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This paper introduces suitable notions of bisimulation for a family of logics of knowing how, which
capture the epistemic reasoning about goal-directed know-how by a single agent. First, we present
a bisimulation notion for the basic knowing how logic. We prove that with this notion, bisimilarity
implies formula equivalence, and that over finite models the converse also holds. Then, we explore
bisimulations for knowing how logic with intermediate states, and for a weaker knowing how logic.

1 Introduction

Standard epistemic logic [15, 8] studies the reasoning patterns of knowing that. It has been successfully
applied to various fields, such as theoretical computer science, game theory, and Al (cf. e.g., [8, 19, 7]).
However, knowing that is not the only interesting kind of knowledge. For example, in strategic reasoning
and automated planning, it is especially important to ask whether an agent knows how to achieve certain
goals (cf. e.g., the surveys [2, 10, 24]). Interestingly, knowing how cannot be captured by a simple
combination of knowing that and ability, as shown in [16, 14]. This is because a philosophically grounded
formulation of knowing how to achieve @ requires a de re reading: there exists a method x such that the
agent knows that executing x guarantees ¢ [22]. Also important is to take a global perspective: the given
strategy should allow the agent to achieve the goal in every scenario satisfying the initial conditions, in
order to assure that the success is a matter of ability and not a matter of luck. Based on this reading,
Wang proposed and studied a logic featuring a simple goal-directed knowing how operator Kh [23, 25],
of which variants have been studied in [18, 17, 9]. These logics are not normal, e.g., knowing how to get
drunk and knowing how to prove a theorem do not imply knowing how to get the theorem proved and
drunk at the same time. Moreover, given the semantic interpretation of their knowing how operators, these
languages can define the universal modality and have characteristic axioms capturing the composition of
plans or strategies. All this makes the family of knowing how logics interesting in the eyes of logicians.

Previous works have mainly focussed on axiomatizations, and thus have not thoroughly studied the
model theoretical aspects of these logics. In this paper, we make the first step in this direction by studying
bisimulation notions for three knowing how logics: the basic one in [25], the one with intermediate
constraints in [18], and the weakly knowing how logic in [17]. We obtain invariance results and prove
Hennessy-Milner-style theorems over finite models. These bisimulation notions, which can be used to
minimize models, also sharpen our understanding of the expressivity of those logics.

We use an example from [27] to illustrate the intuitive differences among the three knowing how
operators corresponding to each knowing how logic mentioned above. In this context, relational models
as in the example can be viewed as a reflection of the abilities of the agent, thus they are called ability
maps, which induce the knowledge-how of the agent.'

*Extended abstract
Note that the following knowing how operators are global (cf. [25] for discussions).
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2 Bisimulations for Knowing How Logics

Example 1. Consider the following ability map:

S6 $7:4 s8:4q
r . r . r . r
S] —> 2 p —>8S3:p S4 .4 S5

Let us see the differences considering each definition of knowing how.

1. Note how the agent knows how to reach q given s(he) is at a p-state (in symbols, the Kh(p,q)
proposed in [23, 25] holds). This is because there exists a uniform linear plan (ru) such that from
any p-state (s» and s3) the agent can always successfully execute the plan and ensure to reach
some g-state (s7 and sg, respectively).

2. On the other hand, the agent does not know how to reach q given p by only passing through
p-states (in symbols, the Khm(p, p,q) discussed in [18, 25] fails). The only uniform plan that
guarantees q given p, namely ru, has to travel through a —p-state (s4) if the agent starts at s3.

3. Finally, the agent weakly knows how to reach —~p A —q given p (in symbols, the Kh¥ (p,—p A —q)
studied in [17] holds), since there exists a uniform plan rrr that always reaches a (—p A\ —q)-state
whenever it can be executed. In particular, note how rrr cannot be successfully executed at s3:
after executing rr, the agent will reach ss, from where r can no longer take place. Thus, rrr is not
a suitable plan for the stronger knowing how of the first item in this list. (In fact, this stronger
Kh(p,—p A —q) fails, as there is no suitable uniform executable plan that can be successfully
executed from any p-state leading in every case to a (—p N\ —q)-state.)

The condition in the above knowing how operators naturally induces an initial epistemic uncertainty,
e.g., Kh(p,q) can be read as the agent knows how to reach ¢ given (s)he only knows p.

In order to find suitable bisimulation notions, we need to overcome one technical difficulty shared
by all these logics: the imbalance between weak languages and rich models. Note that while the logic in
[25] has a single knowing how modality, it is interpreted over arbitrary labelled transition systems. Thus,
a simple adaptation of the standard bisimulation for modal logic does not work.

Example 2. The following two pointed models w.r.t. s and t respectively satisfy exactly the same Kh-
formulas, but they are not bisimilar at all w.r.t. the usual notion of bisimulation over transition systems:

b c

s:pT»pT»q t:p?qiq

Our crucial inspiration comes from monotonic neighbourhood modal logic [21, 11, 12, 3, 13], which
also shares the 3V schema in its semantics.” We may look at the transition systems from a very abstract
point of view, and only consider the “forcing relation” taking the agent from a given set of states U to
those states the agent can reach by the execution of some plan/strategy from U.> A more general notion
of bisimulation for the predicate language with a general 3x[] modal operator can be found in [26].

The paper starts by reviewing the definitions of the basic knowing how logic (§2), and then proposes
and studies an appropriate bisimulation notion (§3). The ideas are extended for dealing with two other
knowing how logics (§4 and §5) before concluding with future directions (§6).

2QOther systems also make use of this quantification pattern; for bisimulations on some of them, see, e.g., [1].
3See [4, Ch. 11] for a detailed discussion on similar forcing relations in the setting of games.
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2 Basic Definitions

Through the text, let PROP be a countable set of propositional symbols, and let £ be a countable non-
empty set of action symbols.

Definition 1 (Syntax). We define the set of Lxn-formulas as:

pu=1L|p|-@|eA@|Kh(p,0),

with p € PROP (note how no formula in %k, refers to actions in X). Formulas of the form Kh(y, @)
express that, given , the agent knows how to achieve @. Other Boolean constants and connectives (V,
T, —, <) are defined as usual. Additionally, define A@ := Kh(—¢@, L) and E@ := —A-¢@. Finally, £
denotes the propositional fragment of Lkn.

Definition 2 (Relational Models). A relational model .# (also called transition systems and ability maps
in the literature) is a tuple (W,R, V) where W is a non-empty set of possible states (sometimes denoted
by D(A)), R: X — (W x W) assigns a binary relation on W to each a € £, and V : W — o(PROP)
is an atomic valuation. A pair (M ,w) with .# a relational model and w € D() is called a pointed
(relational) model, with w its evaluation point (we usually drop parentheses).

The following definitions will be useful.
Definition 3. Let .# = (W,R,V) be a relational model.
o Tuke a € X. We write w % v whenever (w,v) € R(a).

e Leto=a- - -a, €L beasequence. Givenw,v € W, we write w 2, v when there are Uly... Uy_] €
W such that
ai az Ap—1 dn
W—Uu — ... ——> Uy—1 —V
Note that © can be the empty sequence €, which satisfies w Sw foranyw e W.
o We say that o is executable at w € W if and only if there is v € W such that w %y,

e Given a sequence 6 =ay---a, € X" and a k < |oc
(i.e., O :=ay ---ay). In particular, 6y := €.

, denote by o the initial segment of G up to ay

o We say that 6 = a, ...a, is strongly executable (s.e.) at w if and only if: for any 0 < k < n and
anyveW, w Py implies that v has at least one ay-successor. It is not hard to see that, if © is
strongly executable at w, then it is executable at w.

e Given 6 € I* and U C W, define Rg[U] := {v e W | u s v for some u € U}, so Rs[U] is the set
of states reachable via © from some element of U.

o We write U > V whenever G is s.e. forallu € U and V = Rg[U].

o We write U — V whenever there is a & € X* such that U = V.

It is important to notice the difference between executability and strong executability.

Example 3. Consider the following relational model.

b
Wy —— W3
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. b
Note how the sequence ab is executable at wy, as there are wy and ws such that wy Lwy, > ws. However,
ab is not strongly executable at wy: for its subsequence a we have wi — wy, but nevertheless wy does
not have a b-successor.

Definition 4 (Semantics). Let .# = (W,R,V) be a model, and take w € W. The satisfaction relation |=
is defined as follows:

Mow =L
MW= p iff peV(w)
MW= @ iff AMwlEe

MwEQAY iff A,wlEQand H,wEy
A ,w = Kh(y, @) iff there exists 6 € L* such that for allu e W, if # ,u |= vy, then

o is s.e. atu and, for allv e W, u Sy implies M ,v |= ¢.

We say ¢ is satisfiable if and only if there exists a pointed model . ,w such that 4 ,w = ¢. We say @
is valid if and only if .4 ,w |= @ for every pointed model # ,w. Additionally, we define [@]# = {w |
A W = @}, the extension of ¢ in the model A .

Then, at state w of model .# the agent knows how to achieve ¢ given v, .#,w = Kh(y, @), if and
only if there is a sequence o that is strongly executable from any y-state, and any of such executions
leads to a @-state. Note how the evaluation point w does not play any role in the semantic clause, which
focusses rather on global model properties. Moreover, [Kh(y, )] is either the full domain or the
empty set. Then, given that for every U C D(.#') we have U £, U, the semantic interpretation of the
abbreviation A is such that

AM,wlEAe iff forallu € W, we have 4 ,u = ¢

Thus, A is the global universal modality (and hence E is its global existential dual).

For a sound and complete axiomatization of validities in -Zky, over the class of relational models, the
reader is referred to [23]. We finish this section with two concepts: Zkn-equivalence and definability.

Definition 5 (%«n-equivalence). Let .# ,w and .#',w' be two pointed models. We say .# ,w and ', w'
are Lxn-equivalent (notation: M ,w =g, A' W) if and only if they satisfy the same Lxn-formulas,
i.e., if and only if, for all @ in Lkn, we have M ,w = @ iff #' W = @.

Definition 6 (Definability). Let .# be a relational model. A set U C D(.#) is £kn-definable (resp.,
Z-definable, or propositionally definable) in . if and only if there is @ € Lk (resp., ¢ € L) such that

U=[e]”.

3 Bisimulation

In this section we introduce a notion of bisimulations for the knowing how language Zxp. As it will be
proved, this notion provides (in finite models) a semantic characterization of the language’s expressivity,

and thus it allows us to compare Zk}, with other proposals.

When looking for a notion of bisimulation for a given language, one needs to be careful when formu-
lating the conditions: they should be strong enough so that they guarantee the language cannot distinguish
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bisimilar models, but they should also be weak enough to hold between two models that cannot be dis-
tinguished by the language. In many cases, the definition will look natural after being provided, but the
conditions might not have been obvious at all before.

Let # = (W,R,V) and .#' = (W',R’, V') be two relational models. It is clear that the standard
bisimulation for the basic multi-modal language is not adequate, as the languages have different ex-
pressivity (for one, the global modality is not definable within the basic multi-modal language, but it
is definable within Zk},). Still, there are some basic ingredients that should appear. From the fact that
the language %k, involves atomic propositions and Boolean operators, it is obvious that an appropriate
bisimulation relation Z C W x W’ should only contain pairs of worlds with matching atomic valuation.

Now, for the Zig and Zag (also called forth and back) conditions. They should be designed to match
the lone modal operator of the language, Kh. As we are in a modal setting, one might be tempted to
require that, if (w,w’) is in Z, then these states should have ‘matching’ successors (for an appropriate
definition of ‘matching’). However, as it has been emphasised, the actual evaluation point does not play
any role in the semantic interpretation of the knowing how modality. In fact, as the global modality is
definable in %k, every world in W should have a ‘matching” world in W', and vice-versa, regardless of
whether they are accessible from the given pair (w,w’).

But this is, of course, not enough: the actual relations between worlds have not been considered,
and they are crucial when deciding whether the agent has some strongly executable strategy to achieve a
given goal. Further restrictions should be imposed, so bisimilarity indeed implies -Zkn-equivalent.

When looking for these additional conditions, a crucial observation is that the Kh operator does not
connect a state with another state (as, e.g., the standard ¢ and [J modal operators do); it actually connects
a set of states (those satisfying the precondition) with another set of states (those that can be reached via
the strong execution of some given strategy). Conditions similar to what Zk, requires can be found in
the literature for bisimulations over neighbourhood models (e.g., [21, 11, 12, 3, 13]).

Definition 7. Let .# = (W,R,V) and .#' = (W' ,R', V') be two relational models. A non-empty relation
Z CW x W' is called an Ln-bisimulation between .# and .#' if and only if wZw' implies:

Atom: V(w)=V'(w').

Kh-Zig: for any propositionally definable U CW, if U —V for someV C W, then there is V' C W' such
that (i) Z[U] — V' and, (ii) for each V' € V' there is a v € V such that vZV'.

Kh-Zag: for any propositionally definable U' C W', if U' — V' for some V' C W', then there isV C W
such that (i) Z~'[{U'] — V and (ii) for each v €V there is aVv' € V' such that vZv'.

A-Zig: forallvinW thereis aVv' in W' such that vZV'.
A-Zag: for allV' in W' there is avin W such that vZV'.

where Z[U] = {w' | wZw' for some w € U} and Z'[U’"] = {w | wZw' for some w' € U'}. We write
MW g, MW when there is an Lin-bisimulation Z between M and A" such that wZw'.

This definition of bisimulation has at least two points worthwhile to expand on. The first is about the
Kh-Zig and Kh-Zag clauses. Different from the standard bisimulation for the basic modal language (see,
e.g., Section 2.2 of [6]), they do not rely on worlds accessible from the pair (w,w’) under evaluation; they
rather work with arbitrary propositionally definable subsets of the domain. That they act globally over
sets of worlds is natural, given the semantic interpretation of the lone modal operator of the language,
Kh. The requirement of definable sets is also reasonable, as we are only interested in sets of worlds the
language can distinguish. Finally, the restriction to propositionally definable sets might seem too strong,
but this is actually not the case: any Zkn-definable set is also propositionally definable.
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Proposition 1. Let .# be a relational model. For all U C D(.A), if U is Lkn-definable, then it is
ZL-definable.

Proof sketch. Tt follows from the fact that the lone non-Boolean operator in Zky,, the knowing-how
operator Kh(y, @), is such that [Kh(y, )]/ is either D(.#) or else 0, and thus it is semantically
equivalent to either T or else 1. More precisely, one can define a translation tr 5 : Zkn — -£ such
that, for every @ € Zkn, [¢]” = [tr.s(9)]“. The definition is the natural one for atoms and Boolean
constants and connectives; for formulas of the form Kh(y, ), it simply chooses between T and L,
according to whether [Kh(y, )7 is D(.#) or 0:

tr (L) =1 tr.z(p):=p
tr(—@) =t 4 () try (PAY) =tr 4 (@) Atr_ 4 (W)

i o) =D(#
wy(Kh(y.g) = | TRV @T=D(A)

1 otherwise

It is not difficult to show that indeed [@]% = [tr 4 (¢)]# holds for all ¢ € Zxp. Thus, since every
Zn-definable U C D(.#) has a formula ¢ € %, such that U = [@]#, there is also a propositional
formula, namely tr 4 (), satisfying U = [tr_,(¢)] . O

Thus, given a relational model ., a set U C D(.#') is Zkn-definable if and only if it is proposition-
ally definable. The reason for choosing propositional definability over Zky,-definability is that, in this
way, a bisimulation is more ‘structural’, defined only in terms of the model (in particular, in terms of
valuations).

The second point is about the A-Zig and A-Zag clauses, which simply state that a bisimulation needs
to be total for both models. As the proof of Theorem 1 will show, these conditions are required to obtain
modal equivalence. Moreover, both are indeed required in the bisimulation definition, as they do not
follow from Kh-Zig and Kh-Zag, although A is expressible by Kh.

Example 4. Consider two relational models # = (W,R,V) and .#' = (W' ,R',V') as depicted below
(R and R’ are collections of empty relations), with a relation Z C (W x W') drawn with a dashed line.

o [mr o))

Clearly, A ,wy and #',w) are not Lxn-bisimilar due to the lack of A-Zig for wy. However, Z clearly
satisfies the Atom clause, and we can show that the Kh-Zig clause holds too by proving its four cases.

1. Take U = 0. When looking for V.C W with @ — V, the only possibility is V = 0. Since Z[0] = 0,
we need a set V! C W' satisfying (i) 0 — V' and (ii) for each V' € V' there is v € 0 such that vZV'.
Clearly, V' = 0 satisfies the requirements.

2. Take U = {w1}. As R, =0 for every a € £, the only V. C W satisfying {wi} — V is {w1} (via
o = ¢€). Since Z[{w:}] = {w}}, we need a V' C W' satisfying (i) {w|} — V' and (ii) for each
v € V' there is v € {wi} such that vZV'. Clearly, V' = {w} satisfies both requirements (using
O = € for the first).

3. Take U = {wy}. As R, =0 for every a € ¥, the only V. C W satisfying {w2} — V is {wz} (via
o = ¢€). Since Z[{w,}] = 0, we need a set V' C W' satisfying (i) 0 — V' and (ii) for each v/ € V'
there is v € O such that vZV'. Clearly, V' = 0 also satisfies both requirements.
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4. Take U = {wi,wy}. AsR, =0 foreverya € X, the only V C W satisfying {wy,wr} — V is {wi,w}
(via 6 = €). Since Z[{wi,w2}| = {w/ }, we need a set V' C W' satisfying (i) {w|} — V' and (ii) for
eachVv' € V' there is v € {wy,wa} such that vZV'. Clearly, V' ={w|} does the work.

An analogous argument shows that the Kh-Zag clause holds too. This shows that Kh-Zig and Kh-Zag do
not imply A-Zig and A-Zag.
Now we are ready to verify that the two models in Example 2 are indeed -Zkp-bisimilar.

It is also useful to note how the presented notion of bisimulation is indeed an equivalence relation
among relational models, a result that is sometimes implicitly used.

Proposition 2. < ¢  is an equivalence relation.

Proof. We will show that & ¢ is reflexive, symmetric and transitive.
Reflexivity: Is trivial because the identity relation is a bisimulation.

Symmetry: Let . = (W,R,V) and .#' = (W ,R',V’) be two models, w € W, w' € W', such that

Mwe g, MW Then there exists a Z C (W x W') s.t. wZw'. Let us show that the relation Z~!
is a bisimulation.
The Atom condition is trivial. Suppose u'Z~'u, then by definition uZu'. Let U’ C W' be propo-
sitional definable. By Kh-Zag, if U" — V', for some V' C W', then there exists V C W s.t.
Z7'U') =V and for all v € V there is v € V/ s.t. vZV/, i.e., VZ~'v. Then Z~! satisfies Kh-Zig.
Similar for Kh-Zag.

Transitivity: Let .#, = (W,R, V1), 4> = (W2,R,,V,) and .#3 = (W3,R3,V3) be three models, w; €
Wi, wi € Wi, w3 € Wa, such that 41, w1 <4, Mo, w> and Mo, wr < 4, A3, w3. Then there exist
Z and Z; s.t. wiZ1wy and wyZows. Tt is easy to show that Z3 = Z; 0 Z; is a Zkp,-bisimulation s.t.
wi1Z3ws, then .41, w; < S M3, w3,

O

Now, for the first direction of the characterization result: bisimilarity (< ¢, ) implies modal equiva-
lence (=4,).

Theorem 1 (%, Invariance). Let 4 ,w and .4’ ,w' be two pointed models, with .# = (W,R, V) and
M =W R NYIf M oweg, AW, then #,w=qg, A W.

Proof. If M ,w <, A’ W then there is a Zip-bisimulation Z C (W x W) such that wZw'. The proof
is by structural induction on Zk,-formulas. Boolean cases are straightforward; we only prove the case
for Kh(y, ).

Suppose . ,w |= Kh(w,@). Then there exists a 6 € £* such that [y]# % V and Res[[w]*] C
[@]# . First, an auxiliary result: Z[[w]%] = [w]*".

(C) Take any v € Z[[w]”]. Then there exists v € [y]* such that vZv'. By inductive hypothesis,
v e [yl

(D) Take any V' € [y]'. By A-Zag there exists v such that vZv'; by inductive hypothesis, v € [y]#.
Then, v' € Z[[y] ).

Now, let us show that Kh(y, @) holds at .#’,w'. Since [w]* is obviously Zip,-definable, it is also .Z-
definable (Proposition 1), and hence clause Kh-Zig tells us that, for every V C W such that ﬂl//ﬂ‘/// =V,
there is a V/ C W’ such that (i) Z[[w]#] — V' (i.e., [w]# — V', given the auxiliary result), and (ii) for
every v/ € V' there is v € V such that vZV'. From [y]*# — V and the fact that Kh(y, @) holds at
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(A ,w), we know that V C [@]. Then, from (ii), for every v/ € V' there is v € @]/ such that vZv/;
hence, by inductive hypothesis, v € [@]#'. Thus, summarising, [w]#" — V' and V' C [@]*"; hence,
AN F Kh(y, o).

For the other direction use Kh-Zag and A-Zig. O

Theorem 1 tells us that the semantic condition described by our bisimulation definition is strong
enough to guarantee Zkn-equivalence. The other direction, showing that our bisimulation is weak
enough to hold between any -Zkp-equivalent pointed models, is more complicated in the general case.
A typical strategy when dealing with the basic modal language is to focus on a weaker result, showing
instead that the desired property holds for image-finite models: those in which each state has, for every
a € ¥, only a finite number of a-successors [6, 5]. Here we will focus rather on finite models; this is
because the global modality is definable in our language, and thus a finite domain is required in order to
ensure the image-finiteness property.

Theorem 2. Let # = (W,R,V), #' = (W' ,R',V') be two finite models, w € W and w' € W'. If
Mow =g, MW then Mo weg, MW

Proof. Define Z:={(v,v') € (W xW') | A ,v=g, #',V}. We will show that Z is a .Zp-bisimulation,
so take any (w,w') in Z.

Atom: Trivial, by definition of Z.

A-Zig: Take v € W and suppose, for the sake of a contradiction, that there is no v/ € W’ such that vZy'.
Then, from Z’s definition, for each v € W' = {V|,...,v,} (recall: .#’ is finite) there is a Zkn-
formula 6; such that .#,v = 6; but .Z" v} [~ 6;. Now take 0 := 6; A--- A\ 6,. Clearly, .#,v = 0;
however, .#",v} [ 6 for each v, € W', as each one of them makes ‘its” conjunct 6; false. Then,
A ,w = EO and .#',w' [~ EB, contradicting wZw'.

A-Zag: Analogous to the A-Zig case.

Kh-Zig: Take any propositionally definable set [y] “# C W (y is a propositional formula), and suppose
[w]# — V for some V C W. We need to find a V/ C W’ such that Z[[w]#] — V' and for all
v € V' there is v € V such that vZv'. First note that [w]# = Z[[w]*],* we just need to find
an appropriate V/ for [w]#'. Note that if [y] is empty then [w]“ = Z[[w]*] is empty too
and we can just let V/ = 0. In the following we assume that [[q/]]// is not empty, then it is clear
that [w]# = Z[[w]*] is not empty too due to A-Zag. Thus V and V' cannot be empty neither
due to the definition of the forcing relation based on strong executability. Moreover, as an easy
observation, there is V' = [y]“ such that [y]4" — V' due to the empty strategy.

Now, towards a contradiction, suppose that such a V'’ does not exist, i.e., for each V/ C W’ such that
Tw]“# " V', there exists a vy, € V' such that there is no v € V such that vZv;,,. Due to the definition
of Z, this means that for each v € V we have a formula ¢}, such that .2 ,v F ¢}, but .Z' V' ¥ ¢;),.
Now since the models are finite, we can define 0y :=\/ oy @y, then let 6 := /\{V/l[[w]]////g)v/} Oy.
Then it is not hard to see that .# ,v E 6 for all v € V but there is a V' in V'’ such that .#",v' ¥ 6 for
each V’ such that [y]#" — V'. Therefore, since Kh-formulas are global, .#,w = Kh(y, 6) but
A W'~ Kh(y, 0). Contradiction.

Kh-Zag: Analogous to the Kh-Zig case.
Thus, Z is a Zkp-bisimulation, and therefore .#,w < 4, A’ W' O

4(2) o’ € Z[[w]*] implies there is u € [y]# such that uZu/, and therefore, from Z’s definition, «’ € [y]*#". (C) Suppose
u' € [w]*'. From A-Zag there is u € W such that uZu/'; then, from Z’s definition, u € [y]-/ and therefore u’ € Z[[w]”].
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Note that the statement of Theorem 2 only indicates that finite models that are Zkn-equivalent are
also bisimilar. Note also that, as the language can express the universal modality, merely restricting to
image-finite models as in standard modal logic does not work.

4 Knowing How with Intermediate Constraints

The knowing-how operator Kh has a ‘conditional’ feeling: .#,w = Kh(y, @) holds if and only if the
agent has a ‘method’ o whose output is guaranteed to be ¢, whenever Y holds in the initial situation.
Still, the operator is indifferent about the way the given method works: as long as it always takes us from
y-worlds to ¢-worlds, any o € X* will do.

Of course, in some situations one might be interested not only in the strategy’s final outcome, but also
on its intermediate stages. In particular, one might want to guarantee that the strategy is ‘appropriate’ by
asking for these intermediate stages to satisfy certain condition. This is the idea behind the knowing how
operator with intermediate constraints studied in [18]. This section introduces a notion of bisimulation
for a logic based on this operator, Khm.

Definition 8 (Syntax). We define the set of Lxnhm-formulas as:

@:=L|pl-@[oN@|Khm(p,0,0),

with p € PROP. Formulas of the form Khm(y, x,®) express that, given y, the agent knows how to
achieve ¢ while maintaining x. Additionally, the abbreviation A@ is given now as A@ := Khm(—¢, T, 1)
(and EQ := —~A—@, as before).

For Khm’s semantic interpretation, some further definitions are required.
Definition 9. Let ./ = (W,R,V) be a relational model.

o Wesaythat o =a, ...ayis strongly x-executable at w € W if and only if (i) © is strongly executable
atw, and (ii) for all 0 < k < n, ifv%tthen//l,t Ex.

e Leto=a...a,asequenceinX*. Given X CW andw € W, we say o is strongly X-executable at
w if and only if (i) O is strongly executable at w, and (ii) {v | w 2y, forany 0 < k < n} CX.

o WewriteU 25 v if and only if (i) o is strongly X -executable at every u € U, and (ii) V = R [U].

. X . X
o We write U =5 V whenever there is a 6 € X* such that U == V.
Now we can introduce the semantics of the Khm operator.

Definition 10 (Semantics). Let .# = (W,R,V) be a model, and take w € W. The satisfaction relation |=
for atoms, negations and conjunctions is as in Definition 4. For Khm,

A owE=Khm(y, x, @) iff there exists © € X* such that for allu € W, if A ,u |= v, then
o is strongly ) -executable at u and, for allv e W,
o . .
u — vimplies M ,v = @.

Note how, given its new definition (Definition 8), A is again the global universal modality.

Here is, then, a bisimulation for Zknm-

Definition 11. Let .# = (W,R,V) and .#' = (W' ,R', V') be two relational models. A non-empty relation
Z C (W xW') is called an Lknm-bisimulation between A and ' if and only if wZw' implies:



10 Bisimulations for Knowing How Logics

Atom, A-Zig and A-Zag as in Definition 7.

Khm-Zig: for any propositional definable U CW, if U LS V for some X,V C W, then there are X', V' C

W' such that (i) Z[U] X, V', (ii) for each x' € X' there is a x € X such that xZx', and (iii) for each
Vv e V' thereis av €V such that vZV'.

Khm-Zag: for any propositional definable U' C W', if U’ Xy for some X',V' C W/, then there are
X,V C W such that (i) Z~'[U'] Xy, (ii) for each x € X there is a X' € X' such that xZx', and
(iii) for each v € V there is aVv' € V' such that vZV'.

We write M ,w < 4, MW when there is a Lknm-bisimulation Z between A and .#' such that wZw'.

The difference between clauses Kh-Zig/Zag and Khm-Zig/Zag is that the latter also require for the
‘travelled states’ to be bisimilar. It is also worthwhile to notice that the propositional definability require-
ment is kept since, just as with Zkp, a set U C D(A) is Lknm-definable if and only if it is propositionally
definable. We will use the notion of Khm-equivalence (=, ) as in Definition 5 but for Khm-formulas.

Now we will show that Zkpm-bisimilarity implies Zknm-equivalence.

Theorem 3 (Lknm Invariance). Let .# ,w and ', W' be two pointed models, with .# = (W,R,V) and
M =W R N)VIf M weg, MW, then ,w=gy, M W.

Proof. If M ,w <y, /' W then there is a Linm-bisimulation Z C (W x W') such that wZw'. The
proof is by structural induction on Zknm,-formulas. Boolean cases are straightforward; we only prove
the case for Khm(y, x, 0).

Suppose .7 ,w = Khm(y, x, ®). Then there is ¢ € £* such that [y]* Xy (for X C [x]#) and
V C [@]”. The set [w]“ is Zknm-definable, and thus .#-definable. Hence, from [y]* 2%V, the

Khm-Zig clause tells us that there are X",V C W’ such that (i) Z[[w]] Xy, (ii) for each v/ € V' there
is a v € V such that vZv/, and (iii) for each x' € X’ there is a x € X such that xZx’'.
We now prove three parts. First, from (i) and Z[[y]”] = [w]* (see the proof of Theorem 1) we

have [y]*' Yoy Second, if x' € X', then from (iii) there is x € X such that xZx'. Since X C [x]*,
there is x € [x]# such that xZx'; therefore, by induction hypothesis, x’ € [¥]# . Hence, X' C [x]“ .
Third, take any v/ € V’. From (ii), there is v € V such that vZv/; but V C [¢@]#, so v € [¢]” and

vZV'. Then, by induction hypothesis, v' € [@]#', so V' C [@]#". Thus, [w]* Xy x'c [x]* and
V' C [@]#'; therefore, .#',w' = Khm(w, %, ¢). The argument for the other direction is similar. O

For the other direction, in finite models, Zknm-equivalence implies -Zxnm-bisimilarity.

Theorem 4. Let .# = (W,R,V) and .#' = (W',R',V') be two finite models, w € W and w € W'. If
Mow =g, MW then M weg, M W.
Proof. The strategy will be, just as in the proof of Theorem 2, to show that Zknm,-equivalence is indeed
a bisimulation, so define Z := {(v,v) € (W xW') | 4 ,v =4,  .#',V'} and take any (w,w’) in Z.
Atom: Trivial, by definition of Z. A-Zig and A-Zag are as in Theorem 2.
Khm-Zig: Take any propositionally definable [w]# C W, and suppose [w]# XV for some X,V C W.

As in the proof of Theorem 2, we can show that [y]?" = Z[[y]]. According to the definition

of Khm-Zig, we just need to show that [y]*#' X\ V' for some X',V C W’ such that (ii) for each
x" € X' there is an x € X such that xZx', and (i) for each v/ € V' there is a v € V such that vZV'.
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As a handy observation, we can show that [[w]]” "X V' for some appropriate X', V' satisfying

(ii) and (iii) iff [w]? ﬂ V' for some appropriate V' satisfying (iii). Note that right-to-left is

trivial since Z[X] satisfies (i) by definition. Left-to-right is also clear since X' C Z[X] if X satisfies

(ii). By the above observation, we just need to show that [y]-*4’ 2y for some appropriate V'

satisfying (iii).

Now since the models are finite, we can find a propositional formula y to characterize Z[X] within
A'. To see this, note that for each valuation for basic propositions, we can use a finite proposi-
tional formula to distinguish it from finitely many other valuations. Moreover, if two worlds u’, u”
share the same valuation then they are either both in Z[X] or both outside Z[X], for otherwise there
exists x € X such that xZu' but not xZu”, which is impossible since u and u” are logically equivalent
(the global Kh-formulas do not distinguish them).

The rest of the proof is very similar to the one for Theorem 2. Towards a contradiction, suppose

that any V’ such that [y]*’ 2, 1 does not satisfy (iii) for the given V. Then we can find the 6

in a similar way as in the proof of Theorem 2. Finally we can show that .#,w = Khm(y, x,0) but
A w = Khm(y, x, 0), where y is a formula which characterizes Z[X] within .#’. Contradiction.

Khm-Zag: Analogous to the Khm-Zig case.
Thus, Z is a -Zknhm-bisimulation, and therefore A4, w < 4, 4" W' O

5 A Weaker Logic of Knowing How

Sometimes, the logics of knowing how introduced in previous chapters are too strong, given that they
require plans to be strongly executable. In [17] a knowing how operator based on weak conformant plans
was introduced. A weak conformant plan for achieving ¢-states from y-states is a finite linear action
sequence such that the execution of the action sequence at each y-state will always terminate on a ¢-
state, either successfully or not. The motivation for introducing a weaker operator is that for real life
situations a weak conformant plan is enough. For instance, drinking ten shots of tequila sounds like a
plan for getting drunk, but the weaker conformant plan consisting of drinking nine (and even less) shots
and stop may achieve the goal.

Definition 12 (Syntax). We define the set of Z,w-formulas as:

p:u=L|pl-o|ore|KhY(¢p,0),

with p € PROP. Formulas of the form Kh'W (y, @) express that the agent can always execute a plan from
V-states which terminates in a @-state, either successfully or not. Additionally, the abbreviation A is
now defined as A := Kh'WW (=, 1) (and E@ := ~A—@, as before).

For Kh'W’s semantic interpretation, some further definitions are required.
Definition 13. Let ./ = (W,R,V) be a relational model.

e Let 6 =aj...a, a sequence in X*, w € W. Terms(w, 0) is the set of states at which executing ¢

on w might terminate. Formally, it is defined as

o . . O;
Terms(w,0) = {v | w — v,or there exists i such that w — v and v has no a;y successor}.

o We write U Zsw V whenever V = | Terms(u;, 0).
uiclU
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e We write U — V whenever there is ¢ such that U i>W V.

Now let us introduce the semantics of Kh'V:
Definition 14. Let .# = (W,R,V) be a model, and take w € W. The satisfaction relation |= for atoms,
negations and conjunctions is as in Definition 4. For Kh'V,

Mow = KO (y, @) iff  there exists 6 € £* such that for allv € W, if M ,v |= v then
forallt € Terms(v,0),, we have 4 ,t = @.

Notice that again, the universal operator A has the intended meaning.

Here we have a notion of bisimulation for .Zj¢,w.
Definition 15. A non-empty relation Z C (W x W') is called an L,w-bisimulation if wZw' implies:
Atom, A-Zig and A-Zag as in Definition 7.

Khm-Zig for any propositional definable U CW, if U —w V for someV C W, then (i) there is V' CW’
such that Z|U) —w V' and, (ii) for each V' € V' there is av € V such that vZV'.

Khm-Zag for any propositional definable U' C W', if (i) U —w V' for some V' C W', then there is
V C W such that Z~'[U') —w V and, (ii) for each v €V there is aVv' € V' such that vZV'.

We write M ,w =z, AM',W when there is a Zyyw-bisimulation Z such that wZw'.

In a very similar way as we did in previous sections, we can prove the following two theorems (using,
of course, the appropriate definition of = L)
Theorem 5 (%, Invariance). Let 4 ,w and .4’ ,w' be two pointed models, with .#4 = (W,R,V) and
M =W RN If M ,w Sg w MW, then M w=g , MW
Theorem 6. Let .# = (W,.R,V), .4 = (W R V') be two finite models, w € W and w € W'. If
MW =g\, M W then M ,w Sg AW

6 Final Remarks

In this article we introduced suitable notions of bisimulation for three different knowing how logics.
These logics represent an interesting alternative for a new interpretation of epistemic logics, traditionally
focused on knowing that operations. The semantics of the first knowing how operator (first introduced
in [23, 25]) requires plans that always succeed in order to know how to achieve ¢ from a precondition
w. The second alternative (introduced in [18]) incorporates conditions in each intermediate state that is
“visited” while executing the successful plan. Finally, a weaker knowing how operator was introduced
in [17], in which it is considered that the goal ¢ is achieved when it holds in all states that can be reached
via the given plan, even those in which the plan cannot be finished. As we pointed out, these operators
were already investigated but the model theoretical aspects have not been studied before. For the three
notions of bisimulation introduced, we proved that bisimilarity implies modal equivalence in the corre-
sponding logic, and when consider the class of finite models, modal equivalence implies bisimilarity.

We believe the results presented here are the first step towards a better understanding of the model
theory and expressivity of this family of logics. As future work, we will use bisimulations as a tool to
investigate the expressive power of each logic, and compare them among each other. Also, bisimulations
can be used to minimize models as mentioned before. It would be interesting to explore also model
theoretical properties for the logics which can capture interactions between knowing how and knowing
that operators (such as the logics introduced in [9, 20]). Of course, another interesting extension is to
move to the multi-agent setting, in order to describe the knowing how abilities of different agents. When
combined with a knowledge that operator as in the just mentioned proposals, this would give us a setting
to talk about the knowledge agents have about one another’s abilities.
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