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Abstract. We provide a sound, complete and terminating tableau pro-
cedure to check satisfiability of downward XPath= formulas enriched
with nominals and satisfaction operators. The calculus is inspired by
ideas introduced to ensure termination of tableau calculi for certain Hy-
brid Logics. We prove that even though we increased the expressive power
of XPath by introducing hybrid operators, the satisfiability problem for
the obtained logic is still PSpace-complete.
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1 Introduction

In many applications, dealing with actual data is an important challenge. For
instance, applications which manage large volumes of web or medical data re-
quire, in many cases, more complex models than those that can be encoded in
classical relational databases. These models are often defined and studied in the
context of semi-structured data [9]. A semi-structured data model is based on an
organization of data in labeled trees or graphs, and on query languages for ac-
cessing and updating these structures. These representations can contain labels
coming from a finite alphabet (capturing the structural information), or from an
infinite alphabet (capturing also the actual data in the database). Most query
languages focus only on how to access the structural information, in this article
we focus on languages that also handle data.

XML (eXtensible Markup Language) is the most successful data model that
captures both structural information and data. An XML document is a hier-
archical structure represented by an unranked finite ordered tree, where nodes
have labels (either letters from a finite alphabet, or data values from an infinite
alphabet). XPath is, arguably, the most widely used XML query language, with
application in specification and update languages. XPath is, fundamentally, a
general purpose language for addressing, searching, and matching pieces of an
XML document. It is an open standard and constitutes a World Wide Web Con-
sortium (W3C) Recommendation [11]. Core-XPath [16] is the fragment of XPath
1.0 containing the navigational behavior of XPath. It can express properties of
the underlying tree structure of the XML document, such as the label (tag name)
of a node, but it cannot express conditions on the actual data contained in the
attributes. In other words, it is essentially a classical modal logic [5,6].
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However, without the ability to relate nodes based on the actual data val-
ues of the attributes, the expressive power of Core-XPath is inappropriate for
many applications. In fact, it is not possible to define the most important con-
struct in a database query language: the join. The extension of Core-XPath with
(in)equality tests between attributes of elements in an XML document is named
Core-Data-XPath in [7]. Here, we will call this logic XPath=. Models of XPath=

are data trees which can be seen as abstractions of XML documents. A data
tree is a tree whose nodes contain a label from a finite alphabet and a data
value from an infinite domain (see Figure 1 for an example). In this article we
will consider the case where models can be arbitrary graphs and not just finite
trees. XPath= allows formulas of the form 〈α = β〉 and 〈α 6= β〉, where α, β are
path expressions that navigate the model using axes: descendant, child, ancestor,
next-sibling, etc. and can make tests in intermediate nodes. The formula 〈α = β〉
(respectively 〈α 6= β〉) is true at a node x of a data tree if there are nodes y, z
that can be reached by paths denoted by α, β, and such that the data value of y
is equal (respectively different) to the data value of z. For instance, in Figure 1
the expression “there is a one-step descendant and a two-steps descendant with
the same data value” is satisfied at x, given the presence of u and z. The expres-
sion “there are two children with distinct data value” is also true at x, because
y and z have different data.

a, 0

b, 2

a, 1 b, 0 a, 0

a, 1

x

y z

u v w

Fig. 1. An example of a data tree. Letters are labels, numbers are data.

Notice that XPath= allows to compare data values at the end of a path, by
equality or inequality. However, it does not grant access to the concrete data
value of nodes (in the example, 0, 1 or 2). As a result, it is possible to work with
an abstraction of data trees: instead of having concrete data values in each node,
we have an equivalence relation between nodes. In the data tree from Figure 1,
the relation consists of three equivalence classes: {x, v, w}, {u, z} and {y}.

Recent articles investigate XPath= from a modal perspective. For example,
satisfiability and evaluation are discussed in [13,14], while model theory and ex-
pressivity are studied in [15,2]. A Gentzen-style sequent calculus is given in [4]
for a very restricted fragment of XPath=. An extension of the equational ax-
iomatic system from [10] is introduced in [1], allowing downward navigation and
equality/inequality tests. [3] provides an axiomatization for the previous logic,
extended with upward navigation, nominals and satisfaction operators.
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Contributions. In this article we introduce a sound, complete and terminating
tableau calculus for XPath= with downward navigation, where node expressions
are extended with nominals (special labels that are true in only one node),
and path expressions are extended with the satisfaction operator (allowing the
navigation to some particular named node). We call this logic HXPath=(↓).

We will follow ideas introduced in [8] to design terminating tableau calculi
for hybrid logics. The main intuition is that nominals and satisfaction operators
can be used in tableaux to keep track of the evaluation of a formula during an
attempt to build a model. This way, tableaux rules and the completeness proof
are more intuitive, obtaining a simple proof theory for XPath with data.

Organization. In Section 2 we define the syntax and semantics of HXPath=(↓),
and give examples to show its expressive power. Section 3 introduces a tableau
calculus for HXPath=(↓), its completeness is proved in Section 4, and termina-
tion in Section 5. We also show that the satisfiability problem for HXPath=(↓) is
PSpace-complete. We include some final remarks and future work in Section 6.

2 Basic Definitions

We start by defining the structures that will be used to evaluate formulas in the
language. We assume basic knowledge of classical modal logic [5].

Definition 1. Let PROP (the set of propositional symbols) be an infinite count-
able set, let NOM (the set of nominals) be an infinite countable well-ordered1 set
such that NOM∩PROP = ∅, and let ATOM = PROP∪NOM be the set of atomic
formulas (or atoms for short).

An abstract hybrid data model is a tuple M = 〈M,∼, →, label ,nom〉, where
M is a non-empty set of elements, ∼ ⊆ M2 is an equivalence relation between
elements of M , → ⊆ M2 is an accessibility relation, label : M → 2PROP is a
labeling function and nom : NOM → M is a function that assigns nominals to
certain elements.

Concrete data models2 are most commonly used in application, where we
encounter data from an infinite alphabet (e.g., alphabetic strings) associated to
the nodes in a semi-structured database. It is easy to see that each concrete
data model has an associated abstract data model where data is replaced by
an equivalence relation that links all nodes with the same data. Vice-versa,
each abstract data model can be “concretized” by assigning to each node its
equivalence data class as data.

Definition 2. The sets PExp of path expressions and NExp of node expressions
of the language HXPath=(↓) are defined by mutual recursion as follows:

PExp ::= ↓ | i | [ϕ] | αβ | α ∪ β
NExp ::= p | i | ¬ϕ | ϕ ∧ ψ | 〈α = β〉 | 〈α 6= β〉,

1 The well-ordered condition will be used to prove termination.
2 For a detailed introduction, see [3].
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where p ∈ PROP, i ∈ NOM, α, β ∈ PExp and ϕ,ψ ∈ NExp. The set Exp of
expressions of HXPath=(↓) is defined as NExp ∪ PExp.

NOM(ε) denotes the set of nominals appearing in an expression ε ∈ Exp. If
E is a set of expressions then NOM(E) =

⋃
ε∈E NOM(ε).

In the rest of the article we will use the symbols i, j, k, n, m for nominals;
p, q, r, for propositional symbols; α, β, γ, δ for path expressions; ϕ, ψ for node
expressions; and ε for an arbitrary expression.

In what follows we will always use ∗ for = and 6=. Missing Boolean operators
are defined as usual. We define the following operators as abbreviations. Let α
be a path expression, ϕ a node expression, i ∈ NOM, and p ∈ PROP:

> ≡ p ∨ ¬p ⊥ ≡ ¬> 〈α〉ϕ ≡ 〈α[ϕ] = α[ϕ]〉 [α]ϕ ≡ ¬〈α〉¬ϕ iϕ ≡ 〈i〉ϕ.

Formulas of the form iϕ for i ∈ NOM and ϕ a node expression are called at-
formulas or prefixed-formulas (intuitively, they express that ϕ holds at the state
named by i); i is called the prefix of iϕ. At-formulas will play a crucial role in
the tableau calculus introduced in the next section.

Notice that we use nominals in satisfaction operators appearing in path ex-
pressions (e.g., ↓i↓) and as atoms (e.g., i ∧ p) and prefixes (in iϕ) in node ex-
pressions; the intended meaning will always be clear by context.

Also, following the standard notation in XPath logics and in modal logics,
the [ ] operation is overloaded: for ϕ a node expression and α a path expression,
both [α]ϕ and [ϕ]α are well-formed expressions; the former is a node expression
where [α] is a box modality, the latter is a path expression where [ϕ] is a test.

Definition 3. Let M = 〈M,∼,→, label ,nom〉 be an abstract data model, and
x, y ∈M . We define the semantics of HXPath=(↓) as follows:

M, x, y |= ↓ iff x→ y
M, x, y |= i iff nom(i) = y
M, x, y |= [ϕ] iff x = y and M, x |= ϕ
M, x, y |= αβ iff there is some z ∈M s.t. M, x, z |= α and M, z, y |= β

M, x, y |= α ∪ β iffM, x, y |= α or M, x, y |= β
M, x |= p iff p ∈ label(x)
M, x |= i iff nom(i) = x
M, x |= ¬ϕ iffM, x 6|= ϕ

M, x |= ϕ ∧ ψ iffM, x |= ϕ and M, x |= ψ
M, x |= 〈α = β〉 iff there are y, z ∈M s.t. M, x, y |= α, M, x, z |= β and y ∼ z
M, x |= 〈α 6= β〉 iff there are y, z ∈M s.t. M, x, y |= α, M, x, z |= β and y 6∼ z.

As a corollary of the definition above, the abbreviations 〈α〉ϕ, [α]ϕ and iϕ
have their classical meaning.

M, x |= 〈α〉ϕ iff there is y ∈M s.t. M, x, y |= α and M, y |= ϕ
M, x |= [α]ϕ iff for all y ∈M M, x, y |= α implies M, y |= ϕ
M, x |= iϕ iffM,nom(i) |= ϕ

The addition of the hybrid operators to XPath increases its expressive power.
The following examples should serve as illustration.
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Example 1. We list below some HXPath=(↓) expressions together with their
intuitive meaning:

[i]α The current node is named i and there exists an α path to some node.
α[i] There exists an α path between the current node and the node named i.
iα There exists an α path between the node named i and some other node.
αi There exists an α path between the current node and some other node,

evaluation continues at point named i.
〈i = i〉 It is always valid.
〈[i] = [i]〉 The current node is named i.
〈i = j〉 The node named i has the same data as the node named j.
〈α = iβ〉 A node accessible from the current node by an α path has the same data

than a node accessible from the point named i by a β path.

It is worth highlighting the difference between 〈α 6= β〉 and ¬〈α = β〉. The
first expression establishes that there is an α path from the evaluation point to
some point y, and there is a β path from the evaluation point to some point z,
and y 6∼ z (i.e., they have different data value). The second expression says that
either at least one of the the α or β paths fail to exist, or they exist but they fail
to have the same data value. So while in the first expression paths are necessarily
realizable to make the formula true, this is not the case in the second expression.
However, these formulas are equivalent if α = i and β = j, with i, j ∈ NOM.

The next proposition collects some semantic properties that will be useful in
the completeness proof of Section 4. The proof uses only the definition of |=.

Proposition 1. Let M = 〈M,∼,→, label ,nom〉 be an abstract data model,
x, y ∈M , α, β arbitrary path expressions, and i, j ∈ NOM. Then

1. M, x |= 〈iα ∗ jβ〉 iff M, y |= 〈iα ∗ jβ〉,
2. M, x |= i and M, x |= 〈α ∗ β〉 [resp. ¬〈α ∗ β〉] then M, x |= 〈iα ∗ β〉 [resp.
¬〈iα ∗ β〉],

3. nom(i) ∼ nom(j) iff M, x |= 〈i = j〉,
4. M, x |= 〈ijα ∗ β〉 iff M, x |= 〈jα ∗ β〉.

3 Tableau Calculus

We present a tableau calculus for HXPath=(↓). We assume basic knowledge of
tableau calculi for modal logics [12].

In addition to HXPath=(↓)-formulas, the tableau rules contain accessibility
formulas of the form n → m, where n,m ∈ NOM. The intended interpretation
of n→ m is that the node denoted by m is accessible from the node denoted by
n by the accessibility relation →. In the following we will use the term formula
to denote either a formula of HXPath=(↓), or an accessibility formula.

A tableau in this calculus is a well-founded, finitely branching tree in which
each node is labeled by a formula, and the edges represent applications of tableau
rules, in the usual way. To check satisfiability of a node expression ϕ, we initialize
the tableau with iϕ, for i /∈ NOM(ϕ). To check satisfiability of a path expression
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α, we initialize the tableaux with i〈α〉>, for i /∈ NOM(α). Figure 2 introduces
the rules of the calculus.

A branch Θ of a tableau contains a clash if one of the following conditions
holds:
1. {na, n¬a} ⊆ Θ, with a ∈ ATOM,
2. 〈n 6= n〉 ∈ Θ,
3. ¬〈n = n〉 ∈ Θ,
4. {〈n = m〉, 〈n 6= m〉} ⊆ Θ,
5. {〈n = m〉,¬〈n = m〉} ⊆ Θ,
for some n, m ∈ NOM. Conditions 1 − 5 are called clash conditions. The rules
(¬), (↓), (↓r) (@), (@r), (¬@) and (¬@r) are called nominal generating rules.
We impose two general constraints on the construction of tableaux:
- C1: A nominal generating rule is never applied twice to the same premise on
the same branch.
- C2: A formula is never added to a tableau branch where it already occurs.

A saturated tableau is a tableau in which no more rules can be applied that
satisfy the constraints. A saturated branch is a branch of a saturated tableau.
For ε an expression, let Tableau(ε) be a saturated tableau for ε. We say that
a tableau branch is closed if it contains a clash, otherwise it is called open. A
closed tableau is one in which all branches are closed, and an open tableau is one
in which at least one branch is open. It is easy to show the calculus is sound:3

Theorem 1. If ε is satisfiable then any Tableau(ε) has an open branch.

4 Completeness

In this section we will prove that the tableau calculus we introduced is complete,
i.e., if a formula ϕ appears in an open and saturated branch, then ϕ is satisfiable.

Definition 4. Let Θ be a tableau branch. Define the relation ≡Θ⊆ NOM(Θ)2

as n ≡Θ m iff nm ∈ Θ.

Lemma 1. ≡Θ is an equivalence relation.

Definition 5. Let Θ be a tableau branch, and let n ∈ NOM(Θ). The nominal
urfather of n on Θ (denoted uΘ(n)) is the smallest m such that m ≡Θ n. m is
called a nominal urfather on Θ if m = uΘ(n) for some n.

Lemma 2. Let Θ be a saturated branch. If nϕ occurs on Θ then uΘ(n)ϕ also
occurs on Θ.

Proof. Assume nϕ ∈ Θ. By definition of urfather, uΘ(n) = m and nm ∈ Θ. Since
Θ is saturated we have closure under (Copy) and (Ref ). Hence, nϕ, nm, mm ∈
Θ and mϕ ∈ Θ.
3 Some readers may call this notion “completeness”, and the one introduced in the

next section “soundness”. However, we use the classical tableaux denomination.
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Lemma 3. Let Θ be a saturated branch, and let n and m be nominals occurring
on Θ. n ≡Θ m if and only if n and m make the same nominals true on Θ.

Lemma 4. Let Θ be a saturated branch. If n ≡Θ m then uΘ(n) = uΘ(m).

Lemma 5. Let Θ be a saturated branch. Then n is a nominal urfather on Θ if
and only if uΘ(n) = n.

Proof. The right to left direction is direct from the definition of a nominal ur-
father. For the other direction, if n is a nominal urfather then uΘ(m) = n for
some m, and n ≡Θ m. By Lemma 4, we have uΘ(n) = uΘ(m) = n.

Definition 6. Let Θ be an open saturated branch, we define the extracted model
MΘ = 〈MΘ,∼Θ,→Θ, labelΘ,nomΘ〉, as

MΘ = {n | nϕ ∈ Θ} ∪ {n, n′ | n→ n′ ∈ Θ} ∪ {n, n′ | 〈n ∗ n′〉 ∈ Θ}
∼Θ = {(n, uΘ(n′)) | 〈n = n′〉 ∈ Θ}
→Θ = {(uΘ(n), uΘ(n′)) | n→ n′ ∈ Θ}
labelΘ(n) = {p | np ∈ Θ}

nomΘ(i) =

{
n0, if i /∈ NOM(Θ)

uΘ(i), if i ∈ NOM(Θ),

where n0 is the first prefix introduced in Θ.

Proposition 2. ∼Θ is an equivalence relation.

Lemma 6. Let i ∈ NOM(Θ) then uΘ(i) ∈MΘ and MΘ, uΘ(i) |= i.

Proof. By definition uΘ(i) = m and mi ∈ Θ. Hence, by definition of MΘ,
m ∈MΘ. That it satisfies i follows from the definition of nomΘ.

We need a notion of size both for path and node expressions, and a notion
of size for any tableau formula:

psize(i) = 1 for i ∈ NOM psize(αβ) = psize(α) + psize(β)
psize(↓) = 2 psize(α ∪ β) = psize(α) + psize(β) + 1
psize([ϕ]) = nsize(ϕ) + 1

nsize(a) = 1 for a ∈ ATOM nsize(ϕ ∧ ψ) = nsize(ϕ) + nsize(ψ) + 1
nsize(¬ϕ) = nsize(ϕ) + 1 nsize(〈α ∗ β〉) = psize(α) + psize(β) + 2

size(n→ m) = 0 size(〈α ∗ β〉) = nsize(〈α ∗ β〉)
size(iϕ) = nsize(ϕ) + 3.

Notice that size(ϕ) induces a well-founded order on the set of HXPath=(↓)-
formulas by taking ϕ < ψ if and only if size(ϕ) < size(ψ). The particular notion
of size introduced will let us prove Theorem 3.

Theorem 2. Let Θ be an open and saturated branch and n,m ∈ NOM. Then
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1. nϕ ∈ Θ implies MΘ, uΘ(n) |= ϕ.
2. (a) 〈nα ∗mβ〉 ∈ Θ implies MΘ, k |= 〈nα ∗mβ〉, for any k ∈MΘ, and

(b) ¬〈nα ∗mβ〉 ∈ Θ implies MΘ, k |= ¬〈nα ∗mβ〉, for any k ∈MΘ.

Proof. We reason by structural induction (as we mentioned, size induces a well-
founded order on the set of formulas). Let us consider the base cases. We show
some of them, the rest can be proved in a similar way:

– Cases np and n¬p, with p ∈ PROP are direct from definition of labelΘ.
– ni ∈ Θ, with i ∈ NOM. Then n ≡Θ i and by Lemma 4, uΘ(n) = uΘ(i). By

definition of nomΘ, nomΘ(i) = uΘ(i), and MΘ, uΘ(n) |= i.
– n¬i ∈ Θ. By (¬), we have mi ∈ Θ, for some m, and by definition ofMΘ we

have n,m ∈MΘ (and their respective urfathers by Lemma 6). Reasoning as
above, nomΘ(i) = uΘ(i) = uΘ(m). By Lemma 2, uΘ(m)i ∈ Θ, but because
Θ is an open saturated branch such that n¬i, mi ∈ Θ, then n 6= uΘ(m).
Then nomΘ(i) 6= n, hence MΘ, n |= ¬i.

– 〈n = m〉 ∈ Θ. By definition of MΘ, we have n,m ∈ MΘ and n ∼Θ uΘ(m).
By definition of urfather nuΘ(n) ∈ Θ and by (Data), 〈n = uΘ(n)〉 ∈ Θ. By
definition of ∼Θ, n ∼Θ uΘ(uΘ(n)), i.e., n ∼Θ uΘ(n) by Lemma 5. Because,
∼Θ is an equivalence relation, uΘ(n) ∼Θ uΘ(m). By definition of nomΘ,
nomΘ(n) ∼Θ nomΘ(m) and, hence, by Proposition 1 (item 3), MΘ, k |=
〈n = m〉 for any k ∈MΘ.

Now we proceed with the inductive cases:

– n〈α∗β〉 ∈ Θ: by (Int), we have 〈nα∗nβ〉 ∈ Θ. size(n〈α∗β〉) = nsize(〈α∗β〉)+
3 = psize(α) +psize(β) + 5, and size(〈nα ∗nβ〉) = psize(nα) +psize(nβ) =
psize(α)+psize(β)+4, i.e., (Int) decrements the size of the formula. Then we
can apply inductive hypothesis and getMΘ, x |= 〈nα ∗nβ〉, for all x ∈MΘ.
In particular MΘ, uΘ(n) |= 〈nα ∗ nβ〉. Therefore (by Lemma 6 and |=),
MΘ, uΘ(n) |= n〈α ∗ β〉.

– 〈nα ∗ kβ〉 ∈ Θ: induction on α.
- α = ↓α′: 〈n↓α′ ∗ kβ〉 ∈ Θ, then by (↓) we have n → m, 〈mα′ ∗ β〉 ∈ Θ
(with m the smallest nominal that has not appeared in the tableau). By
definition of MΘ, we have uΘ(n) →Θ uΘ(m) (⊗1) and by IH, MΘ, x |=
〈mα′ ∗ kβ〉 (⊗2), for all x ∈ MΘ. From ⊗2, we have that in particular
MΘ, uΘ(m) |= 〈mα′ ∗ kβ〉, and because uΘ(m) is the urfather of m, by
Lemma 6,MΘ, uΘ(m) |= m. Then by |=,MΘ, uΘ(m) |= 〈α′∗kβ〉 (⊗3). From
⊗1 and ⊗3 we getMΘ, uΘ(n) |= 〈↓α′ ∗ kβ〉, iffMΘ, uΘ(n) |= 〈n↓α′ ∗ kβ〉, iff
(by Proposition 1, item 1) MΘ, x |= 〈n↓α′ ∗ kβ〉, for all x ∈MΘ.

– ¬〈nα ∗ kβ〉 ∈ Θ: induction on α.
- α = ↓α′: ¬〈n↓α′ ∗ kβ〉 ∈ Θ, and suppose n → m ∈ Θ, then by (¬↓)
¬〈mα′ ∗ kβ〉 ∈ Θ. By definition of MΘ, we have uΘ(n) →Θ uΘ(m) (⊗1)
and by IH, MΘ, x |= ¬〈mα′ ∗ kβ〉 (⊗2), for all x ∈ MΘ. From ⊗2, we have
that in particular MΘ, uΘ(m) |= ¬〈mα′ ∗ kβ〉, and because uΘ(m) is the
urfather of m, by Lemma 6, MΘ, uΘ(m) |= m. Then by |=, MΘ, uΘ(m) |=
¬〈α′ ∗ kβ〉 (⊗3). From ⊗1 and ⊗3 we get MΘ, uΘ(n) |= ¬〈↓α′ ∗ kβ〉, iff
MΘ, uΘ(n) |= ¬〈n↓α′ ∗kβ〉, iff (by Proposition 1, item 1)MΘ, x |= ¬〈n↓α′ ∗
kβ〉, for all x ∈MΘ.
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5 Termination

In this section we prove that any tableaux obtained by the application of the
rules in Section 3 is finite. This proves that satisfiability for HXPath=(↓) is
decidable.

Definition 7. Let ϕ,ϕ′ be node expressions. Define ϕ ≺ ϕ′ if and only if,

1. there are ψ, n,m such that ϕ = nψ, ϕ′ = mψ, and n < m, or
2. there are no ψ, n,m such that ϕ = nψ and ϕ′ = mψ, and size(ϕ) < size(ϕ′).

Proposition 3. The relation ≺ from Definition 7 is a well-founded order.

Proof. As we already mentioned size induces a well-founded order over the set
of node expressions. The relation ≺ orders also at-formulas which are identical
except for their prefix, and hence have the same value for size. The order used
in this case is the order given by NOM. As a result, ≺ cannot have infinite
descending chains.

Proposition 4. In every tableaux rule in Section 3 except (Ref ), (Sym), (Nom),
(DSym), (DTrans) and (Data) the formulas in the consequent are strictly smaller,
in terms of ≺, than some of the formulas in the antecedent.

Theorem 3. Any tableau in the calculus from Section 3 is finite.

Proof. Suppose, for contradiction, that a tableaux T is infinite. As all rules in
Section 3 are finitely branching, T should have an infinite branch Θ. Moreover, by
Propositions 3 and 4, together with the general constraints C1 and C2 imposed
on the construction of tableaux, there is a point in Θ in which the only rules
applied further down the branch are (DSym), (DTrans), (Ref ), (Sym), (Nom)
and (Data). But these rules only introduce atomic formulas built over symbols
that have already appeared in Θ, and hence, at one point, by constraint C2 no
further application is possible.

Theorem 4. The satisfiability problem for formulas of HXPath=(↓) is PSpace-
complete.

Proof. Hardness follows from the PSpace satisfiability problem for the basic
modal logic K [5]. PSpace completeness can be proved by designing a backtrack-
ing algorithm which uses polynomial space, based on the rules from Section 3.
A sketch of a non-deterministic algorithm that uses only polynomial space is
shown in Algorithm 1. The algorithm explores a model “depth-first” and allows
the expansion of only one 〈α ∗ β〉 formula at a time. The following constraints
are, furthermore, assumed by the procedure. Let ϕ be the input formula:

– Formulas of the form iϕ, 〈i ∗ j〉 and ¬〈i ∗ j〉 for i, j ∈ NOM(ϕ) are never
removed from the tableau once generated, and they are assumed to be pre-
served by the Pop operation (e.g., they are copied to the previous instance
of T in the stack).
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– To allow the exploration of two branches in the model needed to check 〈α∗β〉
formulas, we assume that (↓) marks the data comparison formula in the con-
sequent using a ? (e.g., 〈mα∗β〉?). All other rules except (↓r) pass the mark
to the data comparison formula in its consequent when applied to a marked
formula. (↓r) never marks a data comparison formula in its consequent. No-
tation ϕ(?) indicates that ? may appear or not.

Algorithm 1 PSpace Tableaux

In: The algorithm is non-deterministic, branch-
ing rules are handled in parallel runs. All
variables are global. Tableau rules are ap-
plied following the constraints described in
Section 3.

Out: ϕ is satisfiable if at least one run returns
SAT.

1: T ← {0ϕ}, 0 not in ϕ
2: ST ← [ ]
3: loop
4: Saturate( )
5: if ChooseLeft( ) then
6: ExploreLeft( )
7: else if ChooseRight( ) then
8: ExploreRight( )
9: else

10: Pop ST

1: procedure Saturate( )
2: Apply all rules except (↓) and (↓r)
3: till saturation
4: if T has a clash then
5: exit(FAIL)

6: if No formula waits for (↓) or (↓r) then
7: exit(SAT)

1: function ChooseLeft( )
2: Choose from T
3: Unexpanded ϕ = 〈n↓α ∗ β〉(?)
4: s.t. n→ m /∈ T
5: return ϕ was found in T?

1: function ChooseRight( )
2: Let h be the highest s.t., 〈n ∗ h↓α〉∗ ∈ T
3: Choose from T
4: Unexpanded ϕ = 〈n ∗ h↓α〉∗
5: otherwise
6: Unexpanded ϕ = 〈n ∗m↓α〉
7: s.t. m→ k /∈ T
8: return ϕ was found in T?

1: procedure ExploreLeft( )
2: Push T in ST
3: Expand T using (↓)
1: procedure ExploreRight( )
2: Push T in ST
3: Expand T using (↓r)

6 Final Remarks

We have introduced a tableau calculus for the logic HXPath=(↓), i.e., XPath
with downward navigation and data comparison (by = and 6=), extended with
nominals and satisfaction operators. We proved that the calculus is sound, com-
plete, and that it terminates on all inputs. As the tableaux only needs poly-
nominal space, and the satifiability for HXPath=(↓) problem is PSpace-hard
(because it embeds the satisfiability problem for the basic modal logic K, [5]) a
PSpace-complete bound follows.

Several lines of further research are worth exploring:

– Given that XPath is commonly used as a query language for XML docu-
ments, we will consider extending the calculus with rules and clash conditions
to restrict the class of models to finite data trees.

– We plan to take advantage of existing techniques and implementations of
tableau procedures for hybrid logics to develop a prover for HXPath=(↓).
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– We will investigate extensions of HXPath=(↓) and consider the inclusion
of additional navigation axis like descendant (↓∗), ancestor (↑∗), father (↑),
next-sibling (�), etc.
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