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Abstract. We build a Default Logic variant on Intuitionistic Proposi-
tional Logic and develop a sound, complete, and terminating, tableaux
calculus for it. We also present an implementation of the calculus. We
motivate and illustrate the technical elements of our work with examples.

1 Introduction

Non-monotonic formalisms have traditionally been defined with a classical se-
mantics [19]. More recently –following the seminal work of Gabbay [18]– there is
an interest in the interplay between non-monotonic formalisms and Intuitionistic
Logic (IL). E.g., in [37] a formalization of a notion of non-monotonic implication
capturing non-monotonic consequence based on IL is proposed; in [38] the work
of Gabbay in [18] is revised; in [29] a characterization of answer sets for logic
programs with nested expressions is offered in terms of provability in IL (gener-
alizing earlier proposals of Pearce in [31,32]). The articles just mentioned have
in common a study of the interplay between non-monotonic formalisms and IL
from a theoretical perspective. Another interesting take on this interplay can
be found in the area of Normative Systems or Legal Artificial Intelligence. E.g.,
in [21] a Description Logic built on IL is presented as a way to deal with conflicts
present in laws and normative systems. These conflicts usually lead to logical
inconsistencies when they are formally analyzed, bringing to the fore the need
for an adequate semantics for negation in such a context. Another example is
[30], where a construction of an I/O Logic –a general framework to study and
reason about conditional norms [27]– is carried out on IL.

The interplay between non-monotonic formalisms and IL in normative sys-
tems is succinctly illustrated by the following motivating example (adapted
from [25]). Let the possible outcomes of a trial be the verdicts of guilty or not
guilty. A verdict of guilty is obtained when the evidence presented by the pros-
ecution meets the so-called “beyond reasonable doubt” standard of proof. A
verdict of not guilty is obtained when the evidence fails to meet said standard
of proof; say because the defense manages to pinpoint contradictions in what
the prosecution has presented. In such a context, the proposition guilty or not
guilty is not understood as plainly true. Associated to it there is a proof of guilti-
ness; or a proof that this leads to contradictions. This intuitive understanding
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of guilty or not guilty departs from its classical interpretation and better fits in
an intuitionistic setting.

Furthermore, as stated in [25], a proposition such as: a verdict of guilty im-
plies not innocent is intuitively correct. The reason for this is that a verdict
of guilty, as mentioned, is backed up by evidence meeting a standard of proof
“beyond reasonable doubt”, and such a proof can be used to convert any proof
of innocent into a contradiction. But we might be more reluctant to accept the
contraposition: innocent implies not guilty as intuitively correct. Being innocent,
as a concept, is not backed up by any notion of evidence, neither it has to meet
any standard of proof. A common starting point of a trial is the so-called prin-
ciple of presumption of innocence, whereby someone accused of committing a
crime is a priori innocent. In other words, some care needs to be taken in an
intuitionistic setting for the law of contraposition does not necessarily hold.

The principle of presumption of innocence is clearly defeasible. If we only
know that a person has been accused of committing a crime, we must conclude
that this person is innocent. However, if additional information is brought up,
e.g., a credible witness, the murder weapon, etc., the principle ceases to apply
and the conclusion that the person is innocent is withdrawn. In other words, the
principle of presumption of innocence behaves non-monotonically.

Here, we build a default logic over Intuitionistic Propositional Logic (IPL).
Our aim is to formally reason about scenarios such as the one presented above.
The choice of a default logic is not arbitrary. Since their introduction in [36], it
has become clear that default logics have a special status in the literature on
non-monotonic logic due to a relatively simple syntax and semantics, natural
representation capabilities, and direct connections to other non-monotonic log-
ics [4,2]. From a logic engineering point of view default logics are also interesting
since they can be modularly built on an underlying logic having some minimal
properties [7]. Moreover, we develop a tableaux calculus for our default logic
taking some ideas from [8,6]. The resulting calculus is sound, complete, and ter-
minating. Not many proof calculi for default logics built over IL exist. Important
works are [1,13]. In [1], a tableaux method is presented for a default logic built on
IPL which allows for the computation of extensions, but not for checking default
consequence. The latter is covered in [13], where a sequent calculus is presented.
The calculi introduced in [1,13] are related to ours but differ in some important
aspects, in particular, in their construction. In addition, we present a prototype
implementation which enables automated reasoning, a feature missing in [1,13].

Structure. In Sec. 2 we introduce preliminary definitions and results. More pre-
cisely, we present Intuitionistic Propositional Logic (IPL), and a default logic
built over IPL (DIPL). In Sec. 3 we recall tableaux for IPL and develop a tableaux
calculus for default consequence in DIPL. In Sec. 4 we present an implementation
of our calculus. In Sec. 5 we report on a preliminary empirical evaluation of our
implementation. In Sec. 6 we conclude the paper and discuss future research.
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2 Basic Definitions

This section introduces basic definitions to make the paper self-contained.

Intuitionistic Logic. The syntax and semantics of Intuitionistic Propositional
Logic (IPL) is defined below.

Definition 1 (Syntax). The set F of wffs of IPL is defined on an enumerable
set P = { pi | 0 ≤ i } of proposition symbols, and is determined by the grammar

ϕ ::= pi | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ ⊃ ϕ.

We write ⊥ as an abbreviation for p ∧ ¬p, and > for ¬⊥.

As in [34], we define the semantics for IPL via intuitionistic Kripke models.

Definition 2 (Models). A Kripke model M is a tuple 〈W,4, V 〉 where: W is
a non-empty set of elements (a.k.a. worlds); 4 ⊆ W ×W is the accessibility
relation; and V : W → 2P is the valuation function. An intuitionistic Kripke
model is a Kripke model M in which 4 is reflexive and transitive, and in which V
satisfies the so-called heredity condition: for all w 4 w′, if w ∈ V (p), w′ ∈ V (p).

Definition 3 (Semantics). Let M = 〈W,4, V 〉 be an intuitionistic Kripke
model, w ∈W , and ϕ ∈ F, we define the satisfiability relation M, w |= ϕ s.t.:

M, w |= p iff p ∈ V (w)
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ
M, w |= ¬ϕ iff for all w 4 w′, M, w′ 6|= ϕ
M, w |= ϕ ⊃ ψ iff for all w 4 w′, if M, w′ |= ϕ then M, w′ |= ψ.

Notice that, unlike Classical Propositional Logic, M, w 6|= ϕ is not equivalent to
M, w |= ¬ϕ. For any Φ ⊆ F, we say that M, w |= Φ iff M, w |= ϕ, for all ϕ ∈ Φ.

Next, we introduce the definition of consequence for IPL.

Definition 4 (Consequence). Let Φ ⊆ F and ϕ ∈ F; we say that ϕ is
a logical consequence of Φ, notation Φ � ϕ, iff for every M and w in M, if
M, w |= Φ, then M, w |= ϕ3. We use � ϕ as an abbreviation for ∅ � ϕ. We say
that Φ is consistent if Φ 66� ⊥, otherwise it is inconsistent.

It is well known that � satisfies reflexivity, monotonicity, cut, structurality
and compactness (see e.g. [17] for details). In Def. 4 consequence in IPL is charac-
terized semantically in terms of Kripke models. In Sec. 3 we present a syntactic
characterization based on a proof system.

3 This notion is referred to as local consequence in the literature on Modal Logic.
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Default Logic. First introduced in [36], Default Logic comprises a sub-class
of non-monotonic logics, characterized by so-called defaults and extensions. A

default is a 3-tuple of formulas, notation π
ρ

=⇒ χ. Intuitively, we can think of
a default as a defeasible conditional which given some conditions on π and ρ
enables us to obtain χ. Extensions formalize what are these conditions. Defaults
and extensions are introduced below.

Definition 5 (Defaults and Default Theories). We call D = F3 the set of

all defaults. Let ∆ ⊆ D, ∆Π = {π | π ρ
=⇒ χ ∈ ∆ }, ∆P = { ρ | π ρ

=⇒ χ ∈ ∆ } and

∆X = {χ | π ρ
=⇒ χ ∈ ∆ }. A default theory Θ is a pair (Φ,∆) where Φ ⊆ F and

∆ ⊆ D. For any default theory Θ = (Φ,∆), we define ΦΘ = Φ and ∆Θ = ∆.

In what follows we restrict our attention to finite default theories, i.e., default
theoriesΘ in which both ΦΘ and∆Θ are finite sets. Though our definitions extend
directly to infinite default theories, there are some subtleties involved in dealing
with infinite sets of defaults which we wish to avoid here (see [7] for details).

Definition 6 (Triggered). Let Θ be a default theory, and ∆ ∪ {δ} ⊆ ∆Θ; we
say that δ is triggered by ∆ iff (ΦΘ ∪∆X) � δΠ.

Definition 7 (Blocked). Let Θ be a default theory, and ∆ ∪ {δ} ⊆ ∆Θ; we
say that δ is blocked by ∆ iff there is ρ ∈ (∆ ∪ δ)P s.t. ΦΘ ∪ (∆ ∪ δ)X ∪ ρ is
inconsistent.

Definition 8 (Detached). Let Θ be a default theory and ∆ ∪ {δ} ⊆ ∆Θ; we
say that δ is detached by ∆ if δ is triggered and not blocked by ∆.

Intuitively, for a default π
ρ

=⇒ χ in the context of a default theory Θ, the
notion of detachment in Def. 8 tells us under which conditions on π and ρ we
can obtain χ. The definition of detachment is an intermediate step towards the
definition of an extension.

Definition 9 (Generating Set). Let Θ be a default theory and ∆ ⊆ ∆Θ; we
call ∆ a generating set iff there is a total ordering l on ∆Θ s.t. ∆ = Dl

Θ
(n) for

n = |∆Θ|, and Dl
Θ

is defined as:

Dl
Θ

(0) = ∅

Dl
Θ

(i+1) =


Dl
Θ

(i) ∪ δ if δ ∈ ∆Θ\Dl
Θ

(i) is detached by Dl
Θ

(i), and

for all η 6= δ ∈ ∆Θ\Dl
Θ

(i), if η is detached by Dl
Θ

(i), δ l η

Dl
Θ

(i) otherwise.

Definition 10 (Extension). Let Θ be a default theory, we say that E ⊆ F is
an extension of Θ iff E = ΦΘ ∪∆X where ∆ ⊆ ∆Θ is a generating set.

Intuitively, we can think of an extension of a default theory Θ as a set of
formulas which contains ΦΘ and which is closed under detachment. We are now
in a position to define our default logic.
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Definition 11 (DIPL). The default logic DIPL is the 3-tuple 〈F,�,E〉 where:
(i) F is the set of all formulas of IPL; (ii) � is the consequence relation of IPL;

and (iii) E : (2F × 2D)→ 2(2
F) is a function which maps every default theory Θ

to its set of extensions, i.e., E ∈E(Θ) iff E is an extension of Θ (see Def. 10).

The notion of consequence for DIPL is introduced below.

Definition 12 (Default Consequence). We say that a formula ϕ is a default
consequence of a default theory Θ, notation Θ |≈ ϕ, iff for all E ∈E(Θ), E � ϕ4.

Some Comments and Easily Established Properties of DIPL. Def. 10 corresponds
to extensions as defined by  Lukaszewicz in [26]. This definition of extensions
is better behaved than Reiter’s original proposal [36]. In particular, it guar-
antees existence, i.e., for any default theory Θ, E(Θ) 6= ∅. Def. 10 also guar-
antees semi-monotonicity. For default theories Θ1 and Θ2, define Θ1 v Θ2 iff
ΦΘ1
⊆ ΦΘ2

and ∆Θ1
⊆ ∆Θ2

. Semi-monotonicity implies that for any two default
theories Θ1 v Θ2, if ΦΘ1

= ΦΘ2
, then for all E1 ∈E(Θ1), there is E2 ∈E(Θ2)

s.t. E1 ⊆ E2. As we will see in Sec. 3, semi-monotonicity is important because it
allows us to define a tableaux calculus for default consequence that can take ad-
vantage of a partial use of default theories. DIPL is non-monotonic; in the sense
that there are default theories Θ1 and Θ2 s.t. Θ1 v Θ2, Θ1 |≈ ϕ, and Θ2 6|≈ ϕ.

We conclude this section with an example illustrating some of the features
and technical elements of DIPL. The following terminology and notation is useful.

A default π
ρ

=⇒ χ is normal iff ρ = χ. Normal defaults are written π =⇒ χ. Let
Θ1 = (Φ1, ∆1) and Θ2 = (Φ2, ∆2), define Θ1 tΘ2 = (Φ1 ∪ Φ2, ∆1 ∪∆2). If Θ1

is a default theory, Φ a set of formulas, and ∆ a set of defaults, we use Θ1 t Φ
to mean Θ t (Φ, ∅), and Θ t∆ to mean Θ t (∅, ∆).

Example 1 (Presumption of Innocence). Consider the following propositions:

(1) ‘accused’. (2) ‘guilty or not guilty’. (3) ‘guilty implies not innocent’.
(4) ‘the affidavit of a credible witness, the murder weapon, and the results
of forensic tests, imply sufficient evidence’. (5) ‘sufficient evidence implies
a verdict of guilty’.

In IPL, we would typically formalize (1) to (5) as:

(1’) a. (2’) g ∨ ¬g. (3’) g ⊃ ¬i. (4’) (c ∧ w ∧ f) ⊃ e. (5’) e ⊃ g.

In turn, consider the principle of presumption of innocence, i.e., ‘an accused of
committing a crime is a priori innocent’; because of its defeasible status, we

choose to formalize it as the (normal) default (6’) a =⇒ i.

Let Θ = ({g ∨ ¬g, g ⊃ ¬i, (c ∧ w ∧ f) ⊃ e, e ⊃ g}, {a =⇒ i}); then:

(a) Θ |≈ g ∨ ¬g (e) Θ t {a} |≈ a (h) Θ t {a, c, w, f} |≈ a
(b) Θ |≈ g ⊃ ¬i (f) Θ t {a} |≈ i (i) Θ t {a, c, w, f} 6|≈ i
(c) Θ |≈ (c ∧ w ∧ f) ⊃ e (g) Θ t {a} 6|≈ g (j) Θ t {a, c, w, f} |≈ g
(d) Θ |≈ e ⊃ g

4 This notion is referred to as sceptical consequence in the literature on Default Logics.
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Intuitively, the default theory Θ captures the basic set of assumptions dis-
cussed in the example in Sec. 1. These assumptions include the possible outcomes
of the trial, i.e., the verdict of guilty or not guilty, i.e., g ∨ ¬g; the considera-
tion that guilty implies not innocent, i.e., g ⊃ ¬i; what constitutes sufficient
evidence, i.e., (c ∧ w ∧ f) ⊃ e; and the claim that sufficient evidence leads to a
verdict of guilty, i.e., e ⊃ g. Each of these assumptions is a default consequence
of Θ. Θ t {a} considers the particular situation at the beginning of a trial, i.e.,
someone is accused of committing a crime. It follows that a and i are default
consequences of Θt{a}; i.e., if the only thing we know is that someone is accused
of committing a crime, we must conclude that said person is innocent, as per
the principle of presumption of innocence. In turn, Θ t {a, c, w, f} captures the
idea that if we acquire sufficient evidence, in the form of a credible witness affi-
davit, the murder weapon, and the results of forensic tests, we obtain a verdict
of guilt, and in such a situation the principle of presumption of innocence no
longer holds (i.e., no longer can be used as a basis for establishing the innocence
of the accused).

3 Tableaux Proof Calculus

We develop a tableaux proof calculus for DIPL based on one for IPL. The calculus
captures default consequence in DIPL and it is sound, complete, and terminating
(using loop-checks).

Intuitionistic Tableaux. We begin by recalling the basics of a tableaux cal-
culus for IPL. We follow closely the style of presentation of [34].

A tableau is a tree whose nodes are of two different kinds. The first kind
corresponds to a pair of a formula ϕ and a natural number i, called a label,
appearing in positive form, notation @+

i ϕ, or negative form, notation @−i ϕ
5. The

second kind corresponds to a pair of labels i and j, notation (i, j). Intuitively,
@+
i ϕ means “ϕ holds at world i”; and @−i ϕ means “ϕ does not hold at world

i”6. Intuitively, (i, j) means that world j is accessible from world i.
A tableau for ϕ is a tableau having @−0 ϕ as its root. A tableau for ϕ is

well-formed if it is constructed according to the expansion rules in Fig. 1. In
this figure, (∧+), (∧−), (∨+) and (∨−), are rules for the logical connectives of
conjunction and disjunction. The “positive rules” (⊃+) and (¬+) for the logical
connectives of implication and negation are applied for every j in the branch,
whereas the “negative rules” (⊃−) and (¬−) for these logical connectives create
a “new” label j. The latter implies that the positive rules might need to be re-
applied, e.g., if a new (i, j) is introduced in the branch. The rules (ref) and (trans)
correspond to the reflexivity and transitivity constraints for the accessibility
relation. The rule (her) corresponds to the heredity condition in Kripke models,
propagating the valuation of a positive proposition symbol from a world to all its

5 The ‘@’ notation is borrowed from Hybrid Logic [3].
6 The signs + and − are necessary since in IPL we cannot use the symbol ¬ of negation

for expressing that a formula does not hold in a world.
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successors. The rule (A) occupies a special place in the construction of a tableau
and will be discussed immediately below. Rules are applied as usual: premisses
must belong to the branch; side conditions must be met (if any); the branch is
extended at the level of leaves according to the consequents.

@+
i (ϕ ∧ ψ)

@+
i ψ

@+
i ϕ

(∧+)
@−i (ϕ ∧ ψ)

@−i ϕ @−i ψ
(∧−)

@+
i (ϕ ∨ ψ)

@+
i ϕ @+

i ψ
(∨+)

@−i (ϕ ∨ ψ)

@−i ψ

@−i ϕ

(∨−)

@+
i (ϕ ⊃ ψ)
(i, j)

@−j ϕ @+
j ψ

(⊃+)

@−i (ϕ ⊃ ψ)
(i, j)

@+
j ϕ

@−j ψ

(⊃−)†
@+

i ¬ϕ
(i, j)

@−j ϕ
(¬+)

@−i ¬ϕ
(i, j)

@+
j ϕ

(¬−)†

@+
i p

(i, j)

@+
j p

(her)‡ (i, i)
(ref)∗

(i, j)

(j, k)

(i, k)
(trans)¶

@+
0 ϕ

(A) for ϕ ∈ Φ

† for j new (i.e., not used before in the branch).
‡ for j 6= i in the branch.
∗ for i in the branch.
¶ for i, j, k in the branch.

Fig. 1. Tableau Rules for IPL

Definition 13 (Closedness and Saturation). A branch is closed, tagged
(N), if @+

i ϕ and @−i ϕ occur in the branch; otherwise it is open, tagged (H).
A branch is saturated, tagged (�), if the application of any expansion rule is
redundant.

Definition 14 (Provability). A tableau τ for ϕ is an attempt at proving ϕ.
We call τ a proof of ϕ if all branches in τ are closed. We write ` ϕ if there is
a proof of ϕ.

Def. 13 introduces standard conditions of closedness and saturation for a
tableau. Given these conditions, we define a tableau proof in Def. 14. The result-
ing proof calculus is sound and complete, i.e., ` ϕ iff � ϕ (see [34]). Termination
is ensured using loop-checks. Loop-checks are a standard termination technique
in tableaux systems that require the re-application of expansion rules [22,16].

Tableaux constructed without the rule (A) formulate a proof calculus for
provability, i.e., proofs without assumptions. Including the rule (A) in the con-
struction of a tableau gives us a proof calculus for deducibility (proofs from a set
Φ of assumptions). Intuitively, (A) can be understood as stating that assump-
tions are always true in the “current” world. This rule is not strictly necessary:
Φ � ϕ iff � ∧Φ ⊃ ϕ, for Φ finite. Nonetheless, incorporating a primitive rule for
assumptions simplifies the definitions and understanding of tableaux for DIPL.
When (A) is involved, we talk about a tableau for ϕ from Φ. Such a tableau is
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well-formed if: its root is @−0 ϕ; the rules in Fig. 1 are applied as usual; and (A) is
applied w.r.t. the formulas in Φ. The precise definition of the proof calculus for
deducibility is given in Def. 15. By adapting the argument presented in [34], it
is possible to prove that the calculus for deducibility is also sound and complete,
i.e., Φ ` ϕ iff Φ � ϕ. Termination is also guaranteed with loop-checks.

Definition 15 (Deducibility). A tableau τ for ϕ from Φ is an attempt at
proving that ϕ follows from Φ. We call τ a proof of ϕ from Φ if all branches in
τ are closed. We write Φ ` ϕ if there is a proof of ϕ from Φ.

An interesting feature of the tableaux calculus of Def. 15 is that not only it
allows us to find proofs, but also lack of proofs. The latter is done by inspecting
particular proof attempts, i.e., tableaux having a branch that is both open and
saturated. These tableaux serve as counter-examples (i.e., they result in a de-
scription of a model which satisfies the assumptions but invalidates the formula
we are trying to prove). This claim is made precise in Prop. 1. We resort to this
feature as a way of checking consistency of a set of formulas. This check will be
used in the definition of an expansion rule for tableaux for DIPL.

Proposition 1. If a tableau for ϕ from Φ has an open and saturated branch,
then, Φ 6� ϕ.

Corollary 1. Φ 6` ⊥ iff Φ 6� ⊥.

Summing up, Def. 15 characterizes proof theoretically, via tableaux, the se-
mantically defined notion of logical consequence in Def. 4. We repeat that termi-
nation of the proof calculus is not ensured by a simple exhaustive application of
rules, and loop-checks are required. Intuitively, a loop-check restricts the applica-
tion of an expansion rule ensuring that only “genuinely new worlds” are created.
This technique, traced back to [22,16], is nowadays standard in tableaux systems.

Default Tableaux. Default tableaux extend tableaux for IPL with the addition
of a new kind of node corresponding to the use of defaults. More precisely, a
default tableau is a tree whose nodes are as in tableaux for IPL, together with a

third kind that corresponds to the use of a default π
ρ

=⇒ χ. By a default tableau
for ϕ from Θ, where ϕ is a formula and Θ is a default theory, we mean a default
tableau having @−0 ϕ at its root. Such a default tableau is well-formed if it is
constructed according to the expansion rules in Figs. 1 and 2. Rules in Fig. 1 are
applied as before, with rule (A) being applied w.r.t. formulas in ΦΘ. Rule (D)
in Fig. 2 is applied w.r.t. the defaults in ∆Θ. Note that rule (D) is applicable
only if its side condition is met. This side condition can be syntactically decided
using auxiliary tableaux in IPL to verify detachment, i.e., to prove that a default
is triggered and not blocked.

Definition 16 (Default Deducibility). Any well-formed default tableau τ
for ϕ from Θ is an attempt at proving that ϕ follows from Θ by default. We
call τ a default proof of ϕ from Θ if all branches of τ are closed. We write Θ |∼ ϕ
if there is a default proof of ϕ from Θ.
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δ1
@+

0 δ
X
1 . . .

δi
@+

0 δ
X
i . . .

δn
@+

0 δ
X
n

(D)†

for { δi | i ∈ [1, n] } = { δ ∈ ∆Θ\∆B | δ is detached by ∆B }
where ∆B is the set of defaults in the branch.

Fig. 2. Tableau Rule for Defaults

The proof calculus just introduced is sound and complete. Termination is
guaranteed by the termination of tableaux for IPL. Fig. 3 shows a default proof.

(a) @−0 (u1 ∧ u2)

(b) @−0 u1

(d) @+
0 (b1 ∨ b2)

(e) @+
0 b1

(g) δ1

(i) @+
0 u1

(N) b, i

(h) δ2

(j) @+
0 u2

(k) δ1

(l) @+
0 u1

(N) b, l

(f) @+
0 b2

(m) δ1

(o) @+
0 u1

(N) b, o

(n) δ2

(p) @+
0 u2

(q) δ1

(r) @+
0 u1

(N) b, r

(c) @−0 u2

(s) @+
0 (b1 ∨ b2)

(t) @+
0 b1

(v) δ1

(x) @+
0 u1

(y) δ2

(z) @+
0 u2

(N) c, z

(w) δ2

(a’) @+
0 u2

(N) c, a’

(u) @+
0 b2

(b’) δ1

(d’) @+
0 u1

(e’) δ2

(f’) @+
0 u2

(N) c, f’

(c’) δ2

(g’) @+
0 u2

(N) c, g’

Fig. 3. Default tableau for u1 ∧ u2 from 〈{b1 ∨ b2}, {>
ui∧¬bi====⇒ ui | i ∈ {1, 2} }〉.

Theorem 1. Θ |∼ ϕ iff Θ |≈ ϕ. Since ` terminates, |∼ also terminates.

Proof (Sketch). We make use of the already known soundness and completeness
of deducibility of the tableaux calculus for IPL. The proof of soundness and
completeness of default deducibility depends on the following two observations:
(i) a branch of a default tableau contains a branch of a tableau for deducibility
in IPL (just remove default nodes); and (ii) defaults appearing in an open and
saturated branch of a default tableau define a generating set (as per Def. 9) by
construction. (i) and (ii) implies that if there is an open and saturated branch of
a default tableau, then, there is an extension which serves as a counter-example.
This proves that if Θ |≈ ϕ, then Θ |∼ ϕ. For the converse, suppose that Θ 6|≈ ϕ;
hence there is an extension E ∈E(Θ) s.t. E 6� ϕ. Let τ be any saturated default
tableau for ϕ from Θ; by construction, there is an open branch of τ which
contains a set of defaults which is a generating set for E. The result follows from
the completeness of deducibility for IPL.
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4 Implementation

Overview. DefTab is an implementation of the default tableau calculus pre-
sented in Sec. 3. It is available at http://tinyurl.com/deftab0.

Given Θ and ϕ as input, DefTab builds proof attempts of Θ |∼ ϕ by searching
for Kripke models for ϕ, and subsequently restricting these models with the use
of sentences from ΦΘ and defaults from ∆Θ. DefTab reports whether or not a
default proof has been found. In the latter case, DefTab exhibits an extension of
Θ from which ϕ does not follow.

Defaults detachment rule and sub-tableaux. The following is a brief expla-
nation of how defaults are dealt with in DefTab. At any given moment, DefTab
maintains defaults in three lists: available, triggered, and detached. The avail-
able list contains the defaults of the input default theory. An available default

π
ρ

=⇒ χ is triggered if π is deduced from the set ΦΘ of the default theory Θ under
question, together with the consequents of the defaults already in the branch of
the tableau. Once triggered, available defaults are moved to the list of triggered
defaults. DefTab uses the latter list to apply rule (D) in Fig. 2 and generates
a (temporary) sub-list of non-blocked defaults. This sub-list of non-blocked de-
faults corresponds to the branching part of rule (D). DefTab then takes defaults
from the sub-list of non-blocked defaults and moves them from the triggered
list to the detached list, expanding the default tableau accordingly. Since the
application of rule (D) requires checking consequence and consistency in IPL, for
each (D)-step, DefTab builds a corresponding number of intuitionistic tableaux.

Blocking and Optimizations. For loop-checking intuitionistic rules that cre-
ate new labels, DefTab uses a blocking technique called pattern-based block-
ing [24], initially designed for modal logics. In the present tableau system, when
rule (¬−) can be applied to some formula @−i ¬ϕ, it is first checked that no label
k exists such that the set of formulas {@−k ϕ} ∪@kC(i) hold, where C(i) are the
constraints that formulas at label i forces on all its succesors. If such a label
exists, then the rule is not applied. The same occurs for rule (⊃−).

DefTab does not include semantic branching, or any other optimization based
on Boolean negation and the excluded middle (which are usually unsound in an
intuitionistic setup). Backjumping [23], on the other hand, is intuitionistically
sound, and preliminary testing shows that it greatly improves performance.

We take special care of tracking dependencies of the consequent formulas

introduced by the application of rule (D). That is, once a default π
ρ

=⇒ χ is
triggered, we bookkeep it along with the set of formulas that triggered it. Con-
cretely, this bookkeeping is the union of the dependencies of all defaults ∆ s.t.
ΦΘ ∪∆X |= π. Note that this set can overestimate the set of dependencies of the
triggered rule. This is a trade-off between being precise and limiting the number
of sub-tableaux runs.

Usage. DefTab takes as input a file indicating the underlying logic to be used,
a default theory partitioned into its set of formulas and set of defaults, and

http://tinyurl.com/deftab0
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the formula to be checked. The structure of this input file is illustrated in the
following example file presumption.dt. This file corresponds to Ex. 1 where:
g 7→ P1, i 7→ P2, a 7→ P3, c 7→ P4, w 7→ P5, f 7→ P6, e 7→ P7.

intuitionistic

facts:

P1 v !P1; P1 -> !P2;

(P4 ^ P5 ^ P6) -> P7;

P7 -> P1; P3;

defaults:

P3 --> P2;

consequence:

P2

– The keyword intuitionistic indicates that the
prover will work over IPL as the underlying logic.

– The keyword facts indicates the beginning of the
set of formulas of the default theory.

– The keyword defaults indicates the beginning of
the set of defaults. The syntax for a default π

ρ
=⇒ χ is

π --- ρ --> χ. Normal default rules can be written
as π --> χ.

– The keyword consequence indicates the formula to
be proven.

DefTab is executed from the command line as

$ ./deftab -f presumption.dt

----------------------------------

Indeed a sceptical consequence.

Total time: 8.01513e-4

The output indicates that P2 is a sceptical consequence of the default theory.
If we add the facts P4; P5; P6;, we obtain that P2 is not a sceptical conse-
quence, indicated by the output: Not a sceptical consequence, found bad

extension: []. The list [] indicates the defaults in the extension, in this case
none. DefTab includes in the output a counter-example for disproving the candi-
date default consequence. Such counter-example consists of the generator set of
the corresponding extension. In this case, the empty list indicates that the set
of facts itself (without any default) is enough to generate the extension.

5 Preliminary Testing

To our knowledge, there is no standard test set for automated reasoning for de-
fault logic, and less so (if possible) for default reasoning based on IL. Moreover,
our tool is a first prototype which still needs the implementation of many natural
optimizations (e.g., caching for sub-tableaux results). Hence, any empirical test-
ing is, by force, very preliminary, and should be taken only as a first evaluation
of the initial performance of the tool, and of its current usability. Still, the results
are encouraging and the prover seems to be able to handle examples which are
well beyond what can be computed by hand, making it already a useful tool. We
discuss below the tests sets we evaluated. All tests were performed on a machine
running Ubuntu 16.04 LTS, with 8GB of memory and an Intel Core i7-5500U
CPU @ 2.40Ghz.

Purely Intuitionistic Problems. When no defaults are specified in the input
file, DefTab behaves as a prover for consequence in IPL (but it has not particular



12 Cassano, Fervari, Hoffmann, Areces and Castro

optimization for the case where the input is just an intuitionistic formula). Even
though DefTab is still a prototype, we carried out a comparison of its performance
w.r.t. existing provers for IPL.

We extend the comparison of provers for IPL carried out in [10] which com-
pares their own prover (intuit) that implements satisfiability checking in IPL
by an SMT (Satisfiability Modulo Theories) reasoner implemented over Min-
iSAT [12], with IntHistGC [20] and fCube [15]. These two last provers perform a
backtracking search directly on a proof calculus, and are rather different from
the approach taken by intuit, and closer to DefTab. IntHistGC implements clever
backtracking optimizations that avoid recomputations in many cases. fCube im-
plements several pruning techniques on a tableau-based calculus. Tests are drawn
from three different benchmark suites.

1. ILTP [35] includes 12 problems parameterized by size. The original bench-
mark is limited, and hence it was extended as follows: two problems were
generated up to size 38 and all other problems up to size 100, leading up to
a total of 555 problem instances.

2. Benchmarks crafted by IntHistGC developers. These are 6 parameterized
problems. They are carefully constructed sequences of formulas that sep-
arate classical and intuitionistic logic. The total number of instances is 610.

3. API solving; these are 10 problems where a rather large API (set of functions
with types) is given, and the problem is to construct a new function of a
given type. Each problem has variants with API sizes that vary in size from
a dozen to a few thousand functions. These problems were constructed by
the developers of intuit in an attempt to create practically useful problems.
The total number of instances is 35.
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Fig. 4. Comparison on IPL: 2 fCube, 3 intuit, 4 IntHistGC.

Fig. 4 shows a scatterplot (logscale) of the performance of DefTab with the
other three provers, discriminating between valid and not valid formulas. Times
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shown are in seconds, and the timeout was set to 300 seconds. Points below the
diagonal show cases where DefTab performance is worse that the other provers.
The empirical tests show that specialized provers for IPL (and in particular
intuit) outperforms DefTab, specially on valid, complex formulas. On simple, not
valid formulas, the performance of DefTab in this test is better than fCube and
comparable to IntHistGC.

Broken Arms [33]. Consider an assembly line with two mechanical arms.
We assume that an arm is usable (ui), but sometimes it can be broken (bi),
although a broken arm is an exception. In the literature on Default Logic such
default assumptions have been formalized either as:

∆1 =
{
> ui∧¬bi====⇒ ui

∣∣∣ i ∈ {1, 2}} or ∆2 =
{

(bi ∨ ¬bi)
ui∧¬bi====⇒ ui

∣∣∣ i ∈ {1, 2}}.
∆1 can be found in Poole’s original discussion of the example (see [33]), whereas
∆2 is found in, e.g., [1,13]. Suppose that we know as a fact that one of the arms
is broken, but we do not know which one, i.e., b1 ∨ b2. Let Θ1 = ({b1 ∨ b2}, ∆1)
and Θ2 = ({b1 ∨ b2}, ∆2); it is possible to prove that Θ1 |∼ u1 ∧ u2 and that
Θ2 6|∼ u1 ∧ u2. Poole introduces this example to argue that having u1 ∧ u2 as a
default consequence of Θ1 is counter-intuitive; as we have as a fact that one of the
arms is broken. This counter-intuitive result has inspired some important work
on Default Logic [5,11,28]. Here, we choose this example, and Θ1 in particular,
merely as a test case. First, observe that Θ1 can easily be made parametric on
the number of arms (the number of defaults grows linearly with the number of
arms). Second, observe that since defaults do not block each other, they can all
be detached at any given time in a default proof attempt. The latter means that
the prover needs, a priori, to consider a large number of combinations, leading
to a potentially large search space. On the other hand, the intuitionistic reason-
ing needed is controlled, and as a result, the test case should mostly highlight
how default are handled by the prover. These observations make this example a
good candidate for testing the implementation of our proof calculus in order to
evaluate its performance in a small, but non-trivial case. The results of running
DefTab with n defaults are reported below.

no. of defaults 10 20 40 60 80

run time 0.038 secs. 0.499 secs. 8.667 secs. 49.748 secs. 177.204 secs.

Abstract. The following example, actually, an example template, is a variation
of Broken Arms, where defaults do not block one another, but in which the de-
tachment of defaults involves “non-trivial” intuitionistic formulas. This example
is built on the ILTP library. To provide a bit of context, the ILTP library has
two kinds of problems: those testing consequence in IPL, i.e., problems Φ ` ϕ;
and those testing not-consequence in IPL, i.e., problems Φ 6` ϕ. Of the problems
testing not-consequence, we are interested in a particular sub-class, i.e., those
of the form Φ 6` ¬ϕ. Problems in this sub-class can directly be used for testing
blocking of defaults. Now, for each pair Φ1 ` ϕ1 and Φ2 6` ¬ϕ2, we construct a
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default theory Θ = (Φ1 ∪ Φ2, {ϕ1
ϕ2
=⇒ p}). We carry out this construction guar-

anteeing that the languages of Φi ∪ ϕi are disjoint via renaming of proposition
symbols and that p is new. Then, we consider a family {Θi | i ∈ [1, n] } of
default theories constructed in the way just described. It can be proven that
(
⊔n
i=1Θi) |∼ (

∧n
i=1 pi). This construction serves as a way to test our implemen-

tation on increasingly more difficult default theories built on the ILTP library.
The next table reports the results of running DefTab on Θmn |∼ (

∧n
i=1 ri) where:

Θ
a
b =

⊔a
i=1(Φbi ∪ Γ bi , {pi0

qi0=⇒ ri})
Φab = { pba ,

∧a
i=1(pbi ⊃ (pbi ⊃ pb(i−1)

))}
Γ ab = {¬¬qba ,

∧a
i=1(qbi ⊃ (qbi ⊃ qb(i−1)

))}.

n\m 1 2 3 4 5

1 2.20e-3 secs. 1.50e-2 secs. 0.15 secs. 1.15 secs. 11.29 secs.

2 1.99e-3 secs. 2.23e-2 secs. 0.25 secs. 2.17 secs. 17.17 secs.

3 2.8e-3 secs. 3.7e-2 secs. 0.39 secs. 3.29 secs. 26.08 secs.

Intuitively, Θmn contains m instances of sub-problems Φnm ` pm0 and Γnm 6` ¬qm0

of size n taken from the ILTP. The sub-indices in Φnm and Γnm ensure languages

are disjoint. It follows that every default pi0
qi0=⇒ ri is detached by Φni ∪ Γni ; and

also that no default blocks any other. Thus, Θmn |∼ (
∧m
i=1 ri). The times show

the progression of running DefTab on increasingly larger default theories Θmn .
Note the increase on complexity is both on m and n.

6 Final Remarks

We introduced DIPL, a Default Logic to reason non-monotonically over Propo-
sitional Intuitionistic Logic. This logic is motivated by Normative Systems and
Legal Artificial Intelligence in order to deal, e.g., with legal conflicts due to logical
inconsistencies. Our contribution is twofold. First, we present a sound, complete
and terminating tableaux calculus for DIPL, which decides if a formula ϕ is a
logical consequence of a default theory Θ. The calculus is based on tableaux for
IPL as presented in [34], combined with the treatment for defaults of [6]. Second,
we provide a prototype implementation for our calculus in the DefTab prover.

To the best of our knowledge, this is the first prover combining Intuitionis-
tic Logic with Non-monotonic Reasoning. For instance, DeReS [9] is a default
logic reasoner with an underlying propositional tableaux calculus. It is designed
to check logical consequence by combining default reasoning and the underly-
ing logic reasoning as ‘black boxes’. This contrasts with DefTab which integrates
these two reasonings in a same tableaux calculus. On the other hand DefTab only
supports sceptical consequence checking, while DeReS also supports credulous
consequence checking. In [14], a tableaux calculus for Intuitionistic Propositional
Logic is presented, with a special treatment for nested implications. The imple-
mentation is no longer available, but it would be interesting to implement their
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specialized rules in DefTab. More directly related to our work are [1], where
the authors present a sequent calculus for a Non-monotonic Intuitionistic Logic;
and [13], where a tableaux method is presented but only for the computation of
extensions, and with no implementation.

We ran an empirical evaluation of our prover and obtained preliminary re-
sults concerning the implementation. To test purely intuitionistic reasoning we
used the ILTP problem library [35]. We tested non-monotonic features in two,
very small, case examples (broken arms and abstract). Clearly further testing is
necessary. In particular, we are interested in crafting examples that combine the
complexities of non-monotonic and intuitionistic reasoning.

For future work there are several interesting lines of research. As we men-
tioned, the treatment of defaults in the calculus is almost independent from the
underlying logic. As a consequence, it would be interesting to define a calculus
which is parametric on the rules for the underlying logic (see, e.g., [7] for such
a proposal). We believe that (modulo some refactoring in the current source
code) the implementation of DefTab can be generalized to handle defaults over
different underlying logics obtaining a prover for a wide family of Default Logics.
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