end of an ingoing-outgoing branch. We have to check that there is a
ML(♦·gsb)-bisimulation between the models. If Spoiler moves to the center of the
star, Duplicator can do the same and both situations become indistinguishable.
If Spoiler deletes one of the ingoing edges that has w or w′ as origin, then
Duplicator does the same on the other graph, and any further edge deletion can
also be imitated. If Spoiler deletes the outgoing edge that goes from the center
of the graph towards w′, then Duplicator can delete any outgoing edge without
changing the graph, given that there are infinitely many edges of both kinds.
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Row 6. The models are bisimilar for ML(♦·gsb) since the connected compo-
nent from the evaluation states cannot be changed by swapping.

Row 7. The models are bisimilar for ML(♦·gbr) since adding arrows globally
is always possible, but does not change that both models are bisimilar to a single
reflexive state. ut

Notice that, in particular, we have shown that the local versions of sabotage
and bridge, cannot be simulated by a combination of their global versions and
the classical diamond. The case for ML(♦·sw) and ML(♦·gsw) remains open (in
particular it is unknown if there is a translation fromML(♦·sw) toML(♦·gsw) or
not), but we conjecture that their expressive power is also incomparable.

5 Model Checking

In this section we establish complexity results for the model checking task in
the various dynamic modal logics we presented. The model checking problem
consists in, given a pointed model M, w and a formula ϕ, deciding whether
M, w |= ϕ. All the results are established using a similar argument: hardness
proofs are done by encoding the satisfiability problem of Quantified Boolean
Formulas (QBF) [31] as the model checking problem of each logic. For each logic
involved, we simulate variable assignment of QBF as a model modification done
by deleting, adding or swapping edges during model checking.

PSpace-hardness for global sabotage was already proved in [29,28], but we
provide here a more direct proof.

Proposition 13. For ♦· ∈ {♦·sb,♦·br,♦·sw,♦·gsb,♦·gbr,♦·gsw}, model checking for
any of ML(♦·) is PSpace-hard.

Proof. We reduce the PSpace-hard satisfiability problem of QBF to the model
checking problem of each of these logics. We give a complete proof for ♦·sw. For
the other operators a similar strategy establishes the result.

Let α be a QBF formula with variables {x1, . . . , xk}. Without loss of generali-
ty we can assume that α has no free variables and no variable is quantified twice.
One can build in polynomial time the relational structureMk = 〈W,R, V 〉 over
a signature with one relational symbol and propositions {p>, p1, . . . , pk}, where:

W = {w} ∪ {w1
i , w

0
i | 1 ≤ i ≤ k}

V (pi) = {w1
i , w

0
i }

V (p>) = {w1
i | 1 ≤ i ≤ k}

R = {(w,w1
i ), (w,w

0
i ),

(w1
i , w), (w0

i , w) | 1 ≤ i ≤ k}
p1

p>

p1
. . . pk

p>

pk

Let ( )′ be the following linear translation from QBF to ML(♦·sw):

(∃xi.α)′ = ♦·sw(pi ∧ ♦(α)′)
(xi)

′ = ¬♦(pi ∧ p>)
(¬α)′ = ¬(α)′

(α ∧ β)′ = (α)′ ∧ (β)′.
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It remains to see that α is satisfiable iff Mk, w |= (α)′ holds. Let us write
v |=qbf α if valuation v : {x1, . . . , xk} → {0, 1} satisfies α. For a model M with
relation R we define vR : {x1, . . . , xk} as “vR(xi) = 1 iff (w,w1

i ) 6∈ R”, in the
present case, iff the link between w and w1

i has been swapped.

Let β be any subformula of α. We show by induction on β thatM, w |= (β)′

iff vR |=qbf β. The first observation is that R satisfies i) if xi is free in β, then
(w,w1

i ) 6∈ R or (w,w0
i ) 6∈ R but not both, and ii) if xi is not free in β then

(w,w1
i ) ∈ R and (w,w0

i ) ∈ R. From here it will follow that Mk, w |= (α)′ iff
v |=qbf α for any v since α has no free variables, iff α is satisfiable.

For the base case, vR |=qbf xi iff (w,w1
i ) 6∈ R which implies (by definition

of Mk) M, w |= (xi)
′. For the other direction, suppose M, w 6|= (xi)

′. Hence
M, w |= ♦(pi ∧ p>) which implies (w,w1

i ) ∈ R and vR 6|=qbf xi.

The Boolean cases follow directly from the inductive hypothesis.

Consider the case β = ∃xi.γ. Since no variable is bound twice in α we know
(w,w1

xi
) ∈ R and (w,w0

i ) ∈ R. We have vR |=qbf β iff (vR[xi 7→ 0] |=qbf γ or
vR[xi 7→ 1] |=qbf γ) iff (vR∗

w0
i
w
|=qbf γ or vR∗

w1
i
w
|=qbf γ). By inductive hypothesis,

this is the case if and only if (M∗
w0

iw
, w0

i |= ♦(γ)′ or M∗
w1

iw
, w1

i |= ♦(γ)′) iff

M, w |= ♦·sw(pi ∧ ♦(γ)′) iff M, w |= (∃xi.γ)′.

This shows that the model checking problem of ML(♦·sw) is PSpace-hard.

For ML(♦·sb) and ML(♦·gsb), we use the same model construction, but with
different translations of QBF formulas.

For ML(♦·sb), use:

(∃xi.α)′ = ♦·sb(pi∧♦(α)′)
(xi)

′ = ¬♦(pi ∧ p>)
(¬α)′ = ¬(α)′

(α ∧ β)′ = (α)′ ∧ (β)′.

For ML(♦·gsb), use:

(∃xi.α)′ = ♦·gsb¬(♦(pi∧p>) ∧ ♦(pi∧¬p>))
(xi)

′ = ¬♦(pi ∧ p>)
(¬α)′ = ¬(α)′

(α ∧ β)′ = (α)′ ∧ (β)′.

In both cases, showing that a QBF formula α is satisfiable if, and only if,
Mk, w |= (α)′ holds can be done similarly to the case of ML(♦·sw).

To prove PSpace-hardness for ML(♦·br), ML(♦·gbr) and ML(♦·gsw), build the
following model:

W = {w} ∪ {w1
i , w

0
i | 1 ≤ i ≤ k}

V (pi) = {w1
i , w

0
i }

V (p>) = {w1
i | 1 ≤ i ≤ k}

R = {(w1
i , w), (w0

i , w) | 1 ≤ i ≤ k} p1

p>

p1
. . . pk

p>

pk

For ML(♦·br), use:

(∃xi.α)′ = ♦·br(pi ∧ ♦(α)′)
(xi)

′ = ♦(pi ∧ p>)
(¬α)′ = ¬(α)′

(α ∧ β)′ = (α)′ ∧ (β)′.
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For ML(♦·gbr), use:

(∃xi.α)′ = ♦·gbr(♦pi ∧ (α)′)
(xi)

′ = ♦(pi ∧ p>)
(¬α)′ = ¬(α)′

(α ∧ β)′ = (α)′ ∧ (β)′.

For ML(♦·gsw), use:

(∃xi.α)′ = ♦·gsw(♦pi ∧ (α)′)
(xi)

′ = ♦(pi ∧ p>)
(¬α)′ = ¬(α)′

(α ∧ β)′ = (α)′ ∧ (β)′.

This covers all the cases. ut

Proposition 14. Model checking for ML({♦·sb,♦·br,♦·sw,♦·gsb,♦·gbr,♦·gsw}) is in
PSpace.

Proof. Given a pointed model M, w and a formula ϕ, we present a recursive
algorithm CHECK(M, w, ϕ) that checks whether M, w |= ϕ and uses a polyno-
mial amount of space in function of its input. Its implementation follows the
evaluation of the truth of a formula in a model as described in Definition 4.

For the atomic, negation and conjunctive cases, the algorithm does not use
extra memory except for its recursive calls. For the classical diamond case (♦ψ),
CHECK(M, v, ψ) is ran for all v successors of w inM, which uses a (logarithmic
space) counter on (at most) all states of the model. For all these cases, CHECK
does not need to copy its input M.

On the other hand, the dynamic diamond case ♦·fψ involves building a certain
number of pointed modelsM′, v′ to compute CHECK(M′, v′, ψ). Each new model
uses a polynomial amount of space but this memory is reclaimed when the
corresponding computation is over.

As there is at most a linear nesting of dynamic operators in the input formula
ϕ, CHECK will not maintain more than a linear number of models in memory,
each one of size polynomial with respect to the input model. Cycling over all
models requires a counter that uses at most polynomial space (actually, the
model update functions of ♦·sb, ♦·br, ♦·sw, ♦·gsb, ♦·gbr and ♦·gsw generate a polynomial
amount of models so the counter would only use logarithmic space). ut

Theorem 2. For S ⊆ {♦·sb,♦·br,♦·sw,♦·gsb,♦·gbr,♦·gsw}, model checking for any of
the logics ML(S) is PSpace-complete.

5.1 Formula Complexity and Program Complexity

We established the complexity of the combined model checking task, measured
in function of the size of an input model and an input formula. It is also possible
to consider the task of model checking against a fixed model, measuring its
complexity in function of the size of an input formula (this is known as formula
complexity). One can also fix a formula and measure the complexity of model
checking in function of the length of an input model (this is known as program
or data complexity). Both notions were introduced in [48], and it has been shown
in [28] that formula and program complexity for model checking in ML(♦·gsb)
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are, respectively, linear and polynomial. We are going to show that these results
generalize to many more dynamic operators.

To investigate formula complexity and program complexity, we use model
unfoldings. Observe that if a dynamic operator can create only a polynomial
number of relation updates in one step, then the number of possible relation
updates after n steps is also polynomial:

Proposition 15. Let fW be a model update function. Suppose that there exists a
c > 0 such that for all s ∈W and S ⊆W×W , #f(s, S) ∈ O((#W )c) (i.e., f is
polynomially bounded). Then there exists d > 0 such that #Rf,k ∈ O((#W )dk).

This leads to the general result of formula complexity and program complex-
ity for modal logics equipped with polynomially bounded dynamic operators:

Theorem 3. Consider ML(♦·f ) with f a family of polynomially bounded model
update functions.

1. The model checking problem for ML(♦·f ) with a fixed finite model can be
solved in linear time with respect to the size of the formula.

2. The model checking problem for ML(♦·f ) with a fixed formula can be solved
in polynomial time with respect to the size of the finite model.

Proof. Both parts rely on the result that model checking forML is P-complete
and can be solved in time O(#ϕ · #M), where #ϕ is the size of the given
ML-formula ϕ and #M is the size of the given model M [15].

1. Fix a model M = 〈W,R, V 〉 with a state w ∈ W . Observe that if M is
finite, Mf is also finite. For some input formula ϕ, build ϕ♦ in time linear
with respect to #ϕ. Then check that Mf , (w,R) |= ϕ♦ in time linear with
respect to #ϕ♦ = #ϕ.

2. Fix a formula ϕ, and let k = dmd(ϕ). For some input modelM = 〈W,R, V 〉
and state w ∈W , buildMf,k in time polynomial with respect to #M. Then
check that Mf,k(w,R) |= ϕ♦ in time linear with respect to #Mf,k, i.e., in
time polynomial with respect to #M. ut

Observe that the modalities ♦·sb, ♦·br, ♦·sw, ♦·gsb, ♦·gbr and ♦·gsw all satisfy the
conditions of Proposition 15, hence Theorem 3 applies to the corresponding log-
ics. Moreover, the result extends to the basic modal logic equipped with any
combination of dynamic operators if each dynamic operator satisfies the condi-
tions of the Proposition.

An example of a dynamic modal operator that does not satisfy the conditions
of the theorem is the following modality, which can blow up the number of
possible relations to 2W

2

in just one step:

fW : (s, S) 7→ {(t, T ) | T ⊆W ×W, t ∈W}.

Evaluating this operator requires considering all models with domain W ,
some fixed valuation V and all possible binary relations on W .
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6 Conclusions

In this article we investigated a framework to define relation-changing modal
operators. It is based on the notion of model update functions that take a state
in the model and the current accessibility relation, and return the new state
of evaluation and the new accessibility relation to be used. We showed that the
framework can accommodate a variety of operators, like Van Benthem’s sabotage
logic [40] and other variants investigated in [2,3,34]. On the other hand, some well
known dynamic operators are not covered by the framework. The most important
example are those investigated in Dynamic Epistemic Logics [32,19,39,47].

We introduced six different dynamic modal operators with both local and
global effects which can add, delete and modify edges in the accessibility relation.
The goal was to investigate the degrees of liberty that the operators offered, and
how much overlap there was between the logics they define, and the models they
can describe. Many of the results we establish refers to these six logics, but we
believe that the techniques used in the different proofs are sufficiently general to
handle other logics that can be accommodated in the framework.

We investigated the logics obtained by adding relation-changing modal opera-
tors to the basic modal logic, as fragments of classical logics. First, we introduced
a translation from relation-changing modal formulas to second-order formulas,
which covers all the operators that can be defined in our framework under the
assumption that the family of update model functions can be characterized by a
second-order formula. In [34,3], it was shown that ML(♦·sw) and ML(♦·gsb) are
proper fragments of first-order logic. We proved the same result for the six con-
crete relation-changing operators we introduced. The existence of translations
into first-order logic opens the way to the use of first-order theorem provers for
automated deduction. We also showed a translation that uses model unfolding
to converts models and formulas to the basic modal logic with two accessibility
relations, over a particular class of models.

We also investigated the expressive power of these languages using bisimu-
lations. We defined bisimulations in a general way, and then instantiated this
definition for different, concrete logics. We showed an Invariance Theorem for
relation-changing modal logics, and Hennessy-Milner Theorems under different
conditions on a model class. We used this definition of bisimulations together
with Ehrenfeucht-Fräıssé games to compare the expressive power of different
relation-changing modal logics. A direction for future research would be to use
properties of the family of model update functions to obtain general expressiv-
ity results. In this article, we proved that the six concrete logics introduced are
pairwise incomparable in terms of expressive power, except for ML(♦·sw) and
ML(♦·gsw). We conjecture that their expressive power is also incomparable.

Finally, we showed that the complexity of model checking is PSpace-complete
for the six logics considered. The proofs are fairly uniform, and are based in the
encoding of the PSpace-complete QBF satisfiability problem. In each case, a
suitable representation for a propositional assignment, and the concrete trans-
lation used needs to be defined. Once this is done the proof is straightforward.
We first established the complexity of the combined model checking task, mea-
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sured in function of the length of an input model and an input formula. We
then considered the task of model checking against a fixed model, measuring its
complexity in function of the size of an input formula. Finally, it is also possible
to fix a formula and measure the complexity of model checking in function of
the length of an input model. In [28] it was shown that the formula complexity
and the program complexity of ML(♦·gsb) are respectively linear and polyno-
mial. We generalized this result to our general framework using model update
functions and we proved, using model unfolding, that the same bounds hold for
logics defined by a model update function satisfying certain properties.

An important question, left for future work, is the study of axiomatizations
for this family of logics. As a consequence of their high expressive power, it
is not possible to define reduction axioms to basic modal logic, such as it is
done for several dynamic epistemic logics. The definition of sound and complete
axiomatic systems seems non-trivial. For instance, consider the classical uniform
substitution, one of the main axioms of the basic modal logic. This axiom says
that if a formula ϕ is a theorem, then ϕ′ obtained by substituting all appearances
of a propositional variable p by an arbitrary formula ψ is also a theorem. Consider
the validity ♦·swp → ♦p. The uniform substitution of p by ♦·swp leads to a non
valid formula.

This article shows that some of the dynamic operators that can be captured
in the presented framework are strictly more expressive than the basic modal
language while they are no more expressive than first-order logic. It would be
interesting to investigate in which cases they are sufficiently expressive to be
a conservative reduction class for first-order logic (see, e.g., the case of hybrid
logics discussed in [5]). Investigating succinctness question for these languages,
as is done for different dynamic epistemic logics in, e.g., [30,18], would also be
worthwhile.

Another interesting line of research is to exploit the expressive power of
relation-changing modal logics to encode dynamic epistemic logics. For example,
in Action Model Logic the dynamic operators are defined using complex action
models which define how the model should be altered. The action models them-
selves can use formulas of action model logic to define pre- and post-conditions,
and as a result the syntax and semantics of the logic is involved. It would be
interesting to represent these epistemic logics using model-changing operators
(preliminary results have been presented in [17,16,6]). This would result in sim-
pler syntax and semantics which, in turn, could lead so a better understanding
of their expressive power, complexity and model and completeness theory.
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