
Hilbert-style Axiomatization for
Hybrid XPath with Data

Carlos Areces and Raul Fervari

FaMAF, Universidad Nacional de Córdoba, Argentina
CONICET, Argentina

{areces,fervari}@famaf.unc.edu.ar

Abstract. In this paper we introduce a sound and complete axiomati-
zation for XPath with data constraints extended with hybrid operators.
First, we define HXPath=(↑↓), an extension of vertical XPath with nomi-
nals and the hybrid operator @. Then, we introduce an axiomatic system
for HXPath=(↑↓), and we prove it is complete with respect to the class
of abstract data trees, i.e., data trees in which data values are abstracted
as equivalence relations. As a corollary, we also obtain completeness with
respect to the class of concrete data trees.

Keywords: XPath, modal logic, hybrid logic, data tree, axiomatization.

1 XPath as a Modal Logic with Data Tests

XPath is arguably the most widely used XML query language. Indeed, XPath
is implemented in XSLT and XQuery and it is used in many specification and
update languages. XPath is, fundamentally, a general purpose language for ad-
dressing, searching, and matching pieces of an XML document. It is an open
standard and constitutes a World Wide Web Consortium (W3C) Recommen-
dation [14]. [21] adapts the definition of XPath to be used as a powerful query
language over knowledge bases. Core-XPath [20] is the fragment of XPath 1.0
containing the navigational behavior of XPath. It can express properties of the
underlying tree structure of the XML document, such as the label (tag name) of
a node, but it cannot express conditions on the actual data contained in the at-
tributes. In other words, it is essentially a classical modal logic [8,10]. Core-XPath
has been well studied from a modal point of view. For instance, its satisfiability
problem is known to be decidable even in the presence of DTDs [22,6]. Moreover,
it is known that it is equivalent to FO2 (first-order logic with two variables over
an appropriate signature on trees) in terms of expressive power [23], and that
it is strictly less expressive than PDL with converse over trees [7]. Sound and
complete axiomatizations for Core-XPath have been introduced in [13,12].

However, from a database perspective, Core-XPath is not expressive enough
to define the most important construct in a query language: the join. Without

**This is a corrected version of the article published in Jelia 2016.

the ability to relate nodes based on the actual data values of the attributes,
the logic’s expressive power is inappropriate for many applications. The exten-
sion of Core-XPath with (in)equality tests between attributes of elements in an
XML document is named Core-Data-XPath in [11]. Here, we will call this logic
XPath=. Models of XPath= are data trees which can be seen as XML documents.
A data tree is a tree whose nodes contain a label from a finite alphabet and a
data value from an infinite domain (see Figure 1 for an example). We will relax
the condition on finiteness and consider also infinite data trees, although all our
results hold also on finite structures. The main characteristic of XPath= is to
allow formulas of the form 〈α = β〉 and 〈α 6= β〉, where α, β are path expressions
that navigate the tree using axes: descendant, child, ancestor, next-sibling, etc.
and can make tests in intermediate nodes. The formula 〈α = β〉 (respectively
〈α 6= β〉) is true at a node x of a data tree if there are nodes y, z that can be
reached by paths denoted by α, β respectively, and such that the data value of
y is equal (respectively different) to the data value of z. For instance, in Fig-
ure 1 the expression “there is a one-step descendant and a two-steps descendant
sharing the same data value” is satisfied at x, given the presence of u and z.
The expression “there are two children with distinct data value” is also true at
x, because y and z have different data.

a, 0

b, 2

a, 1 b, 0 a, 0

a, 1

x

y z

u v w

Fig. 1. An example of a data tree.

Notice that XPath= allows to compare data values at the end of a path, by
equality or inequality. However, it does not allow the access to the concrete data
value of nodes (in the example, 0, 1 or 2). Hence, it is possible to work with an
abstraction of data trees: instead of having concrete data values in each node,
we have an equivalence relation between nodes. In the data tree from Figure 1,
the relation consists of three equivalence classes: {x, v, w}, {u, z} and {y}.

Recent articles investigate XPath= from a modal perspective. For exam-
ple, satisfiability and evaluation are discussed in [15,19,16], while model theory
and expressivity are studied in [3,17,18,2]. We will focus in the proof theory of
XPath= extended with hybrid operators. In [5], a Gentzen-style sequent calculus
is given for a very restricted fragment of XPath=, named DataGL. In DataGL,
data comparisons are allowed only between the evaluation point and its succes-

2

sors. An extension of the equational axiomatic system from [12] is introduced
in [1], allowing downward navigation and equality/inequality tests.

In this article we will continue the investigation of axiomatic systems for
XPath=. In particular, we will introduce a Hilbert-style axiomatization for the
logic with downward and upward navigation, where node expressions are ex-
tended with nominals (special labels that are valid in only one node), and path
expressions are extended with the hybrid operator @ (allowing the navigation to
some particular named node). We call this logic Hybrid Vertical XPath (denoted
HXPath=(↑↓)). We will take advantage of hybrid operators to prove complete-
ness using a Henkin-style model construction (see [8] for details).

The article is organized as follows. In §2 we introduce the syntax and seman-
tics of HXPath=(↑↓). Then we define the axiomatic system HXP in §3 and we
prove its completeness in §4. In §5 we extend HXP to prove completeness with
respect to the class of data trees. To conclude, in §6 we introduce some remarks
and future lines of research.

2 Preliminaries

In this section we introduce the syntax and semantics for the logic we call Hybrid
Vertical XPath (HXPath=(↑↓) for short). We assume basic knowledge of classical
modal logic (see [8] for further details).

We start by defining the structures that will be used to evaluate formulas in
the language.

Definition 1 (Hybrid Data Models). Let LAB (the set of labels) and NOM
(the set of nominals) be two infinite countable sets. An abstract hybrid data
model is a tuple M = 〈M,∼,→, label ,nom〉, where M is a non-empty set of
elements, ∼ ⊆ M ×M is an equivalence relation between elements of M , → ⊆
M ×M is the accessibility relation, label : M → 2LAB is a labeling function and
nom : NOM→M is a function that assigns nominals to certain elements.

A concrete hybrid data model is a tuple M = 〈M,D,→, label ,nom, data〉,
where M is a non-empty set of elements, D is a non-empty set of data, → ⊆
M ×M is the accessibility relation, label : M → 2LAB is the labeling function,
nom : NOM → M is a function which names the nodes and data : M → D is
the function which assigns a data value to each node of the model.

We often write w↓v and v↑w when w → v.

Concrete data models are most commonly used in application, where we
encounter data from an infinite alphabet (e.g., alphabetic strings) associated to
the nodes in a semi-structured database. It is easy to see that each concrete
data model has an associated, equivalent abstract data model where data is
replaced by an equivalence relation that links all nodes with the same data.
Vice-versa, each abstract data model can be “concretized” by assigning to each
node its equivalence data class as data. We will prove sound and completeness
over the class of abstract data models and, as a corollary, obtain completeness
over concrete data models.

3

We are now ready to introduce the syntax and semantics of HXPath=(↑↓).

Definition 2 (Syntax). The set of path expressions (which we will note as
α, β, γ, . . .) and node expressions (which we will note as ϕ, ψ, θ, . . .) of
HXPath=(↑↓) are defined by mutual recursion as follows:

α, β ::= ↓ | ↑ | @i | [ϕ] | αβ
ϕ, ψ ::= a | i | ¬ϕ | ϕ ∧ ψ | 〈α = β〉 | 〈α 6= β〉, a ∈ LAB, i ∈ NOM.

Notice that path expressions occur in node expressions in data comparison
formulas of the form 〈α = β〉 and 〈α 6= β〉, while node expressions occur in path
expressions in test formulas of the form [ϕ].

In what follows we will always use δ to represent the ↓ and ↑ operators and
∗ for = and 6=. Other Boolean operators are defined as usual. We define the
following operators as abbreviations.

Definition 3 (Abbreviations). Let α, β be path expressions, γ1, γ2 path ex-
pressions or the empty string, ϕ a node expression, i a nominal, and p an arbi-
trary symbol in LAB:

Node Expressions Path Expressions

> ≡ p ∨ ¬p ε ≡ [>]
⊥ ≡ ¬> 〈γ1(α ∪ β)γ2 ∗ γ3〉 ≡ 〈γ1αγ2 ∗ γ3〉 ∨ 〈γ1βγ2 ∗ γ3〉

〈α〉ϕ ≡ 〈α[ϕ] = α[ϕ]〉 〈γ1 ∗ γ2(α ∪ β)γ3〉 ≡ 〈γ1 ∗ γ2αγ3〉 ∨ 〈γ1 ∗ γ2βγ3〉
[α]ϕ ≡ ¬〈α〉¬ϕ
@iϕ ≡ 〈@i〉ϕ

As a corollary of the definition below, the diamond and box expressions 〈α〉ϕ
and [α]ϕ will have their classical meaning, and the same will be true for hybrid
“at” formulas of the form @iϕ. Notice that we use @i both as a path expression
and as a modality; the intended meaning will always be clear by context. Notice
also that, following the standard notation in XPath logics and in modal logics,
the [] operation is overloaded: for ϕ a node expression and α a path expression,
both [α]ϕ and [ϕ]α are well-formed expressions; the former is a node expression
where [α] is a box modality, the latter is a path expression where [ϕ] is a test.

Definition 4 (Semantics). LetM = 〈M,∼,→, label ,nom〉 be an abstract data
model, and x, y ∈M . We define the semantics of HXPath=(↑↓) as follows:

M, x, y |= ↓ iff x→ y
M, x, y |= ↑ iff y → x
M, x, y |= @i iff nom(i) = y
M, x, y |= [ϕ] iff x = y and M, x |= ϕ
M, x, y |= αβ iff there is some z ∈M s.t. M, x, z |= α and M, z, y |= β
M, x |= a iff a ∈ label(x)
M, x |= i iff nom(i) = x
M, x |= ¬ϕ iff M, x 6|= ϕ

M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ
M, x |= 〈α = β〉 iff there are y, z∈M s.t. M, x, y |= α, M, x, z |= β and y ∼ z
M, x |= 〈α 6= β〉 iff there are y, z∈M s.t. M, x, y |= α, M, x, z |= β and y 6∼ z.

4

Corollary 1.

M, x |= @iϕ iff M,nom(i) |= ϕ
M, x |= 〈δ〉ϕ iff there is some y ∈M s.t. xδy and M, y |= ϕ
M, x |= [δ]ϕ iff for all y ∈M , xδy then M, y |= ϕ.

The addition of the hybrid operators to XPath increases its expressive power.
The following examples should serve as illustration.

Example 1. We list below some HXPath=(↑↓) expressions together with their
intuitive meaning:

α[i] There exists an α path between the current point of evaluation
and the node named i.

@iα There exists an α path between the node named i and some
other node.

〈@i = @j〉 The node named i has the same data than the node named j.
〈α = @iβ〉 There exists a node accessible from the current point of

evaluation by an α path that has the same data than a node
accessible from the point named i by a β path.

3 Axiomatic System

In this section we introduce the axiomatic system HXP for HXPath=(↑↓). It
is an extension of an axiomatic system for the hybrid logic HL(@) which adds
nominals and the @ operator to the basic modal language (see [8]). In particular,
we include axioms to handle data equality and inequality.

We present axioms and rules step by step, providing brief comments to help
the reader understand their role. In all cases, we provide axiom and rule schemes,
i.e., they can be instantiated with arbitrary path and node expressions (but
always respecting types). In all axioms and rules ϕ, ψ and θ are node expressions,
α, β and γ are path expressions, i, j and k are nominals. We use ` ϕ to indicate
that ϕ is a theorem of HXP.

In addition to an arbitrary set of axiom and rule schemes for propositional
logic, we include generalizations of the K axiom and the Necessitation rule for
the basic modal logic to handle modalities with arbitrary path expressions.

Axiom and rule for classical modal logic

K [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)
` ϕ

Nec
` [α]ϕ

Then we introduce generalizations of the rules for the hybrid logic HL(@).

5

Hybrid rules

` j → ϕ
name

` ϕ
` @i〈γ〉j ∧ 〈@jα ∗ β〉 → θ

paste
` 〈@iγα ∗ β〉 → θ

j is a nominal different from i that does not occur in ϕ, θ, α, β, γ.

Now we introduce axioms that handle @. Notice that @i is a path expression
of HXPath=(↑↓) and as a result, some of the standard hybrid axioms for @ have
been generalized. In particular, the K axiom and Nec rule above also apply to
@i. In addition, we provide axioms to ensure that the relation induced by @ is
a congruence.

Axioms for @ Congruence for @

@-self-dual ¬@iϕ↔ @i¬ϕ
@-intro i ∧ ϕ→ @iϕ

@-refl. @ii
@-sym. @ij → @ji
nom @ij ∧ 〈@iα ∗ β〉 → 〈@jα ∗ β〉
agree 〈@j@iα ∗ β〉 ↔ 〈@iα ∗ β〉
back 〈γ@iα ∗ β〉 → 〈@iα ∗ β〉

Axioms involving the classical XPath operators can be found below. We or-
ganize them in three groups. First, we have axioms for the interaction between
↓ and ↑. These axioms are the classical ones characterizing “future” and “past”
modalities (see [8]). Then, we introduce axioms to handle complex path expres-
sions in data comparisons. Finally, we introduce axioms to handle data tests.

Axioms for ↓, ↑-interaction
down-up ϕ→ [↓]〈↑〉ϕ
up-down ϕ→ [↑]〈↓〉ϕ
Axioms for paths
comp-assoc 〈(αβ)γ ∗ η〉 ↔ 〈α(βγ) ∗ η〉
comp-neutral 〈αβ ∗ γ〉 ↔ 〈αεβ ∗ γ〉 (α or β can be empty)
comp-dist 〈αβ〉ϕ↔ 〈α〉〈β〉ϕ
Axioms for data
equal 〈ε = ε〉
distinct ¬〈ε 6= ε〉
@-data ¬〈@i=@j〉 ↔ 〈@i 6=@j〉
ε-trans 〈ε = α〉 ∧ 〈ε = β〉 → 〈α = β〉
∗-comm 〈α ∗ β〉 ↔ 〈β ∗ α〉
∗-test 〈[ϕ]α ∗ β〉 ↔ ϕ ∧ 〈α ∗ β〉
@∗-dist 〈@iα ∗@iβ〉 → @i〈α ∗ β〉
subpath 〈αβ ∗ γ〉 → 〈α〉>
comp∗-dist 〈α〉〈β ∗ γ〉 → 〈αβ ∗ αγ〉

Proposition 1. The following formulas are theorems in HXP.

6

1. test-dist ` 〈[ϕ] = [ψ]〉 ↔ ϕ ∧ ψ
2. test-⊥ ` 〈[ϕ] 6= [ψ]〉 ↔ 〈ε 6= ε〉
3. @-swap ` @i〈α ∗@jβ〉 ↔ @j〈β ∗@iα〉
4. bridge ` 〈α〉i ∧@iϕ→ 〈α〉ϕ

Proof. (test-dist and test-⊥). Let ∗ be = or 6=. Then:
` 〈[ϕ] ∗ [ψ]〉 ↔ 〈[ϕ]ε ∗ [ψ]〉 by comp-neutral.
` 〈[ϕ]ε ∗ [ψ]〉 ↔ ϕ ∧ 〈ε ∗ [ψ]〉 by ∗-test.
` ϕ ∧ 〈ε ∗ [ψ]〉 ↔ ϕ ∧ 〈[ψ] ∗ ε〉 by ∗-comm.
` ϕ ∧ 〈[ψ] ∗ ε〉 ↔ ϕ ∧ 〈[ψ]ε ∗ ε〉 by comp-neutral.
` ϕ ∧ 〈[ψ]ε ∗ ε〉 ↔ ϕ ∧ ψ ∧ 〈ε ∗ ε〉 by ∗-test.
Replacing ∗ by = we get ϕ ∧ ψ by equal. Replacing it by 6= we get 〈ε 6= ε〉.
(@-swap). ` @i〈α = @jβ〉 ↔ 〈@iα = @i@jβ〉 by @ =-dist.
` 〈@iα = @i@jβ〉 ↔ 〈@i@jβ = @iα〉 by =-comm.
` 〈@i@jβ = @iα〉 ↔ 〈@jβ = @iα〉 by agree.
` 〈@jβ = @iα〉 ↔ 〈@iα = @jβ〉 by =-comm.
` 〈@iα = @jβ〉 ↔ 〈@j@iα = @jβ〉 by agree.
` 〈@j@iα = @jβ〉 ↔ @j〈@iα = β〉 by agree.
` @j〈@iα = β〉 ↔ @j〈β = @iα〉 by =-comm.

(bridge). Using contrapositive, bridge is equivalent to 〈α〉i ∧ [α]ϕ→ @iϕ. Using
the modal theorem ` 〈α〉ϕ ∧ [α]ψ → 〈α〉(ϕ ∧ ψ), we reason:
` 〈α〉i ∧ [α]ϕ→ 〈α〉(i ∧ ϕ).
` 〈α〉(i ∧ ϕ)→ 〈α〉(@iϕ) by @-intro.
` 〈α〉(@iϕ)→ @iϕ by back.

4 Completeness

It is a fairly straightforward exercise to prove that the axioms and rules of
HXP are sound for the intended semantics. We will now show that the axiomatic
system is also complete. The completeness argument follows the lines of the com-
pleteness proof for HL(@) (see [8]), which is a Henkin-style proof with nominals
playing the role of first-order constants.

In what follows, we will write Γ ` ϕ if and only if ϕ can be obtained from a
set of formulas Γ by applying the inference rules of HXP.

Definition 5. Let Γ be a set of formulas, we say that Γ is an HXP maximal
consistent set (HXP-MCS, or MCS for short) if and only if Γ 0 ⊥ and for all
ϕ /∈ Γ we have Γ ∪ {ϕ} ` ⊥.

Proposition 2. Let Γ be an HXP-MCS. Then, the following facts hold:

1. {i, ϕ} ⊆ Γ then @iϕ ∈ Γ ,
2. @i〈α = β〉 ∈ Γ then 〈@iα = @iβ〉 ∈ Γ , and
3. 〈α = @iβ〉 ∈ Γ then 〈α = @j@iβ〉 ∈ Γ .

Proof. Item 1 is a consequence of @-intro, 2 follows from @=-dist and 3 can be
proved using agree and =-comm. ut

7

The next corollary follows from the definition of MCS, as expected:

Corollary 2. Let Γ be a MCS. Then for all ϕ, either ϕ ∈ Γ or ϕ /∈ Γ .

In the same way as for hybrid logic, inside every MCS there are a collection
of MCSs with some desirable properties:

Lemma 1. Let Γ be an HXP-MCS. For any nominal i ∈ Γ , let us define ∆i =
{ϕ | @iϕ ∈ Γ}. Then

1. ∆i is an HXP-MCS.
2. For all nominals i, j, if i ∈ ∆j then ∆i = ∆j.
3. For all nominals i, j, we have @iϕ ∈ ∆j iff @iϕ ∈ Γ .
4. If k ∈ Γ then Γ = ∆k.

Proof. See [8, Lemma 7.24] for details.

Definition 6 (Named and Pasted MCS). Let Γ be an HXP-MCS. We say
that Γ is named if for some nominal i we have that i ∈ Γ (and we will say that
Γ is named by i). We say that Γ is pasted if the following holds:

1. 〈@iδα = β〉 ∈ Γ implies that for some nominal j, @i〈δ〉j ∧ 〈@jα = β〉 ∈ Γ
2. 〈@iδα 6= β〉 ∈ Γ implies that for some nominal j, @i〈δ〉j ∧ 〈@jα 6= β〉 ∈ Γ .

Now we are going to prove a crucial property in our completeness proof: the
Extended Lindenbaum Lemma. Intuitively, it says that the rules of HXP allow us
to extend MCSs to named and pasted MCSs, provided we enrich the language
with new nominals. This lemma will be useful to obtain the models we need
from an MCS.

Lemma 2 (Extended Lindenbaum Lemma). Let NOM′ be a (countably)
infinite set of nominals disjoint from NOM, and let HXPath=(↑↓)′ be the lan-
guage obtained by adding these new nominals to HXPath=(↑↓). Then, every
HXP-consistent set of formulas in HXPath=(↑↓) can be extended to a named
and pasted HXP-MCS in HXPath=(↑↓)′.

Proof. Enumerate NOM′. Given Σ a consistent set in HXPath=(↑↓), define Σk
to be Σ ∪{k}, where k is the first nominal in our enumeration. Σk is consistent,
otherwise for some conjunction θ from Σ, ` k → ¬θ. By the name rule, ` ¬θ,
contradicting the consistency of Σ.

Now enumerate all formulas in HXPath=(↑↓)′. Define Σ0 to be Σk and sup-
pose we have defined Σm, for m ≥ 0. Let ϕm+1 be the m + 1th formula in our
enumeration of HXPath=(↑↓)′. Define Σm+1 as follows. If Σm+1 ∪ {ϕm+1} is
inconsistent, then Σm+1 = Σm. Otherwise:

1. Σm+1 = Σm ∪ {ϕm+1} if ϕm+1 is not of the form 〈@iδα ∗ β〉.
2. Σm+1 = Σm∪{ϕm+1}∪{@i〈δ〉j∧〈@jα∗β〉}, if ϕm+1 is of the form 〈@iδα∗β〉.

Here j is the first nominal in the enumeration that does not occur in Σm or
〈@iδα ∗ β〉.

8

Let Σ+ =
⋃
n≥0Σ

n. This set is named (by k), maximal and pasted. Further-
more, it is consistent as a direct consequence of the paste rule. ut

From a named and pasted HXP-MCS we can extract a model:

Definition 7 (Extracted Model). Let Γ be a named and pasted HXP-MCS,
then we define the extracted model from Γ , MΓ = 〈M,∼,→, label ,nom〉 as:

– M = {∆i | ∆i was obtained from Γ}
– ∆i → ∆j iff 〈↓〉j ∈ ∆i

– a ∈ label(∆i) iff a ∈ ∆i

– nom(i) = ∆i

– ∆i ∼ ∆j iff 〈ε = @j〉 ∈ ∆i.

Proposition 3. Let MΓ = 〈M,∼,→, label ,nom〉 be the extracted model, for
some Γ . Then,

1. ∆i → ∆j if and only if 〈↑〉i ∈ ∆j, and
2. ∆i 6∼ ∆j if and only if 〈ε 6= @j〉 ∈ ∆i,
3. ∆iδ∆j then for all ϕ ∈ ∆j, 〈δ〉ϕ ∈ ∆i.

Proof. Item 1 uses the same argument as for HL(@) in addition to the axioms for
↑; item 2 follows from @-data; for item 3 suppose ∆iδ∆j , then we have 〈δ〉j ∈ ∆i.
Let ϕ ∈ ∆j , then by definition ofMΓ , @i〈δ〉j ∈ Γ and @jϕ ∈ Γ . By comp−dist,
〈@iδ〉j ∈ Γ , hence by bridge we get 〈@iδ〉ϕ ∈ Γ . Therefore, 〈δ〉ϕ ∈ ∆i.

We need to prove that, in fact, MΓ is an abstract hybrid data model.

Proposition 4. MΓ is well defined, i.e., the following properties hold:

1. nom(i) = ∆1 and nom(i) = ∆2 then ∆1 = ∆2, and
2. ∼ is an equivalence relation.

Proof. Item 1 follows from the axioms for the hybrid operators in a standard
way. Let us prove that ∼ is an equivalence relation.
- Reflexivity: ∆i ∼ ∆i iff 〈ε = @i〉 ∈ ∆i iff @i〈ε = ε〉 ∈ ∆i, which is true because
〈ε = ε〉 is a theorem.
- Symmetry: ∆i ∼ ∆j iff 〈ε = @j〉 ∈ ∆i. By definition of ∆i, we have @i〈ε =
@j〉 ∈ Γ , and by neutral and =-comm we get @i〈ε = @jε〉 ∈ Γ . Then, by @-swap
@j〈ε = @iε〉. Therefore 〈ε = @i〉 ∈ ∆j (by neutral), iff ∆j ∼ ∆i.
- Transitivity: Suppose ∆i ∼ ∆j and ∆j ∼ ∆k, iff 〈ε = @j〉 ∈ ∆i and 〈ε = @k〉 ∈
∆j . This means that we have @i〈ε = @j〉 ∈ Γ iff (by @-swap) @j〈ε = @i〉 ∈ Γ ,
and @j〈ε = @k〉 ∈ Γ . Then 〈ε = @i〉 ∧ 〈ε = @k〉 ∈ ∆j , and by ε-trans we
have 〈@i = @k〉 ∈ ∆j . By agree and @=-dist we get @i〈ε = @k〉 ∈ ∆j , iff by
definition of ∆j , @j@i〈ε = @k〉 ∈ Γ . By agree we obtain @i〈ε = @k〉 ∈ Γ , then
〈ε = @k〉 ∈ ∆i. Hence, we have ∆i ∼ ∆k. ut

Now, given a named and pasted MCS Γ we can prove the following Existence
Lemma:

9

Lemma 3 (Existence Lemma). Let Γ be an HXP-MCS and let MΓ = 〈M,
∼,→, label ,nom〉 be the extracted model from Γ . Suppose ∆ ∈ M and i ∈ ∆.
Then

1. 〈δα = β〉 ∈ ∆ implies there exists Σ ∈M s.t. ∆δΣ and 〈α = @iβ〉 ∈ Σ,
2. 〈δα 6= β〉 ∈ ∆ implies there exists Σ ∈M s.t. ∆δΣ and 〈α 6= @iβ〉 ∈ Σ,
3. 〈@jα = @kβ〉 ∈ ∆ implies there exists Σ ∈M s.t. 〈α = @kβ〉 ∈ Σ,
4. 〈@jα 6= @kβ〉 ∈ ∆ implies there exists Σ ∈M s.t. 〈α 6= @kβ〉 ∈ Σ.

Proof. First, we discuss 1 (2 similar). Because ∆ ∈ M , for some nominal i we
have ∆ = ∆i. As 〈δα = β〉 ∈ ∆, @i〈δα = β〉 ∈ Γ . Then, by Axiom @=-
dist, 〈@iδα = @iβ〉 ∈ Γ . Because Γ is pasted @i〈δ〉j ∧ 〈@jα = @iβ〉 ∈ Γ .
As Γ is MCS, @i〈δ〉j ∈ Γ and 〈@jα = @iβ〉 ∈ Γ . By Axiom agree, we have
〈@jα = @j@iβ〉 ∈ Γ . Then, @j〈α = @iβ〉 ∈ Γ by @=-dist. By definition,
〈δ〉j ∈ ∆i and 〈α = @iβ〉 ∈ ∆j . Taking Σ as ∆j , we complete the proof.

Now we discuss 3 (as above, 4 is similar). Because ∆ ∈M , for some nominal
i we have ∆ = ∆i. As 〈@jα = @kβ〉 ∈ ∆, @i〈@jα = @kβ〉 ∈ Γ . Then, by
Axiom comp=-dist, 〈@i@jα = @i@kβ〉 ∈ Γ . By applying agree twice, we have
〈@jα = @j@kβ〉 ∈ Γ , then by @ =-dist @j〈α = @kβ〉 ∈ Γ . Then by definition
of MΓ 〈α = @kβ〉 ∈ ∆j . Taking Σ as ∆j , we complete the proof. ut

Corollary 3. Let Γ be an HXP-MCS and let MΓ = 〈M,∼,→, label ,nom〉 be
the extracted model, and ∆ ∈ M . If 〈δα〉ϕ ∈ ∆, then there exists Σ ∈ M such
that ∆δΣ and 〈α〉ϕ ∈ Σ.

Proof. Let ∆ ∈ M , by definition ∆ = ∆i, for som i ∈ NOM. By hypothesis,
〈δα[ϕ] = δα[ϕ]〉 ∈ ∆, then by Existence Lemma there exists Σ such that ∆δΣ
and 〈α[ϕ] = @iδα[ϕ]〉 ∈ Σ. By comp-neutral and subpath we get 〈α[ϕ]〉> ∈ Σ.
Then, using comp-dist, comp-assoc and =-test, we have 〈α〉ϕ ∈ Σ.

Now we are ready to prove the Truth Lemma that states that membership
in an MCS of the extracted model is equivalent to being true in that MCS. First
let us introduce a notion of size for both node and path expressions, which will
be helpful in the inductive cases of the proof.

Definition 8. We define inductively the size of a path and a node expression
(notation | · |) as follows:

|δ| = 2, δ ∈ {↓, ↑} |p| = 1, p ∈ LAB ∪ NOM
|@i| = 1 |¬ϕ| = |ϕ|
|[ϕ]| = 1 + |ϕ| |ϕ ∧ ψ| = |ϕ|+ |ψ|
|αβ| = |α|+ |β| |〈α ∗ β〉| = |α|+ |β|,

where α, β are path expressions and ϕ,ψ are node expressions.

Lemma 4 (Truth Lemma). LetMΓ = 〈M,∼,→, label ,nom〉 be the extracted
model from a MCS Γ , and let ∆i ∈M . Then, for any formula ϕ,

MΓ , ∆i |= ϕ iff ϕ ∈ ∆i.

10

Proof. In fact we will prove a stronger result. Let ∆i, ∆j ∈ M , ϕ be a node
expression and α be a path expression.

(IH1): MΓ , ∆i |= ϕ iff ϕ ∈ ∆i.
(IH2): MΓ , ∆i, ∆j |= α iff 〈α〉j ∈ ∆i.

The proof proceeds by induction in the complexity of ϕ and α. First, we
prove the base cases:

- α = ↓: Suppose MΓ , ∆i, ∆j |= ↓ iff ∆i → ∆j (by |=), iff 〈↓〉j ∈ ∆i (by
definition of extracted model).

- α = ↑: Suppose MΓ , ∆i, ∆j |= ↑ iff ∆j → ∆i (by |=), iff 〈↑〉j ∈ ∆i (by 1 of
Proposition 3).

- α = @k: Suppose MΓ , ∆i, ∆j |= @k iff nom(k) = ∆j . But by definition of
nom, ∆j = ∆k, and because we know j ∈ ∆j we have j ∈ ∆k. Then, we have
@kj ∈ Γ , and by Axiom agree, @i@kj ∈ Γ . Therefore, @kj ∈ ∆i.

- ϕ = a: MΓ , ∆i |= a iff a ∈ label(∆i), iff a ∈ ∆i.

- ϕ = j: MΓ , ∆i |= j iff nom(j) = ∆i, iff ∆i = ∆j iff j ∈ ∆i.

Now we prove the inductive cases:

- ϕ = ψ ∧ ρ and ϕ = ¬ψ: are direct from (IH1).

- α = [ψ]: MΓ , ∆i, ∆j |= [ψ] iff ∆i = ∆j and MΓ , ∆i |= ψ. By (IH1), we have
ψ ∈ ∆i and j ∈ ∆i. By ∆i MCS, we have ψ ∧ j ∈ ∆i, and by idempotence of
the conjunction we have ψ ∧ ψ ∧ j ∧ j ∈ ∆i. Also, we have 〈ε = ε〉 ∈ ∆i, then
we can use Axioms =-test and =-comm to obtain 〈[ψ][j] = [ψ][j]〉 ∈ ∆i (which
is the same as 〈[ψ]〉j) as we wanted.

- α = βγ: MΓ , ∆i, ∆j |= βγ iff there is some ∆k such that MΓ , ∆i, ∆k |= β
and MΓ , ∆k, ∆j , |= γ. By (IH2), we have 〈β〉k ∈ ∆i and 〈γ〉j ∈ ∆k. We can
conclude @i〈β〉k ∈ Γ and @k〈γ〉j ∈ Γ , then @i〈β〉k ∧ @k〈γ〉j ∈ Γ . By agree,
we have @i〈β〉k ∧ @i@k〈γ〉j ∈ Γ , and with a very simple hybrid argument we
get @i(〈β〉k ∧@k〈γ〉j) ∈ Γ . By bridge, we have @i(〈β〉〈γ〉j) ∈ Γ , and by Axiom
comp-dist @i(〈βγ〉j) ∈ Γ . Hence, 〈βγ〉j ∈ ∆i.

For node expressions of the form 〈α ∗ β〉 we need to do induction on the length
of α and β (defined in the obvious way).

First notice that by ∗-comm, 〈α ∗ β〉 ∈ ∆i iff 〈β ∗ α〉 ∈ ∆i. And by the
semantic definition, MΓ , ∆i |= 〈α ∗ β〉 iff MΓ , ∆i |= 〈β ∗ α〉. So we need only
discuss the case for α. Moreover, by comp-neutral, ` 〈α ∗ β〉 ↔ 〈αε ∗ β〉 which is
also a validity. So we can assume that every path ends in a test. The base case
then is when |α|+ |β| = 2, and both α and β are tests.

- ϕ = 〈[ψ] = [ρ]〉: direct from test-dist.

- ϕ = 〈[ψ] 6= [ρ]〉: it is a contradiction from test-⊥, then this case has not to be
considered.

Now, let us consider |α|+ |β| ≥ 3:

- ϕ = 〈↓β = γ〉: First, let us prove the right to left direction, then suppose
〈↓β = γ〉 ∈ ∆i. By Existence Lemma, there is Σ ∈ M such that ∆i↓Σ and

11

〈β = @iγ〉 ∈ Σ. Because each Σ ∈ M is named, Σ = ∆j , for some j ∈ NOM,
then @j〈β = @iγ〉 ∈ Γ . Notice that |〈β = @iγ〉| ≤ |〈↓β = γ〉|. Applying IH we
obtain MΓ , ∆j |= 〈β = @iγ〉, then there exists ∆1, ∆2 ∈M such that

1. MΓ , ∆j , ∆1 |= β,
2. MΓ , ∆j , ∆2 |= @iγ,
3. ∆1 ∼ ∆2.

From 1 and ∆i↓∆j we get MΓ , ∆i, ∆1 |= ↓β and from 2 and the semantic
interpretation of @ we get MΓ , ∆i, ∆2 |= γ. Then, together with 3 we have
MΓ , ∆i, |= 〈↓β = γ〉, as we wanted.

For the other direction, suppose MΓ , ∆i |= 〈↓β = γ〉, iff there are ∆j , ∆k

such that MΓ , ∆i, ∆j |= ↓β, MΓ , ∆i, ∆k |= γ and ∆j ∼ ∆k. Then, by (IH2)
and definition of MΓ we have:

1. 〈↓β〉j ∈ ∆i,
2. 〈γ〉k ∈ ∆i, and
3. 〈ε = @k〉 ∈ ∆j .

By 1 and Corollary 3 there exists ∆l such that

4. 〈β〉j ∈ ∆l.

(⊗) From 2 we have 〈γ〉k ∈ ∆i and from 3 we can obtain 〈ε = @j〉 ∈ ∆k then
we have 〈@iγ〉k∧@k〈ε = @j〉 ∈ Γ , by definition and Axiom comp-dist. By bridge,
〈@iγ〉〈ε = @j〉 ∈ Γ , then by comp=-dist and back, we get 〈@iγ = @j〉 ∈ Γ .
Applying =-comm, comp-neutral, agree and @-dist, @j〈ε = @iγ〉 ∈ Γ .

Also, from 4 we have @l〈β〉j ∈ Γ , then @j〈ε = @iγ〉 ∧ 〈@lβ〉j ∈ Γ (by MCS
and comp-dist), and by bridge we get 〈@lβ〉〈ε = @iγ〉 ∈ Γ . By comp=-dist and
comp-neutral, 〈@lβ = @lβ@iγ〉 ∈ Γ , then by back, agree and @=-dist we have
@l〈β = @iγ〉 ∈ Γ . Then we have

@l〈β = @iγ〉 ∈ Γ
⇔ 〈β = @iγ〉 ∈ ∆l (Def. MΓ)

⇒ 〈↓〉〈β = @iγ〉 ∈ ∆i (∆i → ∆l, Prop. 3 item 3)

⇒ 〈↓β = ↓@iγ〉 ∈ ∆i (comp=-dist)

⇒ 〈↓β = @iγ〉 ∈ ∆i (back)

⇒ @i〈↓β = @iγ〉 ∈ Γ (Def. MΓ)

⇒ 〈@i↓β = @i@iγ〉 ∈ Γ (comp=-dist)

⇒ 〈@i↓β = @iγ〉 ∈ Γ (back)

⇒ @i〈↓β = γ〉 ∈ Γ (@=-dist)

⇔ 〈↓β = γ〉 ∈ ∆i (Def. MΓ)

- ϕ = 〈[ψ]β = γ〉: MΓ , ∆i |= 〈[ψ]β = γ〉 iff there are ∆j , ∆k such that
MΓ , ∆i, ∆j |= [ψ]β, MΓ , ∆i, ∆k |= γ and ∆j ∼ ∆k. Then, by (IH2) and defini-
tion of MΓ we have:

12

1. 〈β〉j ∈ ∆i,
2. 〈γ〉k ∈ ∆i,
3. 〈ε = @k〉 ∈ ∆j , and
4. ψ ∈ ∆i.

Using the same argument as in (⊗) the proof that 〈[ψ]β = γ〉 ∈ ∆i is straight-
forward.

- ϕ = 〈↑β = γ〉 is similar to the previous one.

- ϕ = 〈@jβ = γ〉: For the left to right direction supposeMΓ , ∆i |= 〈@jβ = γ〉, iff
there are ∆k, ∆l such that MΓ , ∆i, ∆k |= @jβ, MΓ , ∆i, ∆l |= γ and ∆k ∼ ∆l.
Then, by (IH2) and definition of MΓ we have:

1. 〈@jβ〉k ∈ ∆i, iff @i〈@jβ〉k ∈ Γ iff @j〈β〉k ∈ Γ ,
2. 〈γ〉l ∈ ∆i, iff @i〈γ〉l ∈ Γ , and
3. 〈ε = @k〉 ∈ ∆j , iff @k〈ε = @l〉 ∈ Γ .

By 1 and 3 we have @j〈β〉〈ε = @l〉 ∈ Γ , iff (by comp=-dist) @j〈β = β@l〉 ∈ Γ .
By back, we get @j〈β = @l〉 ∈ Γ , which is equivalent to @l〈ε = @jβ〉 ∈ Γ (by
agree and comp=-dist). Together with 2 and bridge we get @i〈γ〉〈ε = @jβ〉 ∈ Γ ,
hence @i〈γ = γ@jβ〉 ∈ Γ iff (by back and =-comm) @i〈@jβ = γ〉 ∈ Γ . Using
definition of ∆i, we finally get 〈@jβ = γ〉 ∈ ∆i.

For the other direction suppose 〈@jβ = γ〉 ∈ ∆i. First notice that in all cases
we already proved, an analogous argument can be applied if we do induction in
the right side of the =, by =-comm. If we proceed as above for 〈@jβ = γ〉, we
will find out that we need to do induction on γ, but as we mentioned cases for
δ and [ϕ] are symmetric in both sides, then we only need to consider γ = @kρ.

Then suppose 〈@jβ = @kρ〉 ∈ ∆i. By Existence Lemma we have 〈β = @kρ〉 ∈
∆j , then by IHMΓ , ∆j |= 〈β = @kρ〉. By semantics of @, and the fact thatMΓ

is named, MΓ , ∆i |= 〈@jβ = @kρ〉.
- Cases involving 6= are analogous, using Proposition 3 to obtain 〈ε = @k〉 /∈ ∆j

in item 3 above. ut

As a result we obtain the completeness result.

Theorem 1. The axiomatic system HXP is complete for abstract hybrid data
models.

Proof. We need to prove that every HXP-consistent set of HXPath=(↑↓)-formulas
Σ it satisfiable in a countable hybrid model. For any Σ, we can use the Extended
Lindenbaum Lemma to obtain Σ+ which is named and pasted in HXPath=(↑↓)′.
Let M = 〈M,∼,→, label ,nom〉 be the extracted model from Σ+. As Σ+ is
named, then Σ+ ∈M . Then by Truth Lemma, for all ϕ ∈ Σ we haveM, Σ+ |=
ϕ. Because each state is named by some nominal from a countable set NOM′,
the model is countable.

Because the class of abstract data models is a conservative abstraction of
concrete data models, we can conclude:

Corollary 4. The axiomatic system HXP is complete for concrete hybrid data
models.

13

5 Completeness for Tree Models

As we mentioned in the introductory section, XPath= is a query language for
XML documents, and that it is possible to work with some abstractions called
data trees. So far, we introduced an axiomatic system which is sound and com-
plete with respect of a more general class of structures, which are the hybrid
data models from Definition 1. We will show that it is possible to extend the
axiomatic system HXP to handle data trees, the most interesting structures for
HXPath=(↑↓) applications.

The table below introduces two groups of axioms. Those in the first column
guarantee that the evaluation model is a tree. In the second column, we have
two axioms which impose a standard property required in abstractions of XML
documents: the set of labels LAB is assumed to be finite and each node is labeled
exactly by one tag name.

Axioms for trees Axioms for labels

no-circle i→ ¬〈↓〉ni, n ≥ 1
no join 〈↑〉i ∧ 〈↑〉j → @ij

lab-some
∨

a∈LAB
a

lab-uniq ¬(a ∧ b) (for a 6= b)

We need to consider a point-generated sub-model of MΓ to ensure that the
resulting model is a tree.

Definition 9 (Generated Sub-model). Let Γ be a named and pasted MCS
using the axiomatic system HXP extended with the axioms for trees and labels,
and MΓ = 〈M,∼,→, label ,nom〉 the extracted model from Γ . We define TΓ as
the point-generated sub-model of MΓ obtained from Γ , i.e., TΓ is the smallest
sub-model of MΓ that includes Γ in its domain, and such that for all points w,
the following closure condition holds:

If w ∈ TΓ and w → v, then v ∈ TΓ .

Proposition 5. TΓ is a tree.

Proof. By construction Γ is the root of TΓ . We have to prove that the accessi-
bility relation is a) irreflexive, b) asymmetric and c) that every node except the
root has exactly one immediate predecessor. The proof is standard using axioms
for ↓, ↑ interaction and the axioms for trees. ut

It should be obvious that the axioms for labels ensure that exactly one label
holds in a node. Using TΓ in the Truth Lemma gives the desired result.

Theorem 2. The axiomatic system HXP extended with the axioms for trees and
labels is complete for abstract named data trees (and consequently, for concrete
named data trees).

14

6 Final Remarks

We introduced a sound and complete axiomatization for HXPath=(↑↓), i.e., the
language XPath with upward and downward navigation and data comparisons,
extended with nominals and the hybrid operator @. The hybridization of XPath
allowed us to replicate the completeness argument for the hybrid logic HL(@)
shown, e.g., in [8].

As future work we would like to take advantage of the hybridization of
XPath= to obtain general axiomatizations as in [9,4]. The idea is to define min-
imal proof systems that are not only complete for the class of all models, but
which can also be extended with additional axioms that are pure in some sense,
ensuring completeness with respect to the corresponding class of models. Our
goal is to explore this general framework and obtain complete axiomatic systems
for some natural extensions of HXPath=(↑↓):

– HXPath=(↑↓) with reflexive-transitive closure for downward/upward navi-
gation (i.e., allowing ↓∗ and ↑∗), and sibling navigation.

– Exploring new kind of data comparisons, for instance, including the relation
< in addition to = and 6=.

Another aspect we would like to explore is decidability and complexity. A
filtration argument (see [8]) can be applied to prove that HXPath=(↑↓) is de-
cidable over the class of all models, obtaining a NExpTime upper bound for
the satisfiability problem. We conjecture that the satisfiability problem is also
decidable over the class of finite data trees, and that this result can be proved
adapting the automata proof given in [15], with the method used to account for
hybrid operators presented in [24].

Acknowledgments: This work was partially supported by grant ANPCyT-
PICT-2013-2011, STIC-AmSud “Foundations of Graph Structured Data (FoG)”
and the Laboratoire International Associé “INFINIS.”

References

1. S. Abriola, M. Descotte, R. Fervari, and S. Figueira. Axiomatizations for downward
XPath on data trees. CoRR, abs/1605.04271, 2016.

2. S. Abriola, M. Descotte, and S. Figueira. Model theory of XPath on data trees.
Part II: Binary bisimulation and definability. Information and Computation, to
appear, http://www.glyc.dc.uba.ar/santiago/papers/xpath-part2.pdf.

3. S. Abriola, M. Descotte, and S. Figueira. Definability for downward and vertical
XPath on data trees. In 21th Workshop on Logic, Language, Information and
Computation, volume 6642 of LNCS, pages 20–34, 2014.

4. C. Areces and B. ten Cate. Hybrid logics. In P. Blackburn, F. Wolter, and J. van
Benthem, editors, Handbook of Modal Logics, pages 821–868. Elsevier, 2006.

5. D. Baelde, S. Lunel, and S. Schmitz. A sequent calculus for a modal logic on finite
data trees. In 25th EACSL Annual Conference on Computer Science Logic, CSL
2016, pages 32:1–32:16, 2016.

15

http://www.glyc.dc.uba.ar/santiago/papers/xpath-part2.pdf

6. M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs.
Journal of the ACM, 55(2):1–79, 2008.

7. M. Benedikt and C. Koch. XPath leashed. ACM Computing Surveys, 41(1), 2008.
8. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 2001.
9. P. Blackburn and B. ten Cate. Pure extensions, proof rules, and hybrid axiomatics.

Studia Logica, 84(2):277–322, 2006.
10. P. Blackburn and J. van Benthem. Modal Logic: A Semantic Perspective. In

Handbook of Modal Logic, pages 1–84. Elsevier, 2006.
11. M. Bojańczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic

on data trees and XML reasoning. Journal of the ACM, 56(3), 2009.
12. B. ten Cate, T. Litak, and M. Marx. Complete axiomatizations for XPath frag-

ments. Journal of Applied Logic, 8(2):153–172, 2010.
13. B. ten Cate and M. Marx. Axiomatizing the logical core of XPath 2.0. Theory of

Computing Systems, 44(4):561–589, 2009.
14. J. Clark and S. DeRose. XML path language (XPath). Website, 1999. W3C

Recommendation. http://www.w3.org/TR/xpath.
15. D. Figueira. Reasoning on Words and Trees with Data. PhD thesis, Laboratoire

Spécification et Vérification, ENS Cachan, France, 2010.
16. D. Figueira. Decidability of downward XPath. ACM Transactions on Computa-

tional Logic, 13(4):34, 2012.
17. D. Figueira, S. Figueira, and C. Areces. Basic model theory of XPath on data

trees. In International Conference on Database Theory, pages 50–60, 2014.
18. D. Figueira, S. Figueira, and C. Areces. Model theory of XPath on data trees.

Part I: Bisimulation and characterization. Journal of Artificial Intelligence Re-
search, 53:271–314, 2015.

19. D. Figueira and L. Segoufin. Bottom-up automata on data trees and vertical
XPath. In 28th International Symposium on Theoretical Aspects of Computer
Science (STACS 2011), pages 93–104, 2011.

20. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries. ACM Transactions on Database Systems, 30(2):444–491, 2005.

21. E. Kostylev, J. Reutter, and D. Vrgoč. Xpath for DL ontologies. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pages
1525–1531. AAAI Press, 2015.

22. M. Marx. XPath with conditional axis relations. In International Conference on
Extending Database Technology (EDBT’04), volume 2992 of LNCS, pages 477–494.
Springer, 2004.

23. M. Marx and M. de Rijke. Semantic characterizations of navigational XPath. ACM
SIGMOD Record, 34(2):41–46, 2005.

24. U. Sattler and M. Vardi. The hybrid mu-calculus. In R. Goré, A. Leitsch, and
T. Nipkow, editors, Proceedings of the International Joint Conference on Auto-
mated Reasoning, volume 2083 of LNAI, pages 76–91. Springer Verlag, 2001.

16

http://www.w3.org/TR/xpath

	Hilbert-style Axiomatization for Hybrid XPath with Data

