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Abstract

This work studies positive and negative introspection not as ‘static’ properties
an agent might or might not have, but rather as epistemic actions that change
the agent’s knowledge. The proposed actions include not only operations for
achieving full introspection (first with respect to all formulas, and then with
respect to a particular χ), but also acts for increasing the agent’s introspection
by only one degree. In all cases, the actions are represented as model update op-
erations, with matching modalities for expressing the operations’ effects. Sound
and complete axiom systems are provided in most cases, and some properties
of the operations are explored.

Keywords: positive introspection, negative introspection, epistemic logic,
dynamic epistemic logic.

1. Introduction

One of the reasons of the widespread use of epistemic logic (EL; [1]. some-
thing, she knows that she knows it) and negative introspection (if the agent
does not know something, she knows that she does not know it). One of the
main advantages of the standard EL semantic structure, relational models, is
that these two properties correspond, at the level of frames, to simple relational
properties. In order to deal with an agent with full positive introspection, it
is enough for her corresponding indistinguishability relation to be transitive; in
order to deal with an agent with full negative introspection, it is enough for
such relation to be Euclidean.

As it is the case with most properties of an agent’s knowledge in EL (e.g.,
the famous logical omniscience problem; [2, 3]), these two properties have been
the subject of an extensive discussion. Positive introspection, also known as
the KK principle, is supported by [1, page 111]: “all those circumstances which
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would justify one in saying ‘I know’ will also justify one in saying ‘I know that
I know’ ”. [4, page 173] also considers the principle can be defended “in the
context of the idealizations we are making”. On the other hand, some authors
have provided counter-examples to positive introspection. For instance, [5] asks
to consider a question and an agent who knows the question’s correct answer,
but still fails to answer it at time t; however, she answers the question at time
t + 1. Because the agent answered the question at t + 1, it is obvious that
she knows the answer; but she could not answer it at t, which means she did
not know she knew it. On a more abstract level, [6] argues that knowledge
implies understanding; as a consequence, knowledge of knowledge of p implies
understanding of knowledge of p. This can only happen if the agent possesses
an adequate theory of knowledge. But, as knowledge of p does not require this,
the KK-principle is not valid. (See [7] for an answer to these two arguments.)
More recently (and famously), [8] has argued that, in contexts involving inexact
knowledge (vagueness or margins of errors), positive introspection should not
be valid, because it leads to the conclusion that no agent can have both inexact
knowledge and positive introspection.

1
The reader interested in the discussion

is also referred to [11], which discusses positive introspection from the point of
view of various definitions of knowledge.

Negative introspection has been the subject of an even stronger criticism.
It was already rejected in [1], where it is shown that it entails (together with
intuitive acceptable principles) that if a given statement is the case, then the

agent knows that she considers it possible.
2

The author finds this principle
unacceptable, and his reason (found clear and decisive by [4]) is that it implies
that, by reflection alone, one could come to see the truth of anything that was
compatible with one’s knowledge.

3
Some authors, such as [12], have argued

that negative introspection cannot be consistently adopted for a strong notion
of knowledge which treats knowledge as true conviction. Some others have
pointed out that, for example, if such property held for the participants in
Socratic dialogues, the whole procedure would be unnecessary.

As this (by no means exhaustive, and in fact rather) brief summary of the
literature shows, there are different arguments supporting and/or rejecting pos-
itive and negative introspection. The present manuscript is a contribution to
this discussion from a different perspective: instead of arguing about whether
an agent’s knowledge should or should not have these (epistemic) properties, it

1
See [9] for a proposal introducing a non-standard semantics for epistemic logic, centered

semantics, which makes compatible a notion of inexact knowledge and the principles of positive
and negative introspection. See [10] for its dynamic extension, which can be used to account
for the dynamics of reflection on one’s margins.

2
In symbols, ϕ → □◇ϕ: the so-called B axiom which corresponds, at the level of frames,

to the symmetry of the indistinguishability relation. A reflexive and Euclidean relation is
also symmetric, thus the conclusion that B follows from negative introspection and ‘intuitive
acceptable principles’ (the truthfulness of knowledge).

3
The contrapositive, ◇□ϕ→ ϕ: anything the agent considers possible to know is true.
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takes a dynamic perspective, discussing the epistemic actions an agent would
need to perform in order to reach such informational state. Indeed, when nei-
ther transitivity nor Euclideanity are assumed, one can build a relational model
in which the agent lacks positive and negative introspection, making her knowl-
edge closer to that of ‘real life’ fallible agents. But, as in real life, not being
introspective about one’s own knowledge or ignorance should not imply one will
never be: the agent can perform introspection actions that will make her realize
what she knows and what she does not know. Thus, the main goal is not to
provide clear and decisive arguments supporting or rejecting these principles.
Instead, the aim is to provide formal tools that allow the discussion to incor-
porate a dynamic perspective, involving the properties of the actions an agent
would need in order to reach positive and/or negative introspection.

It is worthwhile to emphasise, although the provided actions intend to make
the agent reach an introspective state, they might have unintended side-effects
that might not conform to our informal ideas of obtaining higher-order knowl-
edge by introspection. A particularly important issue, discussed through the
text, is whether such actions preserve the original propositional knowledge.

1.1. On dynamic approaches

Dynamic approaches on epistemic issues are not new. Such perspective has
proved to be useful, for example, in providing explanations for various epistemic
paradoxes (Moore’s paradox [13]; Fitch’s knowability paradox [14]; the Surprise
Examination paradox [15]). It has been also useful in the study of epistemic
properties by focussing not on whether they should hold, but rather on the dif-
ferent actions the agent can perform to achieve them, as this proposal does. For
example, some works have understood the aforementioned logical omniscience
not as a ‘static’ property, but rather as the eventual result of some action. Some
of these proposals are based on awareness raising and ‘syntactic’ inference steps,
either in models based on sets of formulas [16, 17, 18, 19], or else in awareness
relational models [20, 21]; some others are based on dynamics of evidence or
deductive inference in neighbourhood models [22, 23].

Within this dynamic approach, a crucial aspect is the way the involved ac-
tions are depicted. One possibility is representing them as transitions within a
fixed model (e.g., automata theory –[24]– or, in a logical setting, propositional
dynamic logic –PDL [25]– and epistemic temporal logic –ETL [26, 27, 28]–). An-
other alternative, the one followed here, is the dynamic epistemic logic approach
(DEL; [29, 30]), in which models represent only the concept(s) under study, and
then changes in the concept are represented as model operations that alter the
given structure, thus potentially affecting the given concepts. Of course, rela-
tional models can be modified in different ways. One possibility is to change
the domain, either by adding only one world (e.g., [31]), or else by using the
more general ‘action-model based’ strategy that makes ‘restricted copies’ of the
worlds in the original model (thus allowing also the shrinking of the domain;
see, e.g., [32, 33, 34]). This work focuses rather on operations changing the
model’s accessibility relation, with examples including actions for belief revision

3



and/or (reliability based) preference change [35, 36, 37, 38], a more ‘abstract’
edge-deleting sabotage operation [39], its edge-adding and edge-swapping rela-
tives [40, 41, 42, 43] and the general arrow update operation of [44]. The specific
operations used here borrow ideas from most of them.

1.2. Outline

This article extends [45] in the following ways. First, it has already provided
a brief review on the philosophical literature on introspection. Then, it elabo-
rates on the discussion on the previously provided operations for achieving full
introspection. More importantly, it proposes model operations for increasing
introspection ‘by one degree’ (Section 5), complementing the full introspection
operations. Finally, it includes previously omitted proofs.

The text is organised as follows. Section 2 introduces basic definitions about
epistemic logic and the extensions that will be required for axiomatisation pur-
poses. Then, while Section 3 defines model operations to achieve full positive
and negative introspection about all formulas (general introspection operations),
Section 4 focuses on operations to achieve full positive and negative introspection
about a given formula (particular introspection operations). Section 5 explores
similar operations that focus, instead, on increasing the agent’s introspection
‘by one degree’ (thus working locally, with respect to a given evaluation point,
rather than globally). In all cases we study important properties of the op-
erations, providing also sound and complete axiomatisations for most of their
respective modalities. Finally, Section 6 draws conclusions, also delineating
directions for further work.

2. Basic definitions

This section recalls the basic definitions of the basic EL. It also recalls ex-
tensions of this framework that will be useful when providing axiom systems for
modalities representing the introspection operations.

4
Throughout this paper,

let P be a countable set of atomic propositions.

Definition 2.1 (Relational frame, relational model, relational state)
A relational frame is a tuple F = ⟨W,R⟩ with W a non-empty set of possible
worlds and R ⊆ (W × W ) a binary relation, the agent’s indistinguishability
relation. A relational model is a tuple M = ⟨F, V ⟩ with F a relational frame
and V ∶ P → ℘(W ) the atomic valuation. A tuple (M,w) with M a relational
model and w a world in it (the evaluation point) is called a relational state. ◀

Note how the accessibility relation is not required to satisfy any property.

4
Here, the term modality is used for operator symbols that require a different relational

state to be semantically evaluated. This includes the ‘dynamic’ modalities of Sections 3 to
5, but also standard modal operators as □ and ◇, as they require a change in the evaluation
point.

4



Definition 2.2 (Language L◇) Formulas ϕ,ψ of L◇ are given by

ϕ,ψ ::= p ∣ ¬ϕ ∣ ϕ ∨ ψ ∣◇ϕ,

with p ∈ P. Other Boolean connectives and constants (∧,→,↔,⊤,⊥) as well
as the modality □ are defined as usual (□ϕ ∶= ¬◇¬ϕ for the latter). Formulas
of the form □ϕ are read as “the agent knows ϕ”.

Formulas of L◇ are interpreted in relational states in the standard way;
here we just make explicit the cases of atomic propositions and the ‘diamond’
modality. Let (M,w) be a relational state with M = ⟨W,R, V ⟩; then,

(M,w)⊩ p iffdef w ∈ V (p),
(M,w)⊩◇ϕ iffdef there is u ∈W such that Rwu and (M,u)⊩ ϕ.

A formula ϕ is true at w in M when (M,w)⊩ ϕ, and is valid (notation: ⊩ ϕ)

when it is true in every world w of every model M . The function JϕKM ∶= {w ∈

W ∣ (M,w) ⊩ ϕ}, returning the set of worlds of a given model M in which a
given formula ϕ is the case (the truth-set of ϕ at M) will be useful. ◀

Theorem 1 (Axiom system for L◇) As it is well-known (see [46, 47] for
details), the axiom schemes and rules of Table 1, denoted by L◇, form a sound
and strongly complete axiom system for formulas of the language L◇, charac-

terising those that are valid with respect to relational model.
5 �

Prop ⊢ ϕ for ϕ a propositional tautology MP If ⊢ ϕ→ ψ and ⊢ ϕ, then ⊢ ψ

K ⊢ □(ϕ→ ψ)→ (□ϕ→ □ψ) Nec If ⊢ ϕ, then ⊢ □ϕ

Dual ⊢◇ϕ↔ ¬□¬ϕ

Table 1: Axiom system L◇, for formulas in L◇ w.r.t. relational models.

Extended languages The following sections will study languages with addi-
tional modalities standing for model-update operations representing introspec-
tion actions. In order to introduce their corresponding axiom systems, two
extensions of the basic epistemic language will be useful. The first one adds a
transitive closure modality.

Definition 2.3 (Language L◇,�) The language L◇,� extends L◇ with the
modality �. For its semantic interpretation, let (M,w) be a relational state
with M = ⟨W,R, V ⟩, and recall that the relation R

+
, the transitive closure of

R (i.e., the smallest transitive relation containing R), is defined as

R
+
∶= ⋃

n≥1

R
n
,

5
Although the Dual axiom might look superfluous, it cannot be omitted since L◇ is pre-

sented with ◇ as primitive and □ as an abbreviation. For further discussions, see [47, 48].
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with R
1 ∶= R, R

k+1 ∶= Rk ◦R and ‘◦’ the relational composition.
6

Then,

(M,w)⊩�ϕ iffdef there is u ∈W with R
+
wu and (M,u)⊩ ϕ.

The dual modality ⊞ is defined in the usual way (⊞ϕ ∶= ¬�¬ϕ). ◀

For a sound and complete axiom system for L◇,�, the system L◇ is not
enough anymore. The following theorem provides the ‘missing’ pieces.

Theorem 2 (Axiom system for L◇,� [27]) The axioms and rules of Table
1 and Table 2, denoted by L◇,�, form sound and weakly complete axiom system
for formulas of L◇,� valid in relational models. �

Note how, while FP⊞ indicates that �’s associated relation is a fixed point,
Ind⊞ indicates that such relation is the smallest one.

Dual⊞ ⊢�ϕ↔ ¬⊞¬ϕ

FP� ⊢�ϕ ↔ ◇(ϕ ∨�ϕ) Ind� If ⊢ ϕ→ □(ψ ∧ ϕ), then ⊢ ϕ→ ⊞ψ

Table 2: Axioms and rule for the modality �.

The second extension is LPDL⊲,? , adding not only regular expressions for
building complex relations from the basic one, but also a converse modality.

7

Definition 2.4 (Language LPDL⊲,?) Formulas ϕ,ψ and program expressions
α, β in LPDL⊲,? are given, respectively, by

ϕ,ψ ::= p ∣ ¬ϕ ∣ ϕ ∨ ψ ∣ ⟨α⟩ϕ α, β ::= ⊳ ∣ ⊲ ∣ α ∪ β ∣ α ; β ∣ α∗ ∣ ?ϕ,

with p ∈ P. The fragment of LPDL⊲,? without ? is called LPDL⊲ . Given M =

⟨W,R, V ⟩, the semantic interpretation of the new modality ⟨α⟩ϕ is defined as

(M,w)⊩ ⟨α⟩ϕ iffdef there is u ∈W such that Rαwu and (M,u)⊩ ϕ.

Note how such semantic interpretation relies on the relation Rα which is defined
inductively, for every program expression α, as

R⊳ := R, Rα∪β := Rα ∪Rβ , Rα∗ := (Rα)∗,

R⊲ := R, Rα;β := Rα ◦Rβ , R?ϕ := Id
M
ϕ ,

6
Given R1, R2 ⊆ (W ×W ), their composition R1 ◦ R2 ⊆ (W ×W ) (note the parameters’

order) is the relation given by {(w, v) ∣ there is u ∈W such that R1wu and R2uv}.
7
In classical presentations of LPDL⊲,? , the converse modality works on complex expressions,

unlike here where we introduce it at atomic level. In [49] it is shown that both presentations
are equivalent.
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for Rthe converse of R (also called its inverse), Id
M
ϕ the identity relation over

the set of worlds satisfying ϕ in M , and ( ⋅ )∗ the reflexive and transitive closure
operation.

8 ◀

Theorem 3 (Axiom system for LPDL⊲,? [50, 51, 52, 25]) The axioms and
rules of Table 3 form sound and weakly complete axiom system (denoted by
LPDL⊲,?) for formulas of LPDL⊲,? with respect to relational models. �

Note how, while Prop and MP are just as in Table 1, Kα and Necα are the
generalisation of the former K and Nec to any program expression α. The rest
of the axioms take care of the converse modality and the program operators.
The axiom system for the fragment LPDL⊲ , given by LPDL⊲,? minus axiom ?, is
denoted by LPDL⊲ .

Prop ⊢ ϕ for ϕ a propositional tautology MP If ⊢ ϕ→ ψ and ⊢ ϕ, then ⊢ ψ

Kα ⊢ [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ) Necα If ⊢ ϕ, then ⊢ [α]ϕ
Dualα ⊢ ⟨α⟩ϕ↔ ¬ [α]¬ϕ ? ⊢ ⟨?ϕ⟩ψ↔ (ϕ ∧ ψ)
⊲1 ⊢ ϕ→ [⊳] ⟨⊲⟩ϕ ⊲2 ⊢ ϕ→ [⊲] ⟨⊳⟩ϕ
∪ ⊢ ⟨α ∪ β⟩ϕ↔ (⟨α⟩ϕ ∨ ⟨β⟩ϕ) ; ⊢ ⟨α ; β⟩ϕ↔ ⟨α⟩ ⟨β⟩ϕ
∗
1 ⊢ ⟨α∗⟩ϕ↔ (ϕ ∨ ⟨α⟩ ⟨α∗⟩ϕ) ∗

2 ⊢ [α∗](ϕ→ [α]ϕ)→ (ϕ→ [α∗]ϕ)

Table 3: Axiom system LPDL⊲,? , for formulas in LPDL⊲,? w.r.t. relational models.

The function J⋅KM is defined for both extensions in the obvious way.

3. General introspection

This section studies operations to achieve general positive and negative in-
trospection (that is, full positive and negative introspection about all formulas).
The goal is, thus, to obtain global properties, which can be achieved by making
the original accessibility relation satisfy the conditions yielding such properties.

3.1. General positive introspection

When looking for a model operation depicting an action of full positive in-
trospection, the first idea is the following: transitivity makes the positive intro-
spection axiom □ϕ→ □□ϕ valid, so make the accessibility relation transitive.

Definition 3.1 (General positive introspection operation) Let M be a
relational model ⟨W,R, V ⟩. The general positive introspection operation yields
the model M

+
= ⟨W,R+, V ⟩, with R

+
being R’s transitive closure. ◀

The following modality allows to describe this operation’s effects.

8
Formally, R∶= {(v, u) ∣ Ruv}, Id

M
ϕ ∶= {(u, u) ∣ u ∈ JϕKM } and R

∗ ∶= Id
M
⊤ ∪R+.
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Definition 3.2 The language L◇,+ extends L◇ with the modality ⟨+⟩ . For its
semantic interpretation, let (M,w) be a relational state. Then,

(M,w)⊩ ⟨+⟩ϕ iffdef (M+
, w)⊩ ϕ.

In words, the agent can perform an act of general positive introspection after
which ϕ is the case, (M,w)⊩ ⟨+⟩ϕ, if and only if, after the action, ϕ is the case,
(M+

, w) ⊩ ϕ. Note that the model operation is functional and its associated
modality lacks a precondition; hence, the dual modality [+]ϕ ∶= ¬ ⟨+⟩¬ϕ is
equivalent to ⟨+⟩ . In other words, ⊩ [+]ϕ↔ ⟨+⟩ϕ (self-duality). ◀

Note the difference between the just defined model-change modality ⟨+⟩
and the transitive closure modality � of before. When evaluated on a given
(M,w), the latter is semantically interpreted via a further relationR

+
, but in the

same model M . Nevertheless, in the same situation, the former is semantically
interpreted via the basic relation R, but in a model M

+
in which R has changed.

It is the shift to a model in which the relation is different what accounts for the
change in the agent’s knowledge.

Axiom system When providing an axiom system for a modality representing a
model operation (a dynamic modality), a useful strategy is to provide reduction
axioms: valid formulas and validity-preserving rules indicating how to translate
a formula with occurrences of this model-changing modality (a formula in the
‘dynamic’ language) into a provably equivalent one without them (a formula

in the ‘basic’ language).
9

Then, while soundness follows from the validity and
validity-preserving properties of the new axioms and rules, completeness follows
from the completeness of the axiom system for the basic language, as the reduc-
tion axioms define a validity-preserving translation from the ‘dynamic’ language
into the ‘basic’ one. The reader is referred to Chapter 7 of [29] (cf. [53]) for an
extensive explanation of this technique.

Note how this strategy relies on the expressivity of the basic language: the
existence of reduction axioms indicates that such language is expressive enough
to describe the changes the model operation induces. In this case, L◇ is not
expressive enough to deal with the changes the general positive introspection
operation brings about: it can describe what holds in worlds that can be reached
from the evaluation point in a given fixed number of R-steps, but it cannot
describe what holds in worlds that can be reached by an undetermined (finite
non-zero) number of them (i.e., a single R

+
-step). Thus, in order to provide

reduction axioms for ⟨+⟩ , the basic language will be rather L◇,� (Definition
2.3). The extra modality � indeed increases the language’s expressive power.

Fact 3.1 L◇,� is more expressive than L◇.

9
It has been suggested [30] that the term recursion axioms is more appropriate, as it

describes the recursive nature of the translation the axioms define. Still, this text will use the
more standard term reduction axioms.
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Proof. It is well-known that L◇ can be translated into first-order logic, which
makes it compact. However, L◇,� is not. Consider the infinite set Γ = {� p}∪
{□n¬p ∣ n ≥ 1} with each □n a standard modality for the relation R

n
. Every

finite subset of Γ is satisfiable, but Γ is not. �

The language L◇ cannot express what holds in worlds that are reached via
the transitive closure of the basic relation R, so there are no reduction axioms
translating L◇,+ into L◇. However, L◇,� extends L◇’s expressivity in the
‘right direction’, allowing a translation from L◇,�,+ into L◇,�, and hence the
formulation of reduction axioms for ⟨+⟩ .

+p ⊢ ⟨+⟩ p ↔ p +◇ ⊢ ⟨+⟩◇ϕ ↔ � ⟨+⟩ϕ
+¬ ⊢ ⟨+⟩¬ϕ ↔ ¬ ⟨+⟩ϕ +� ⊢ ⟨+⟩�ϕ ↔ � ⟨+⟩ϕ
+∨ ⊢ ⟨+⟩ (ϕ ∨ ψ) ↔ (⟨+⟩ϕ ∨ ⟨+⟩ψ)
SE If ⊢ ψ1 ↔ ψ2 then ⊢ ϕ ↔ ϕ[ψ2/ψ1], with ϕ[ψ2/ψ1] any formula

obtained by replacing one or more occurrences of ψ1 in ϕ with ψ2.

Table 4: Axioms and rule for the modality ⟨+⟩.

Theorem 4 (Axiom system for L◇,�,+) The axioms and rules of Table 4,
together with L◇,� (Tables 1 and 2), form a sound and weakly complete axiom
system for formulas of L◇,�,+ w.r.t. relational models.

Proof. Soundness follows from the validity and validity-preserving properties of
the reduction axioms (Table 4). We only show the validity of +◇ and +�. Take
any relational state (M,w) with M = ⟨W,R, V ⟩. For +◇, (M,w) ⊩ ⟨+⟩◇ϕ
if and only if (M+

, w) ⊩ ◇ϕ, that is, if and only if there is u ∈ W such that
R
+
wu and (M+

, u) ⊩ ϕ. But the latter is equivalent to (M,u) ⊩ ⟨+⟩ϕ, so
there is u ∈ W such that R

+
wu and (M,u) ⊩ ⟨+⟩ϕ, i.e., (M,w) ⊩ � ⟨+⟩ϕ.

For +�, (M,w)⊩ ⟨+⟩�ϕ if and only if (M+
, w)⊩ �ϕ, that is, if and only

if there is u ∈ W such that (R+)+wu and (M+
, u)⊩ ϕ. But (R+)+ = R+ and

(M+
, u)⊩ ϕ if and only if (M,u)⊩ ⟨+⟩ϕ, so there is u ∈W such that R

+
wu

and (M,u)⊩ ⟨+⟩ϕ, i.e., (M,w)⊩� ⟨+⟩ϕ.

Completeness follows from the completeness of L◇,�, as these extra axioms
define a validity-preserving translation from L◇,�,+ to L◇,�, with the rule of
substitution of logical equivalents SE taking care of formulas with more than one
occurrence of ⟨+⟩ (one can work with the deepest occurrence of such modality
and, once it is eliminated, proceed with the following one). Here is the for-
mal definition of the translation function t ∶ L◇,�,+ → L◇,� induced by the
axiomatisation.

9



t(p) := p

t(¬ϕ) := ¬t(ϕ)
t(ϕ ∨ ψ) := t(ϕ) ∨ t(ψ)
t(◇ϕ) := ◇ t(ϕ)
t(�ϕ) := � t(ϕ)

t(⟨+⟩ p) := t(p)
t(⟨+⟩¬ϕ) := t(¬ ⟨+⟩ϕ)

t(⟨+⟩ (ϕ ∨ ψ)) := t(⟨+⟩ϕ ∨ ⟨+⟩ψ)
t(⟨+⟩◇ϕ) := t(� ⟨+⟩ϕ)
t(⟨+⟩�ϕ) := t(� ⟨+⟩ϕ)
t(⟨+⟩ ⟨+⟩ϕ) := t(⟨+⟩ t(⟨+⟩ϕ)).

The definitions on the right column will be applied, substituting recursively each
subformula involving ⟨+⟩ with a logically equivalent one, reducing each time the
complexity of the formula under the scope of the dynamic modality until such
modality disappears (first case on right column). Thus, it is clear not only
that the translation preserves validity (only validity preserving substitutions
are applied), but also that every formula in L◇,�,+ is provably equivalent to its
translation, as the formulas defining the translation belong to the axiom system.

Notice that since the basic system LPDL⊲,? is weakly complete, we also get
weak completeness for L◇,�. �

Properties of the operation With the operation defined and its associated
modality axiomatised, the important question is: what is the effect of this op-
eration? Obviously, R

+
is transitive. Then, after applying the operation, the

agent has indeed full positive introspection about any formula ϕ.

Proposition 3.1 Let ϕ be a formula in L◇,+. Then,

⊩ [+] (□ϕ→ □□ϕ). �

However, the operation does not take the agent from a state in which she
knows a given ϕ without knowing she knows it, □ϕ ∧ ¬□□ϕ, to a state in
which she knows ϕ and is positively introspective about it, □ϕ ∧ □□ϕ.

Fact 3.2 The formula □ϕ → [+] (□ϕ ∧ □□ϕ) is not valid, not even when ϕ
is propositional.

Proof. In the relational state below on the left (each world containing the atoms
true at it, and evaluation point double circled), the agent knows p without
knowing that she knows it, (M,w1)⊩ □ p ∧ ¬□□ p.

p

w1

p

w2 w3

p

w1

p

w2 w3

M M
+

Nevertheless, after the operation (relational state on the right) she does not
know p anymore: (M+

, w1) ⊩ ¬□ p, that is, (M,w1) ⊩ ⟨+⟩¬□ p. Hence,
(M,w1)⊩ □ p ∧ ⟨+⟩¬□ p: the formula □ p→ [+] (□ p ∧ □□ p) is not valid. �
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Discussion Fact 3.2 shows that the defined operation does not work as one
might expect, and it also explains why. The operation makes the agent’s knowl-
edge positively introspective (Proposition 3.1), but instead of increasing her
knowledge (she knows ϕ and, afterwards, she also knows that she knows it), it
discards what was non-introspective (if she knows ϕ without knowing that she
knows it, afterwards she does not know ϕ anymore).

Thus, this definition of a positive introspection action can be seen as having
a ‘pessimist’ perspective. If an agent knows ϕ but still does not know that she
knows it, the problem is not the lack of introspective reasoning: the problem
is that she actually cannot guarantee (i.e., she does not know) that ϕ is the
case. Though possibly counter-intuitive, this is actually what a relational-model
representation of such situation amounts to: □ϕ holds, so ϕ is the case in all
worlds reachable from the evaluation point in one step. However, □□ϕ fails,
so there is at least one world reachable from the evaluation point in two steps
where ϕ fails. Under this representation, a non-positively-introspective agent
does not lack an introspective reasoning step; instead, she has to realise that
“possible to be possible” implies “possible”, what the operation actually does.
Formally, the following formula is valid:

⊩◇◇ϕ→ ⟨+⟩◇ϕ.

Going a step further, one might even wonder whether □ϕ can be faithfully
interpreted as “the agent knows ϕ” when the accessibility relation is not transi-
tive, as the agent might still consider possible to consider ¬ϕ possible (that is,
there might be a ¬ϕ-world accessible from the evaluation point in two steps).
In other words, maybe □ can be read as knowledge only when the accessibil-
ity relation is transitive, and thus □ϕ guarantees that every world the agent
‘eventually’ consider possible satisfies ϕ. Readers agreeing with this idea might
also consider, alternatively, not to assume transitivity, but rather to place the
transitivity requirement inside the definition of the agent’s knowledge. In other
words, one might use ⊞ϕ (Definition 2.3) as the formula stating that the agent
knows ϕ. Observe, in any case, how this discussion is different from the tra-
ditional one about positive introspection: here the question is not whether the
knowledge of real agents has such property, but rather whether □ should be read
as knowledge even when the modality’s associated relation is not transitive.

3.2. General negative introspection

Just as in the positive introspection case, the first idea when looking for
a model operation representing a negative introspection action is to make the
accessibility relation Euclidean, thus making ¬□ϕ→ □¬□ϕ valid.

Definition 3.3 (General negative introspection operation) Let M be a
relational model ⟨W,R, V ⟩. The general negative introspection operation yields

the model M
−
= ⟨W,RE , V ⟩, with R

E
the Euclidean closure of R, that is,

R
E
∶= R ∪ ( R◦ (R ∪ R)∗ ◦R). ◀

11



We can show that given any relation R, the relation R
E

as defined above is
indeed its Euclidean closure.

Lemma 3.1 For any R ⊆ (W ×W ), the relation R
E ∶= R∪ ( R◦ (R∪ R)∗ ◦R)

is R’s Euclidean closure (the smallest Euclidean relation containing R). �

Proof. First, R
E
= R ∪ ( R◦ (R ∪ R)∗ ◦ R) clearly contains R. Moreover,

R
E

is Euclidean, for suppose there are w, u, v ∈ W such that (w, u) ∈ R
E

and (w, v) ∈ R
E

. There are three possibilities, depending on the origin of
such pairs:(i) if (w, u) ∈ R and (w, v) ∈ R, then (u, v) ∈ ( R◦ R), and since
( R◦R) ⊆ ( R◦(R∪ R)∗◦R) (just take 0 as the number of iterations of (R∪ R)∗),

then (u, v) ∈ ( R◦ (R∪ R)∗ ◦R) and hence (u, v) ∈ RE ; (ii) if (w, u) ∈ R and

(w, v) ∈ ( R◦ (R∪ R)` ◦R) for some ` ≥ 0, then (u, v) ∈ ( R◦ R◦ (R∪ R)` ◦R),
that is, (u, v) ∈ ( R◦ (R∪ R)`+1 ◦R) and hence (u, v) ∈ RE ; (iii) if both (w, u)
and (w, v) are in (R ◦ ( R∪ R)∗ ◦R), then so is (u, v), as it can be shown that

the relation ( R◦ (R ∪ R)∗ ◦R) is indeed Euclidean. Therefore, (u, v) ∈ RE .

Finally, to prove that R
E

is the smallest Euclidean relation containing R,
it can be proved that any Euclidean relation S ⊆ (W ×W ) is such that ( S◦
(S∪ S)∗ ◦S) ⊆ S. Consider now any Euclidean relation R

′
such that R ⊆ R

′
; it

will be shown that R
E
⊆ R

′
, so take any (w, u) ∈ RE . Then, either (w, u) ∈ R

or else (w, u) ∈ ( R◦ (R ∪ R)∗ ◦ R). In the first case, clearly (w, u) ∈ R
′
. For

the second case, R ⊆ R
′
implies ( R◦ (R ∪ R)∗ ◦R) ⊆ ( R

′ ◦ (R′ ∪ R
′ )∗ ◦R′), so

(w, u) ∈ ( R
′ ◦ (R′ ∪ R

′ )∗ ◦ R′); thus, by the just stated property and the fact

that R
′
is Euclidean, (w, u) ∈ R′. Thus, R

E
⊆ R

′
. �

Definition 3.4 The language L◇,− extends L◇ with the modality ⟨−⟩ . For its
semantic interpretation, let (M,w) be a relational state. Then,

(M,w)⊩ ⟨−⟩ϕ iffdef (M−
, w)⊩ ϕ.

In words, the agent can perform an act of general negative introspection after
which ϕ is the case, (M,w) ⊩ ⟨−⟩ϕ, if and only if, after the action, ϕ is the
case, (M−

, w)⊩ ϕ. The dual modality [−] is defined as usual. ◀

Clearly, R
E

can be equivalently defined in PDL plus the converse operator,
thus suggesting that LPDL⊲ (Definition 2.4) will be useful to provide reduction
axioms for this operation.

Axiom system It is not hard to see how L◇ is not expressive enough to de-
scribe the effects of this operation (and thus there are no reduction axioms from
L◇,− to L◇): the definition of the Euclidean closure involves the use of relational
operations that are not expressible with L◇ (converse, iteration). However, the
clearly more expressive LPDL⊲ allows us to deal with such operations, allowing
also the formulation of reduction axioms from LPDL⊲,− to LPDL⊲ . Still, LPDL⊲

involves formulas of the form ⟨α⟩ϕ, with the expression α being an arbitrary
program expression; thus, an appropriate translation for each α must be pro-
vided. The program transformer defined below, a simplification of that in [33]
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for providing reduction axioms for regular PDL-expressions after action-model
operations, captures this: it takes a program α describing a path in the new
model M

−
, returning its ‘matching’ path T(α) in M .

Definition 3.5 (Program transformer T) The program transformer T, a
function from program expressions to program expressions, is defined inductively
in the following way.

T(⊳) := ⊳ ∪ (⊲ ; (⊳ ∪ ⊲)∗ ; ⊳) T(α ∪ β) := T(α) ∪T(β)
T(⊲) := ⊲ ∪ (⊳ ; (⊲ ∪ ⊳)∗ ; ⊲) T(α ; β) := T(α) ;T(β)

T(α∗) := (T (α))∗.

The crucial property of this program transformer is the following one.

Proposition 3.2 Let M = ⟨W,R, V ⟩ be a relational model; take M
−
= ⟨W,RE ,

V ⟩. For every program expression α, the relation described by α in the resulting
M

−
is the same as the relation described by T(α) in the original M :

(RE)α = RT(α). �

Proof. The proof is by structural induction on α. For the base case (RE)⊳ (the

case (RE)⊲ is similar):

(RE)⊳ = R
E

= R ∪ ( R◦ (R ∪ R)∗ ◦R) = R⊳ ∪ (R⊲ ◦ (R⊳ ∪R⊲)∗ ◦R⊳)
= R⊳ ∪ (R⊲ ◦ (R⊳∪⊲)∗ ◦R⊳)
= R⊳ ∪ (R⊲ ◦R(⊳∪⊲)∗ ◦R⊳)
= R⊳ ∪R⊲;(⊳∪⊲)∗;⊳

= R⊳∪(⊲;(⊳∪⊲)∗;⊳)

= RT(⊳)

For the inductive cases (with (RE)α = RT(α) and (RE)β = RT(β) the induc-
tive hypotheses),

(RE)α∪β = (RE)α ∪ (RE)β = RT(α) ∪RT(β) = RT(α)∪T(β) = RT(α∪β)

(RE)α;β = (RE)α ◦ (RE)β = RT(α) ◦RT(β) = RT(α);T(β) = RT(α;β)

(RE)α∗ = ((RE)α)∗ = (RT(α))∗ = R(T(α))∗ = RT(α∗)

Then, it is possible to introduce the reduction axioms.

Theorem 5 (Axiom system for LPDL⊲,−) The axioms and rules of Table 5,
together with the axiom system LPDL⊲ (Table 3), form a sound and weakly com-
plete axiom system for formulas of LPDL⊲,− w.r.t. relational models.
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−p ⊢ ⟨−⟩ p ↔ p −⟨α⟩ ⊢ ⟨−⟩ ⟨α⟩ϕ ↔ ⟨T(α)⟩ ⟨−⟩ϕ
−¬ ⊢ ⟨−⟩¬ϕ ↔ ¬ ⟨−⟩ϕ
−∨ ⊢ ⟨−⟩ (ϕ ∨ ψ) ↔ (⟨−⟩ϕ ∨ ⟨−⟩ψ)
SE If ⊢ ψ1 ↔ ψ2 then ⊢ ϕ ↔ ϕ[ψ2/ψ1], with ϕ[ψ2/ψ1] any formula

obtained by replacing one or more occurrences of ψ1 in ϕ with ψ2.

Table 5: Axioms and rule for the modality ⟨−⟩.

Proof. (Sketch) With respect to soundness, here only the validity of −⟨α⟩ is
discussed. Take any relational state (M,w) with M = ⟨W,R, V ⟩. Then,
(M,w) ⊩ ⟨−⟩ ⟨α⟩ϕ if and only if (M−

, w) ⊩ ⟨α⟩ϕ, that is, if and only if

there is u ∈W such that (RE)αwu and (M−
, u)⊩ ϕ. But while the former is,

by Proposition 3.2, equivalent to RT(α)wu, the latter is, by definition, equivalent
to (M,u)⊩ ⟨−⟩ϕ; hence, (M,w)⊩ ⟨T(α)⟩ ⟨−⟩ϕ.

With respect to completeness, the argument runs as that of Theorem 4. �

Properties of the operation As expected, after the operation, the agent has
negative introspection.

Proposition 3.3 Let ϕ be a formula in L◇,−. Then,

⊩ [−] (¬□ϕ→ □¬□ϕ). �

This is a good initial step but, as the general positive introspection case
showed, it is not enough. Does the operation take a state where ¬□ϕ∧¬□¬□ϕ
holds, to a state in which ¬□ϕ ∧ □¬□ϕ holds? Different from the analogous
question in the positive introspection case (Fact 3.2), when the involved formula
is purely propositional, the answer here is yes.

Proposition 3.4 Let γ be a propositional formula. Then,

⊩ ¬□ γ → [−] (¬□ γ ∧ □¬□ γ). �

Proof. Let (M,w) be a relational state with M = ⟨W,R, V ⟩, and suppose
(M,w) ⊩ ¬□ γ; then there is u ∈ W such that Rwu and (M,u) ⊩ ¬γ,

so R
E
wu (as, by definition, R ⊆ R

E
) and (M−

, u) ⊩ ¬γ (as γ is proposi-
tional). Thus, first, (M−

, w) ⊩ ◇¬γ, i.e., (M−
, w) ⊩ ¬□ γ. Second, for

every u
′
∈ W , R

E
wu

′
implies R

E
u
′
u (R

E
is Euclidean), and hence (M−

, u
′)⊩

◇¬γ so (M−
, w) ⊩ □◇¬γ, i.e., (M−

, w) ⊩ □¬□ γ. Thus, (M,w) ⊩
[−] (¬□ γ ∧ □¬□ γ). �

In fact, it is not hard to see that the property stated in the previous propo-
sition holds not only for propositional formulas, but also for those whose falsity
is preserved by the operation
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Proposition 3.5 Let ϕ be a be a formula in L◇,− such that ⊩ ¬ϕ → [−]¬ϕ.
Then,

⊩ ¬□ϕ→ [−] (¬□ϕ ∧ □¬□ϕ). �

From this validity, it follows that

⊩ ¬□ϕ→ [−]□¬□ϕ. (1)

This is nothing but at dynamic version of the negative introspection axiom
¬□ϕ→ □¬□ϕ for formulas ϕ with particular requirements. Still, the validity
does not hold for arbitrary formulas in L◇,−.

Fact 3.3 The formula ¬□ϕ→ [−]□¬□ϕ is not valid.

Proof. Consider ϕ ∶= ¬□ p and the relational state (M,w1) shown below on
the left. Note how (M,w1)⊩ ¬□(¬□ p), that is, (M,w1)⊩◇□ p.

w1

p

w2 w3
w1

p

w2 w3

M M
−

After the operation (relational state on the right), (M−
, w1)⊩◇□◇¬p, that

is, (M−
, w1)⊩ ¬□¬□(¬□ p) so (M,w1)⊩ ⟨−⟩¬□¬□(¬□ p). �

Thus, the property “if the agent does not know ϕ, then after the operation
she knows she does not know it” (¬□ϕ→ [−]□¬□ϕ) does not hold for all ϕ.
Still, note how the formula ϕ used as a counterexample, ¬□ p, expresses that
“the agent does not know p”. The reason why the mentioned property does not
work for all ϕ is because ϕ itself might be about the agent’s lack of knowledge
about propositional (¬□ p) formulas and thus, according to Proposition 3.4,
the agent will know ϕ after the operation ([−]□(¬□ p)). Hence, if the agent’s
knowledge is truthful (i.e., if the relation is reflexive, as in the given counterex-
ample), the agent’s lack of knowledge of ϕ (the initial ¬□(¬□ p)) will be gone
(¬ ⟨−⟩¬□(¬□ p)), and therefore the agent cannot know it ([−]¬□¬□(¬□ p)).

So, what is the knowledge the agent has after this general negative intro-
spection operation? Here, the provided reduction axioms are useful to get an
answer, as the effect of the general negative introspection operation can be fully
described within the language. It should be noted, however, that some of the
tools needed for the axiomatisation (as, e.g., the converse relation R) might not
have a natural epistemic interpretation, and thus formulas in LPDL⊲,− might
not have a direct epistemic reading.

Here is the characterisation of the knowledge of the agent after the gen-
eral negative introspection operation (observe that, in this extended language
LPDL⊲,−, the modality □ϕ corresponds to [⊳]ϕ).
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Proposition 3.6 Let ϕ be a formula in LPDL⊲,−. The agent can perform a
general negative introspection step after which she will know ϕ (⟨−⟩ [⊳]ϕ) if
and only if she knows that after the operation ϕ will be the case ([⊳] [−]ϕ) and

also she ‘conversely knows’
10

that it is ‘common among her knowledge and her
converse knowledge’

11
that she knows that after the operation ϕ will be the case

([⊳] [−]ϕ). More precisely,

⊩ ⟨−⟩ [⊳]ϕ ↔ ([⊳] [−]ϕ ∧ [⊲] [(⊳ ∪ ⊲)∗] [⊳] [−]ϕ) . �

Proof. The validity can be proved either semantically or else syntactically. The
latter is simpler, as a derivation from ⟨−⟩ [⊳]ϕ leads, by a successive application
of the definition of [α], −¬, −⟨α⟩, −¬ (Table 5) and the definition of [α], again,

to [T(⊳)] ⟨−⟩ϕ. Then, after substituting T(⊳) by “⊲ ∪ (⊳ ; (⊲ ∪ ⊳)∗ ; ⊲”, a
successive application of the ‘box’ versions of the axioms ∪ and ; (Table 3) lead
to the desired formula [⊳] [−]ϕ ∧ [⊲] [(⊳ ∪ ⊲)∗] [⊳] [−]ϕ. �

Naturally, the axiom system (in particular, the reduction axioms) can be
used to find other interesting validities. For example, a simple substitution
of ϕ for ¬ [⊳]ϕ in the result of the previous proposition produces a validity
characterising the knowledge of the lack of knowledge of the given ϕ (i.e., char-
acterising those formulas ϕ the agent will be negatively introspective about)
after the operation:

⊩ ⟨−⟩ [⊳]¬ [⊳]ϕ ↔ ([⊳] [−]¬ [⊳]ϕ ∧ [⊲] [(⊳ ∪ ⊲)∗] [⊳] [−]¬ [⊳]ϕ) .

This validity can be refined by a further use of recursion axioms.

Discussion The obvious difference between these ‘natural’ attempts to define
a positive and a negative introspection operation is that, while the positive in-
trospection case does not behave as expected, the one for negative introspection
does. This is worth of notice because both operations follow the same strategy:
give the accessibility relation the property that makes the correspondent intro-
spection property valid. Nevertheless, both operations work by adding edges
(Definitions 3.1 and 3.3), and this might not be what is needed in both cases.
Indeed, while positive introspection attempts to reach knowledge of knowledge
of ϕ, negative introspection attempts to achieve knowledge of lack of knowl-
edge of ϕ. Thus, in the case of propositional formulas γ, while adding edges
might fail for positive introspection because the original “knowledge of γ” (all
R-reachable worlds are γ-worlds) may be lost (a ¬γ-world might become R-
reachable), adding edges works for the second because the original “lack of
knowledge of γ” (there is an R-reachable ¬γ-world) will not be lost (such world
will still be R-reachable). Moreover, “knowledge of lack of knowledge of γ” will

10
A very informal reading of [⊲].

11
A reading for [(⊳ ∪ ⊲)∗], analogous to that of [(i ∪ j)∗] as common knowledge among i

and j. See [33] for an epistemic reading of PDL operators.
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be reached (the relation becomes Euclidean, so all R-reachable worlds can see
the ‘problematic’ ¬γ-world).

Still, this negative introspection operation also has unintended side-effects:
while it makes the agent negatively introspective on her lack of propositional
knowledge (Proposition 3.4), it might also cause propositional knowledge disap-
pear.

Fact 3.4 The formula □ p→ [−]□ p is not valid.

Proof. In the relational state below on the left, □ p holds; however, this is not
the case in the relational state on the right, the one resulting from a negative
introspection operation.

p p

M M
−

This emphasises that, while the negative introspection action allows the
agent to reach an introspective state, it might not correspond to our intuitive
understanding of what an introspection act is.

4. Particular introspection with respect to χ

Section 3 introduced operations to achieve full positive and negative in-
trospection about all formulas (so called general introspection operations). By
making the accessibility relation transitive (resp., Euclidean), such strategy pro-
duces agents whose knowledge has full positive (resp., negative) introspection.
Still, although this general negative introspection operation behaves as expected
with respect to (lack of) knowledge about propositional formulas (Proposition
3.5; but recall how the agent might lose knowledge too, Fact 3.4), the same is
not the case for the general positive introspection operation (Fact 3.2)

This section explores another alternative for introspection operations. In-
stead of focussing on achieving full introspection for all formulas, it focuses on
achieving full introspection with respect to a particular one.

4.1. Particular positive introspection

The operation of Definition 3.1 allows the agent to have full positive in-
trospection at the cost of losing the ‘non-introspective‘ knowledge. This does
not follow the intuition of what an actual positive introspection reasoning step
should do. Such a reasoning step would rather take the agent from knowing χ
without knowing she knows it, to knowing χ and knowing she knows it. But
then the operation representing such epistemic action within relational models
should be radically different. When (M,w) is a relational state in which the
agent knows a given χ without having full positive introspection about it, every
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world R-reachable from w in one step satisfies χ, but there is at least one world
R-reachable from w in two or more steps where χ fails. Then, to have full posi-
tive introspection about χ, such ¬χ-worlds should not be R-reachable anymore
in any number of steps. In other words, the operation should remove edges.

Definition 4.1 (U-disconnecting operation) Let M be a relational model
⟨W,R, V ⟩, with U ⊆W a subset of its domain. The U -disconnecting operation
yields the model M+U = ⟨W,R′, V ⟩, with R

′
given by

R
′
∶= R \ (U × U),

for U ∶=W \U . In words, the operation drops edges from worlds in U to worlds
not in U . ◀

When the parameter of this model operation, the set U , is given by the truth-
set of a formula, say χ, then the U -disconnecting operation can be understood as
a particular positive χ-introspection operation, as it removes edges from worlds
satisfying χ to worlds not satisfying χ. In such case, the relation of the resulting
model can be equivalently defined, using PDL notation, as R

′ ∶= (?¬χ ; R) ∪
(R ; ?χ). This states, then, that there will be an R

′
-edge from w to u if and

only if there is already an R-edge from w to u and either w is a ¬χ-world or
else u is a χ-world.

The modality for this positive χ-introspection operation will be introduced
in two stages, the first one being the definition of an auxiliary modality.

Definition 4.2 The language L◇,+′χ extends L◇ with a modality ⟨+′χ⟩ for
each formula χ. For the semantic interpretation, let (M,w) be a relational state
with M = ⟨W,R, V ⟩ and recall that, for any formula which can be interpreted

in relational models, JχKM is the set of worlds of the model M in which the
formula holds. Then,

(M,w)⊩ ⟨+′χ⟩ϕ iffdef (M+JχKM , w)⊩ ϕ.

Note how there is no circularity: the truth-value of ⟨+′χ⟩ϕ on (M,w) de-
pends on both the set of worlds in M in which χ is the case and the truth-value
of ϕ on (M+JχKM , w), but both cases deal with a strict subformula of the original

⟨+′χ⟩ϕ. Note also how, similar to the previous cases, the operation is determin-
istic and the truth condition for its modality does not have a precondition; hence
the modality [+′] , defined as [+′χ]ϕ ∶= ¬ ⟨+′χ⟩¬ϕ, is equivalent to ⟨+′⟩ .

This auxiliary modality differs from what one might expect in one crucial
way: its semantic interpretation has no precondition, thus indicating that the
epistemic action it represents, an introspective reasoning step for χ, can take
place in any situation (even in those in which the agent does not know χ). This
issue can be solved in a second stage by introducing another modality with the
corresponding precondition:

⟨+χ⟩ϕ ∶= □χ ∧ ⟨+′χ⟩ϕ.
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The reader familiar with DEL might notice here a departure from the tradi-
tional approach: why using an auxiliary ‘preconditionless’ modality? The reason
is, as it will be discussed below, that the former simplifies the formulation of
reduction axioms in order to provide a sound and complete axiom system.

Axiom system The first step for providing an axiom system for the modality
⟨+χ⟩ is to provide reduction axioms for its ‘preconditionless’ counterpart ⟨+′χ⟩.

+′χp ⊢ ⟨+′χ⟩ p ↔ p

+′χ¬ ⊢ ⟨+′χ⟩¬ϕ ↔ ¬ ⟨+′χ⟩ϕ
+′χ∨ ⊢ ⟨+′χ⟩ (ϕ ∨ ψ) ↔ ⟨+′χ⟩ϕ ∨ ⟨+′χ⟩ψ
+′χ◇ ⊢ ⟨+′χ⟩◇ϕ ↔ (¬χ ∧◇ ⟨+′χ⟩ϕ) ∨◇(χ ∧ ⟨+′χ⟩ϕ)
SE If⊢ ψ1 ↔ ψ2 then⊢ ϕ↔ ϕ[ψ2/ψ1], with ϕ[ψ2/ψ1] any formula

obtained by replacing one or more non-modality occurrences of
ψ1 in ϕ with ψ2, with the non-modality occurrences of ψ1 being
those which are not within the brackets of the ‘dynamic’ modality
⟨+′ ⟩.12

Table 6: Axioms and rule for the modality +′χ.

Theorem 6 (Axiom system for L◇,+′χ) The axioms and rules of Table 6,
together with the axiom system L◇ (Table 1), form a sound and strongly complete
axiom system for formulas of L◇,+′χ w.r.t. relational models. �

Theorem 6 provides a sound and strongly complete axiom system for ⟨+′χ⟩ .
For axiomatising ⟨+χ⟩ , recall that such modality is just a straightforward ab-
breviation; thus, the clearly valid ⟨+χ⟩ϕ ↔ (□χ ∧ ⟨+′χ⟩ϕ) is enough.

Now, for the reason of using auxiliary ‘preconditionless’ modalities. Suppose
⟨+χ⟩ were defined directly with its precondition,

(M,w)⊩ ⟨+χ⟩ϕ iff (M,w)⊩ □χ and (M+JχKM , w)⊩ ϕ.

How its reduction axiom for ◇ would look like? A first attempt would be to
simply ‘plug’ the precondition in axiom +′χ◇, that is,

⟨+χ⟩◇ϕ ↔ □χ ∧ ((¬χ ∧◇ ⟨+χ⟩ϕ) ∨◇(χ ∧ ⟨+χ⟩ϕ)).

But such formula is not valid: in the left-to-right direction, one needs to show
that there is a R-reachable world, say u, satisfying ⟨+χ⟩ϕ (the subformulas
◇ ⟨+χ⟩ϕ and ◇( ∧ ⟨+χ⟩ϕ)). This amounts for u not only to satisfy ϕ after

12
The side condition of the SE rule is not really needed; still, it provides exactly what is

needed to make the system complete. This side condition makes our SE analogous to the rule
RE used in [53] (table on page 106) for axiomatising a public announcement modality.
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the operation, (M+JχKM , u)⊩ ϕ, but also to satisfy the modality’s precondition,
(M,u)⊩ □χ. But while the first part is indeed the case, the second cannot be
guaranteed, as the relation R does not need to satisfy any particular property
and hence the operation’s precondition cannot be ‘pushed’ through R-edges.
The best one can do is to ask for such u to satisfy ϕ conditionally after the
operation, i.e., to satisfy not ⟨+χ⟩ϕ but rather [+χ]ϕ, thus yielding the formula

⟨+χ⟩◇ϕ ↔ □χ ∧ ((¬χ ∧◇ [+χ]ϕ) ∨◇(χ ∧ [+χ]ϕ)).

But then it is now the right-to-left direction which fails, as the right-hand side
does not guarantee that indeed there is a R

′
-reachable world satisfying ϕ.

On the other hand, the ‘preconditionless’ modality allows a simple reduction
axiom: a simple substitution using axiom +′χ◇ and ⟨+χ⟩ ’s definition yields

⊩ ⟨+χ⟩◇ϕ ↔ □χ ∧ ((¬χ ∧◇ ⟨+′χ⟩ϕ) ∨◇(χ ∧ ⟨+′χ⟩ϕ)).

This validity is very similar to the first attempt above, but differs from it in
that, on the right-hand side, the ‘dynamic’ modalities are the ‘preconditionless’
ones. It also makes clear the role of the precondition: it is required for the
epistemic action to take place, but not for the operation to be applied.

From a general perspective, the reason for the indirect definition of the re-
quired modality is the ‘mismatch’ between the action’s precondition (□χ) and
what worlds need to satisfy in the original pointed model in order to be reach-
able in the new one (χ). In the well-known case of public announcement logic
(PAL; [54, 55]), these two are the same: the precondition for the action is for the
announced formula to be the case (χ), and a world needs to satisfy such formula
(χ) in order to be R

′
-reachable. However, in the case of positive χ-introspection

they are different, with none of them implying the other without further require-
ments (e.g., reflexivity, so satisfying the precondition implies being reachable in
the new model). Hence the need of an auxiliary ‘preconditionless’ modality.

Properties of the operation It is now time to explore the operation’s be-
haviour. First, here it is a validity characterizing the knowledge of the agent
after the operation.

Proposition 4.1 Let χ and ϕ be formulas in L◇,+′χ. Then,

⊩ ⟨+χ⟩□ϕ ↔ □(χ ∧ [+′χ]ϕ). �

Proof. Let (M,w) be a relational state, M = ⟨W,R, V ⟩. From left to right,
(M,w) ⊩ ⟨+χ⟩□ϕ is, by definition, (M,w) ⊩ □χ and (M,w) ⊩ ⟨+′χ⟩□ϕ.
From the first, Rwu implies (M,u)⊩ χ; from the latter, (M+JχKM , w)⊩ □ϕ,

that is, R
′
wu implies (M+JχKM , u) ⊩ ϕ. Consider now any u ∈ W such that

Rwu: then, (M,u) ⊩ χ and hence, from the definition of the accessibility
relation R

′
in M+JχKM , it follows that R

′
wu, so (M+JχKM , u) ⊩ ϕ which is, by

definition, (M,u) ⊩ [+′χ]ϕ. Thus, Rwu implies (M,u) ⊩ χ ∧ [+′χ]ϕ, and
therefore (M,w)⊩ □(χ ∧ [+′χ]ϕ).
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From right to left, (M,w) ⊩ □(χ ∧ [+′χ]ϕ) implies, first, (M,w) ⊩ □χ,
and second, (M,w) ⊩ □ [+′χ]ϕ, with the latter stating that Rwu implies
(M,u) ⊩ [+′χ]ϕ. Take now any u ∈ W such that R

′
wu: since R

′
⊆ R, then

Rwu so (M,u) ⊩ [+′χ]ϕ, i.e., (M+JχKM , u) ⊩ ϕ. Thus, (M+JχKM , w) ⊩ □ϕ,

and therefore (M,w)⊩ ⟨+′χ⟩□ϕ. But recall the first: (M,w)⊩ □χ. Hence,
(M,w)⊩ □χ ∧ ⟨+′χ⟩□ϕ and thus, by definition, (M,w)⊩ ⟨+χ⟩□ϕ. �

In order to show how the operation behaves as expected, consider the in-
stance of the previous validity with ϕ replaced by □χ:

⊩ ⟨+χ⟩□□χ↔ □(χ ∧ [+′χ]□χ).

The formula states what is needed for the agent to have a one-level positive
introspection about χ (□□χ) after the operation: the agent should know “χ
and, after the ‘preconditionless’ operation, she will know χ” (□(χ∧ [+′χ]□χ)).
One might expect for the second conjunct inside the scope of □ in the right-
side, [+′χ]□χ (“after the ‘preconditionless’ operation, the agent knows χ”),
to collapse to ⊤, so that the necessary and sufficient condition for the agent
to reach one-level positive introspection about χ after the action is for her to
simply know χ. Nevertheless, this is not the case.

Fact 4.1 The formula □χ→ [+′χ]□χ is not valid (knowing χ does not guaran-
tee the agent will still know it after the ‘preconditionless’ χ-introspection action),
and thus neither is [+′χ]□χ.

Proof. Take χ ∶= p ∧◇◇¬p and the relational state shown below to the left.
The formula χ holds at w1 and w2, so (M,w1)⊩ □χ.

p

w1

p

w2 w3

p

w1

p

w2 w3

M M+JχKM

Since χ fails at w3 in M , the operation yields the relational state to the right,
with χ false at w2; then, (M+JχKM , w1) ⊩ ¬□χ and hence (M,w1) ⊩ □χ ∧

⟨+′χ⟩¬□χ, i.e., (M,w1)⊩ □χ∧¬ [+′χ]□χ: the agent knows χ, but she does
not know it anymore after a ‘preconditionless’ positive χ-introspection action.
Note how (M,w1) ⊩ ¬□□χ, so the introspection action is not redundant.
Even more, (M,w1) satisfies □χ, the precondition of ⟨+χ⟩ ; hence, it satisfies
⟨+χ⟩¬□χ, that is, ¬ [+χ]□χ: neither χ→ [+χ]□χ is valid. �

Fact 4.1 is just one more instance of the well-known Moorean phenomenon
in DEL. In its best-known incarnation, within PAL, it appears as formulas that
become false after its truthful public announcement [56, 57], with the paradig-
matic example being p∧¬□ p. Here, it occurs as formulas that are known but,
after a particular positive introspection action, are not known anymore. Still,
although the operation does not behave as expected in the general case, it does
so when restricted to formulas whose truth is preserved by the operation.

21



Proposition 4.2 Let χ be a formula in L◇,+′χ such that⊩ χ→ [+′χ]χ. Then,

⊩ ⟨+χ⟩□□χ ↔ □χ. �

Proof. The direction from left to right is an immediate consequence of the va-
lidity that results from replacing ϕ with □χ in the formula of Proposition 4.1
(such validity appears immediately after the mentioned proposition, on page
21). From right to left, take any relational state (M,w) with M = ⟨W,R, V ⟩,
and suppose (M,w)⊩ □χ; then Rwu implies (M,u)⊩ χ. Now consider any
u ∈ W such that R

′
wu and any v ∈ W such that R

′
uv. Since R

′
⊆ R, then

Rwu and hence (M,u)⊩ χ. But R
′
uv so, from the definition of R

′
, it follows

that (M, v) ⊩ χ. Then, by the additional assumption about the operation’s
effect on χ’s truth-value, (M,v) ⊩ [+′χ]χ, that is, (M+JχKM , v) ⊩ χ. Since

v is an arbitrary R
′
-successor of u, (M+JχKM , u) ⊩ □χ; since u is an arbitrary

R
′
-successor of w, (M+JχKM , w) ⊩ □□χ. Hence, (M,w) ⊩ ⟨+′χ⟩□□χ and,

since the precondition holds, (M,w)⊩ ⟨+χ⟩□□χ. �

The right-to-left direction of this validity,

⊩ □χ→ ⟨+χ⟩□□χ (2)

is the dynamic version of the positive introspection axiom □ϕ → □□ϕ, here
with the action affecting a specific formula whose truth is preserved by the
operation. Indeed, the agent does not need to have (a one-step) positive in-
trospection for such a χ (the indistinguishability relation does not need to be
transitive), but she can act on it. In fact, the operation does more: for such
formulas χ, the agent will have full positive introspection after the operation.

Proposition 4.3 Let χ be a formula in L◇,+′χ such that⊩ χ→ [+′χ]χ. Then,

⊩ □χ→ ⟨+χ⟩□n □χ,

for any n ≥ 0, with □0
ϕ ∶= ϕ and □k+1 ϕ ∶= □k □ϕ. �

Proof. Let (M,w) be a relational state, M = ⟨W,R, V ⟩, and suppose (M,w)⊩
□χ; then Rwu implies (M,u)⊩ χ.

The first step is to show, by induction on n ≥ 0, how (R′)n+1wu implies
(M,u) ⊩ χ. The base case is immediate: (R′)1wu is R

′
wu, and since R

′
⊆ R,

then Rwu and thus (M,u) ⊩ χ. For the inductive case, suppose (R′)n+2wu.
Then there is v ∈ W such that (R′)n+1wv and R

′
vu, and hence (M, v) ⊩ χ

(from the first and inductive hypothesis) and Rvu (from the second and R
′
⊆ R).

But R
′
vu so, from the definition of R

′
, it follows that (M,u)⊩ χ.

Now, to prove the required (M,w)⊩ ⟨+χ⟩□n □χ, take any n ≥ 0 and any
u ∈ W such that (R′)n+1wu. Then (M,u)⊩ χ and therefore, by the assump-
tion, (M,u) ⊩ [+′χ]χ, that is, (M+JχKM , u) ⊩ χ. Thus, (R′)n+1wu implies

(M+JχKM , u) ⊩ χ, that is, (M+JχKM , w) ⊩ □n □χ so (M,w) ⊩ ⟨+′χ⟩□n □χ.

But ⟨+χ⟩ ’s precondition holds; thus, (M,w)⊩ ⟨+χ⟩□n □χ, as required. �
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Discussion The results above show how, if the operation does not affect χ’s
truth, the only requirement for the agent to get full positive χ-introspection
(while preserving knowledge!) after the operation is the action’s precondition:
to know χ. This operation gives then a more ‘optimistic’ representation of non-
positively-introspective situations: the agent knows χ without noticing it, and
thus she only needs to make a further ‘introspective’ effort to realise it, therefore
making □□χ true. This is the interpretation that comes to mind when one talks
about such situations ‘in real life’. Indeed, the operation does not produce full
positive introspection for all formulas, but it guarantees that, after the update,
introspection holds for the given χ if the agent already knew χ before.

There are two points about this operation that are worthwhile to discuss.
First, indeed the operation might not work as expected for arbitrary formulas
χ, but, again, this should not be seen as a reason for not interpreting it as a
positive introspection operation. This is not only because the operation does
work when the initially-known χ is propositional (i.e., it does not talk about
knowledge, the case one typically has in mind), but also because, by the same
reasoning, the public announcement operation would not deserve such name, as
in general it does not make the announced formula common knowledge among
the involved agents (the above discussed Moorean phenomenon). On the other
hand, it is also fair to emphasise that this U -disconnecting operation is not a
positive introspection operation: it is just a model operation which, following
a particular representation of an agent’s knowledge, has similar effects to a
positive introspection reasoning step.

The second point is the similarities between this positive χ-introspection
operation and the public announcement operation of the already mentioned
PAL. The operations act over different components of the model (the operation
defined here removes edges, the typical public announcement removes worlds),
but they are indeed similar in the sense that, in the new model, former χ-
worlds can only reach former χ-worlds.

13
Thus, when the evaluation point w is

a χ-world, the resulting models are bisimilar.
14

Despite the technical similarities with the already mentioned PAL, the two
operations represent epistemic actions of a very different nature: while a public
announcement represents the result of interaction with the environment (exter-
nal communication, observation), an act of introspection is typically understood
as an act of self-reflection. It is then remarkable how their representations are
so similar within relational models. One can argue that the introspection action
presented here is too drastic, as it removes any ‘eventual’ (i.e., possibility of
having a possibility) uncertainty the agent might have about the given formula,
and this is indeed the case. However, it is both the definition of knowledge by
means of □ and this modality’s semantic interpretation (in relational models)
what leaves no other choice in order to represent this specific epistemic action:

13
A public announcement can be also defined in terms of edge elimination by preserving

only pairs in R whose target is a χ-world.
14

Another minor difference is the precondition of their modalities, as discussed above.
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the semantic interpretation of □ is the same, regardless of whether it appears
under the scope of another □ modality or not.

4.2. Particular negative introspection

In contrast with the general positive introspection, the general negative in-
trospection operation of the previous section already behaves as expected: it
preserves the agent’s (propositional) lack of knowledge while giving her negative

introspection (Proposition 3.4).
15

This section explores negative introspection
over a given χ in order to get an uniform presentation, and also for recognising
similarities and differences with respect to its positive counterpart.

An operation for full negative introspection about χ should make sure that
all worlds R-reachable from the evaluation point (in zero or more steps, so the
original lack of knowledge is preserved and full introspection is reached) can see
a ¬χ-world. Assuming that initially the agent does not know χ, this property
can be achieved by using a particular instance of the Euclidean closure operation
of Definition 3.3 in which the new edges point only to ¬χ-worlds.

Definition 4.3 (U-connecting operation) Let M be a relational model ⟨W,
R, V ⟩, with U ⊆ W a subset of its domain. The U -connecting operation yields
the model M−U = ⟨W,R′, V ⟩, with its indistinguishability relation R

′
given by

R
′
∶= R ∪ ( R◦ (R ∪ R)∗ ◦R ◦ Id

M
U ),

with Id
M
U ∶= {(u, u) ∣ u ∈ U}. ◀

By instantiating the parameter of this operation with the set of worlds sat-
isfying ¬χ in the original model, a modality for particular full negative intro-
spection can be defined. Here is a ‘preconditionless’ version.

Definition 4.4 The language L◇,−′χ extends L◇ with a modality ⟨−′χ⟩ for
each formula χ. For the semantic interpretation, let (M,w) be a relational
state with M = ⟨W,R, V ⟩. Then,

(M,w)⊩ ⟨−′χ⟩ϕ iffdef (M−J¬χKM , w)⊩ ϕ.

As before, [−′χ]ϕ ∶= ¬ ⟨−′χ⟩¬ϕ so, given that the operation is deterministic
and its modality does not have a precondition, [−′χ] is equivalent to ⟨−′χ⟩ .◀

A modality with an appropriate precondition is defined as expected:

⟨−χ⟩ϕ ∶= ¬□χ ∧ ⟨−′χ⟩ϕ.

Thus, the agent can perform an act of particular negative χ-introspection after
which ϕ is the case, ⟨−χ⟩ϕ, if and only if she does not know χ, ¬□χ, and after
the particular negative χ-introspection operation, ϕ is the case, ⟨−′χ⟩ϕ.

15
Still, keep in mind its side-effects.
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Axiom system In order to formulate reduction axioms for ⟨−′χ⟩ , the basic
language will be LPDL⊲,? (Definition 2.4), as now the ‘test’ operator ? is required.
The language LPDL⊲,?,−′χ is the result of extending LPDL⊲,? with the ‘dynamic’
negative χ-introspection modality, and the reduction axioms and rule of Table 7
below define the required translation from LPDL⊲,?,−′χ to LPDL⊲,? , provided that
the program transformer from Definition 3.5 is redefined in the following way.

Definition 4.5 (Program transformer Tχ) Let χ be a formula that can be
evaluated in relational models. The χ-program transformer Tχ, a function from
program expressions to program expressions, is defined inductively, with the
cases for non-deterministic choice, sequential composition and transitive reflex-
ive closure as in Definition 3.5. The remaining cases, the basic relation, its
converse and the test operator, are defined as follows.

Tχ(⊳) := ⊳ ∪ (⊲ ; (⊳ ∪ ⊲)∗ ; ⊳ ; ?¬χ) Tχ(?ϕ) := ? ⟨−′χ⟩ϕ
Tχ(⊲) := ⊲ ∪ (?¬χ ; ⊳ ; (⊲ ∪ ⊳)∗ ; ⊲).

This program transformer behaves just as the previous one.

Proposition 4.4 Let M be a relational model ⟨W,R, V ⟩, with χ a formula
that can be evaluated in such models, and recall that M−J¬χKM = ⟨W,R′, V ⟩.
For every program expression α, (R′)α = RTχ(α). �

Proof. As in Proposition 3.2, the proof is by structural induction on α. The
common cases are similar; for the ‘test’,

R
′
?ϕ= {(w,w) ∣ w ∈ JϕKM−J¬χKM }= {(w,w) ∣ w ∈ J⟨−′χ⟩ϕKM}=R? ⟨−′χ⟩ϕ=RTχ(?ϕ).

−′χp ⊢ ⟨−′χ⟩ p ↔ p

−′χ¬ ⊢ ⟨−′χ⟩¬ϕ ↔ ¬ ⟨−′χ⟩ϕ
−′χ∨ ⊢ ⟨−′χ⟩ (ϕ ∨ ψ) ↔ (⟨−′χ⟩ϕ ∨ ⟨−′χ⟩ψ)
−′χ⟨α⟩ ⊢ ⟨−′χ⟩ ⟨α⟩ϕ ↔ ⟨Tχ(α)⟩ ⟨−′χ⟩ϕ
SE If⊢ ψ1 ↔ ψ2 then⊢ ϕ↔ ϕ[ψ2/ψ1], with ϕ[ψ2/ψ1] any formula

obtained by replacing one or more non-modality occurrences of
ψ1 in ϕ with ψ2 (see SE on Table 6).

Table 7: Axioms and rule for the modality ⟨−′χ⟩.

Theorem 7 (Axiom system for LPDL⊲,−) The axioms and rules of Table 7,
together with the axiom system LPDL⊲,? (Table 3) form a sound and weakly
complete axiom system for formulas of LPDL⊲,?,−′χ w.r.t. relational models. �

Properties of the operation First, as only edges to former ¬χ-worlds are
added, it is clear not only that the accessibility relation in M−J¬χKM does not
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need to be Euclidean, but also that in such model the agent does not need to
have full negative introspection about every formula. However, under the proper
circumstances, the added edges are enough to obtain full negative introspection
about the given χ, as the following analogous of Proposition 4.3 shows.

Proposition 4.5 Let χ be a formula in L◇,−′χ such that ⊩ ¬χ → [−′χ]¬χ.
If the agent does not know χ, then after the operation the agent will have full
negative introspection about χ. More precisely, for any n ≥ 0 we have

⊩ ¬□χ→ ⟨−χ⟩□n ¬□χ. (3) �

Proof. Let (M,w) be a relational state, M = ⟨W,R, V ⟩, and suppose (M,w)⊩
¬□χ; then there is v ∈ W such that Rwv and (M,v) ⊩ ¬χ, with the latter

implying Id
M
¬χ vv (by definition) and (M−J¬χKM , v)⊩ ¬χ (by the assumption).

The first step is to show (by induction on n ≥ 0) how, in M−J¬χKM , any
world that can be reached from w in zero or more steps can also reach v, that
is, how (R′)nwu implies R

′
uv.

� Suppose (R′)0wu; then, no R-steps are needed to reach u, i.e., u = w. But
Rwv so R

′
wv, that is, R

′
uv.

� Suppose (R′)1wu; then R
′
wu. Now, from the definition of R

′
there are

two possibilities.

– If Rwu then Ruw, which together with Rwv and Id
M
¬χ vv implies

( R◦R ◦ Id
M
¬χ)uv, so R

′
uv.

– If ( R◦ (R ∪ R)∗ ◦ R ◦ Id
M
¬χ)wu, then there are u1, u2 ∈ W such

that Rwu1, (R∪ R)∗u1u2 and Ru2u; thus, Ruu2, (R∪ R)∗u2u1 and

Ru1w, which together with Rwv and Id
M
¬χ vv imply ( R◦ (R∪ R)∗ ◦

R ◦ Id
M
¬χ)uv, so R

′
uv.

� Suppose (R′)n+2wu; then there is u
′
∈W such that (R′)n+1wu′ and R

′
u
′
u,

and hence (inductive hypothesis) R
′
u
′
v and R

′
u
′
u. From the definition of

R
′
, this yields four cases.

– If Ru
′
u and Ru

′
v, then ( R◦R ◦ Id

M
¬χ)uv, so R

′
uv.

– If Ru
′
u and ( R◦ (R ∪ R)∗ ◦R ◦ Id

M
¬χ)u′v, then ( R◦ R◦ (R ∪ R)∗ ◦

R ◦ Id
M
¬χ)uv so ( R◦ (R ∪ R)∗ ◦R ◦ Id

M
¬χ)uv, that is, R

′
uv.

– If ( R◦ (R∪ R)∗ ◦R◦ Id
M
¬χ)u′u and Ru

′
v, then ( R◦ (R∪ R)∗ ◦R)u′u

and Ru
′
v, so ( R◦ (R ∪ R)∗ ◦ R ◦ R ◦ Id

M
¬χ)uv and hence ( R◦ (R ∪

R)∗ ◦R ◦ Id
M
¬χ)uv, that is, R

′
uv.

– If ( R◦ (R ∪ R)∗ ◦ R ◦ Id
M
¬χ)u′u and ( R◦ (R ∪ R)∗ ◦ R ◦ Id

M
¬χ)u′v,

then ( R◦ (R ∪ R)∗ ◦ R)u′u and ( R◦ (R ∪ R)∗ ◦ R ◦ Id
M
¬χ)u′v, so

( R◦ (R ∪ R)∗ ◦R ◦ R◦ (R ∪ R)∗ ◦R ◦ Id
M
¬χ)uv and hence R

′
uv.
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Now, for (M,w)⊩ ⟨−χ⟩□n ¬□χ, take n ≥ 0 and u ∈W such that (R′)nwu.
Then R

′
uv and, from (M−J¬χKM , v) ⊩ ¬χ, it follows that (M−J¬χKM , u) ⊩

◇¬χ, i.e., (M−J¬χKM , w) ⊩ □n ¬□χ, and hence (M,w) ⊩ ⟨−′χ⟩□n ¬□χ.

But ⟨−χ⟩ ’s precondition holds; thus, (M,w)⊩ ⟨−χ⟩□n ¬□χ, as required. �

This validity is, again, a dynamic version of the negative introspection axiom,
now focussing on a specific χ. The axiom system also allow us to obtain further
validities as the following one, characterising the knowledge of the agent after
the operation (without unfolding Tχ(⊳), to simplify its presentation).

Proposition 4.6 Let χ and ϕ be formulas in LPDL⊲,?,−′χ . Then,

⊩ ⟨−χ⟩ [⊳]ϕ↔ (¬ [⊳]χ ∧ [Tχ(⊳)] [−′χ]ϕ). �

As before, it is possible to use the previous validity to obtain one character-
ising negative introspection about a given χ after the operation.

⊩ ⟨−χ⟩ [⊳]¬ [⊳]χ ↔ (¬ [⊳]χ ∧ [Tχ(⊳)] [−′χ]¬ [⊳]χ) .

Still, there is s caveat. Just as in the general case, the particular negative
introspection operation might cause the agent to drop propositional knowledge.

Fact 4.2 The formula □ q → [−p]□ q is not valid.

Proof. In the relational state below on the left, □ q holds; however, this is not
the case in the relational state on the right, the one resulting from a negative
introspection operation for the agent’s lack of knowledge about p.

q

w

p, q

q

w

p, q

M M
−

Moreover: the operation can be performed (the initial relational state satisfies
the action’s precondition, ¬□ p) and it is actually needed (the agent is not
negatively introspective about her lack of knowledge of p, that is, ¬□¬□ p).
Thus, (M,w)⊩ □ q ∧ ⟨−p⟩¬□ q. �

5. One-step introspection actions

When successful, the operations discussed in the previous sections make the
agent’s knowledge fully introspective, either about all her knowledge (Section 3),
or else about the given formula (Section 4). Thus, they achieve the goal set in the
introduction: although a ‘more real’ agent might not have full positive/negative
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introspection, she can achieve it in the appropriate cases by performing the
appropriate epistemic actions.

However, these actions can be also seen as too strong, as they give the
agent, in a single shoot, full introspection. If the goal is indeed to model ‘more
real’ agents, it makes sense to explore also introspection operations that give
her not full introspection, but rather increase her introspection level by only
‘one degree’. From a technical point of view, operations representing these
epistemic actions should be different from the ones studied before: in order to
increase the agent’s introspection by ‘one degree’, the operation should take not
a global perspective, as the previously studied do, but rather a local one, so the
introspection the agent has at a given evaluation point will be increased.

16

5.1. One-step positive χ-introspection

Take a relational state (M,w) in which the agent knows a given χ, and yet
she does not have full positive introspection about it. This means that there is
a n ≥ 2 such that, although every world R-reachable from w in n steps satisfies
χ, there is at least one world R-reachable from w in n + 1 steps in which ¬χ
is the case. In order for the agent to gain one ‘degree’ of positive introspection
about χ, such ¬χ-worlds should not be R-reachable from w anymore; in other
words, only χ-worlds should be R-reachable from w in n + 1 steps. Unlike the
full positive introspection of before (Definition 4.1), this is a local operation, and

thus it intends to go from □n χ to □n+1 χ without necessarily reaching □n+2 χ.

Use R[w] to denote the set of worlds reachable from w via R in one step (that
is, R[w] ∶= {v ∣ Rwv}), and R

n[w] to denote the set of worlds reachable from

w via R in n steps (that is, R
1[w] ∶= R[w] and R

n+1[w] ∶= ⋃v∈R[w]R
n[v]).

Definition 5.1 (Single-step positive U-introspection) Let (M, w) be a
relational state with M = ⟨W,R, V ⟩. Let U ⊆ W a subset of its domain,
and let m be the smallest natural number such that R

m[w] ∩ U ≠ ∅ (i.e.,
m is the number of steps required to reach the worlds closest to w that are
not in U). The single-step positive U -introspection operation yields the model

Mw+U = ⟨W,R+Uw , V ⟩, with R
+U
w given by

R
+U
w ∶= R \ {(u, v) ∣ u ∈ Rm−1[w] and v ∈ (R[u] ∩ U)} . ◀

Some words about the just defined operation. First, if no world in U is
reachable from w (i.e., if only worlds in U can be reached from w), then the
mentioned m does not exist. In such cases, the set of pairs that are being
removed from R is empty, and thus the operation returns exactly the same
model. Second, when such m exists, the operation removes the last edge in

16
Note how, to increase the introspection degree by one, one has to work locally (with

respect to some fixed evaluation point). However, one can work locally and also reach full in-
trospection, simply by performing the operations of Section 5 only on the sub-model generated
by the given evaluation point.
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every path from w that leads to its closest U -worlds. Third, when the parameter
of this operation, the set U , is given by the truth-set of a formula, say χ, the
operation can be understood as single-step positive χ-introspection action, as it
takes a relational state in which the worlds closest to w that are not in JχKM

(i.e., those in J¬χKM ) are m steps away, and returns a relational state (the new
model plus the same evaluation point) in which the worlds closest to w that are

in J¬χKM will be at at least m + 1 steps away.

Definition 5.2 The language L◇,⟨⟨+χ⟩⟩ extends L◇ with the modality ⟨⟨+χ⟩⟩ .
For its semantic interpretation, let (M,w) be a relational state. Then,

(M,w)⊩ ⟨⟨+χ⟩⟩ϕ iffdef (M,w)⊩ □χ and (Mw+JχKM , w)⊩ ϕ.

In words, the agent can perform a single-step positive introspection action for
χ after which ϕ is the case, (M,w) ⊩ ⟨⟨+χ⟩⟩ϕ, if and only if she knows χ,
(M,w) ⊩ □χ, and, after the action, ϕ is the case, (Mw+JχKM , w) ⊩ ϕ. The
universal modality [[+χ]]ϕ is defined as the modal dual of ⟨⟨+χ⟩⟩ϕ, as usual.◀

Notice that we require the agent to know χ; thus, the m referred in the
operation’s definition is such that m ≥ 2. Note also how, when the agent has
full positive introspection about χ, no world in J¬χKM is reachable from w, and
hence the m mentioned in the operation’s definition does not exist. Thus, as
remarked above, the operation returns exactly the same model.

Unlike the previous sections, we have not introduced an axiom system for
the operators defined here. Due to the locality of the operations introduced in
this section, we believe that more powerful tools needs to be used, as it will be
discussed in the conclusions.

Properties of the operation Let us analyse the effects of having this new
modality. Remember that we only are interested about what are the effects on
taking one introspection step from a non-introspective level reachable from the
evaluation point, without taking into account what happens beyond such step.

The operator behaves as expected, not only for propositional formulas, but
also for those whose truth is preserved by the operation.

Proposition 5.1 Let χ be a formula such that ⊩ χ→ [[+χ]]χ. Then,

⊩ (
n

⋀
i=1

□
i
χ ∧ ¬□

n+1
χ)→ ⟨⟨+χ⟩⟩⋀n+1

i=0
□
i
χ.

�

Proof. Take any relational model (M,w) with M = ⟨W,R, V ⟩. The antecedent
of the formula whose validity should be proved indicates that the first ‘problem-
atic’ (i.e., ¬χ-) world is n + 1 steps away from the evaluation point w; thus, in
Definition 5.1, m = n+1. Here it needs to be shown that i ∈ {1, . . . , n + 1 = m}
implies (R+Uw )i[w] ⊆ JχKMw+U .

Note that the operation does not add edges, so being reachable in the
new model implies being reachable in the original one: (R+Uw )i[w] ⊆ R

i[w].
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Take first any i ∈ {1, . . . , n = m − 1}. The antecedent of the formula gives us

R
i[w] ⊆ JχKM , and the extra requirement states that JχKM ⊆ JχKMw+U . Hence,

(R+Uw )i[w] ⊆ JχKMw+U . Now take n + 1 = m. After the operation, links from

worlds in R
m−1=n[w] to worlds in J¬χKM are cut, so no world reachable from w

in m = n + 1 steps satisfies ¬χ in M : (R+Uw )n+1[w] ⊆ JχKM . Then, again from

the extra requirement, JχKM ⊆ JχKMw+U , so (R+Uw )n+1[w] ⊆ JχKMw+U . Thus,
the operation produces a model satisfying the required formula.

Finally, in the formula, n’s lower bound is 1. Thus, the precondition of the
modality is satisfied, i.e., its ‘diamond’ version indeed holds. �

However, the result cannot be generalized for arbitrary modal formulas:

Fact 5.1 /⊩ (⋀n
i=1 □

i
χ ∧ ¬□n+1 χ)→ ⟨⟨+χ⟩⟩⋀n+1

i=0 □
i
χ. In particular, (□χ∧

¬□□χ) ∧ ¬ ⟨⟨+χ⟩⟩□χ is satisfiable.

Proof. Let χ ∶=◇ p, and consider the relational state (M,w1) below on the left.
Clearly we have (M,w1)⊩ (□◇ p ∧ ¬□□◇ p), since all one-steps successors
from w1 have at least one p-successor, but some two-steps successors (w5) do
not have any p-successor.

w1

w2

w3

p

w4

p

w5

p

w6

w7

w1

w2

w3

p

w4

p

w5

p

w6

w7

M Mw1+◇p

After updating the accessibility relation with w1 the reference point, we obtain
Mw1+◇p. Notice that we have now (Mw1+◇p, w) /⊩ □◇ p, since the edge
between w3 and w5 has been removed, so the agent lost some knowledge. �

Fact 5.1 says that the new modality describes one step of positive intro-
spection, but at the cost of losing knowledge about formulas whose truth-sets
might shrink after the operation (i.e., formulas not satisfying the additional re-
quirement on Proposition 5.1). Notice that the defined model update operation
removes edges at the end of paths leading to the closest problematic worlds
(those not satisfying χ). One could then propose an alternative operation that
removes edges at the beginning of such paths:

R
+U
w ∶= R \ {(w, u) ∣ u ∈ R[w] and v ∈ (Rm−1[u] ∩ U)} .

Still, although this alternative works properly for formulas whose truth-set
does not shrink (the argument is similar to the one given for Proposition 5.1),
it still fails in the general case.

Fact 5.2 The alternative single-step positive introspection operation does not
work for arbitrary modal formulas.
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Proof. Let χ ∶=◇ p, and consider the relational state (M,w1) below on the left.
Clearly we have (M,w1)⊩ (□◇ p ∧ ¬□□◇ p), since all one-steps successors
from w1 (w1 and w2) have at least one p-successor, but some two-steps successors
(w3) do not have any p-successor.

w1

p

w2 w3 w1

p

w2 w3

The relational state that results from the above sketched operation appears
above on the right. On it, □◇ p fails: there is a world (w1) accessible from w1

that does not have a p-successor. �

5.2. One-step negative χ-introspection

Take now a relational state (M,w) in which the agent does not know a given
χ, and yet she does not have full negative introspection about it. Then, there
is n ≥ 0 such that, although every world R-reachable from w in n steps has a
¬χ-successor, there is at least one world R-reachable from w in n+ 1 steps that
can reach only χ-worlds. In order for the agent to gain one ‘degree’ of negative
introspection about χ, all elements of R

n+1[w] should have such successor: for
every world in u ∈ R

n+1[w] there should be a world v ∈ R[u] in which χ
fails. Unlike the full negative introspection of before (Definition 4.3), this is a

local operation, and thus it intends to go from □n ¬□χ to □n+1 ¬□χ without
necessarily reaching □n+2 ¬□χ. Unlike the its single-step positive introspection
counterpart (Definition 5.1), edges should be added instead of being removed.

Definition 5.3 (Single-step negative U-introspection) Let (M,w) be a
relational state with M = ⟨W,R, V ⟩. Let U ⊆ W a subset of its domain,
and let m be the smallest natural number for which there exists at least one
u ∈ R

m[w] such that R[u] ⊆ U (i.e., m is the number of steps required to
reach the worlds closest to w whose successors are all in U). The single-step

negative U -introspection operation yields the model Mw−U = ⟨W,R−Uw , V ⟩, with

R
−U
w given by

R
−U
w ∶= R ∪ {(u, v) ∣ u ∈ Rm[w], R[u] ⊆ U and v ∈ (R[w] ∩ U)} . ◀

Some words about the just defined operation. First, if every world that can
be reached from w has a U -successor, then the mentioned m does not exist. In
such cases, the set of pairs that are being added to R is empty, and thus the
operation returns exactly the same model. Second, when such m exists, the
operation attempts to add edges from the worlds closest to w whose successors
are all in U to all successors of w that are not in U . Of course, if the latter
worlds do not exist, the set of pairs that are being added to R is empty too, and
thus once again the operation returns exactly the same model. Third, when the
parameter of this operation, the set U , is given by the truth-set of a formula,
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say χ, the operation can be understood as single-step negative χ-introspection
action, as it takes a relational state in which the worlds closest to w that have
only JχKM -successors are m steps away, and returns a relational state (the new
model plus the same evaluation point) in which the worlds closest to w that

have only JχKM -successors should be at at least m + 1 steps away.

Definition 5.4 The language L◇,⟨⟨−χ⟩⟩ extends L◇ with the modality ⟨⟨−χ⟩⟩ .
For its semantic interpretation, let (M,w) be a relational state. Then,

(M,w)⊩ ⟨⟨−χ⟩⟩ϕ iffdef (M,w)⊩ ¬□χ and (Mw−JχKM , w)⊩ ϕ.

In words, the agent can perform a single-step negative introspection action for
χ after which ϕ is the case, (M,w)⊩ ⟨⟨−χ⟩⟩ϕ, if and only if she does not know
χ, (M,w)⊩ □χ, and, after the action, ϕ is the case, (Mw−JχKM , w)⊩ ϕ. The
universal modality [[−χ]]ϕ is defined as the modal dual of ⟨⟨−χ⟩⟩ϕ, as usual.◀

Note how the modality’s precondition requires for w to have a ¬χ-successor;
thus, the m referred in the operation’s definition is such that m ≥ 1. Moreover,
this guarantees that, for the ‘diamond’ existential modality ⟨⟨−χ⟩⟩ (the one on
which the precondition acts as a conjunct), a ¬χ-world v as the one required
by the operation always exists. Note also how when, the agent has full negative
introspection about χ, all worlds reachable from w have ¬χ-successors, and
hence the m mentioned in the operation’s definition does not exist. Thus, as
remarked above, the operation returns exactly the same model.

In the same way as for the one step positive introspection operator, we have
not introduced an axiom system. Again, the reasons is that further tools are
needed in order to deal with this local operation.

Properties of the operation Here is the crucial proposition.

Proposition 5.2 Let χ be a formula such that ⊩ ¬χ→ [[−χ]]¬χ. Then,

⊩ (
n

⋀
i=0

□
i
¬□χ ∧ ¬□

n+1
¬□χ)→ ⟨⟨−χ⟩⟩ (

n+1

⋀
i=0

□
i
¬□χ).

�

Proof. Take any relational model (M,w) with M = ⟨W,R, V ⟩. The antecedent
of the formula whose validity should be proved indicates that the first ‘problem-
atic’ world (one without a ¬χ-successor) is n+1 steps away from the evaluation
point w; thus, in Definition 5.3, m = n + 1. Here it needs to be shown that
i ∈ {1, . . . , n + 1 = m} implies (R−Uw )i[w] ⊆ J◇χKMw−U .

Take first any i ∈ {0, . . . , n = m − 1}. The antecedent of the formula gives us

R
i[w] ⊆ J◇¬χKM , that is, u ∈ R

i[w] implies R[u]∩J¬χKM ≠ ∅. For the proof,

take any u ∈ (R−Uw )i[w]. The first edges added by the operation are from worlds

that are m steps away from w, so R
i[w] = (R−Uw )i[w]. Hence, u ∈ R

i[w], and

therefore there is v ∈ (R[u] ∩ J¬χKM). Now, the operation does not remove

edges, so R[u] ⊆ R
−U
w [u], and the extra requirement states that J¬χKM ⊆
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J¬χKMw−U ; then, v ∈ (R−Uw [u] ∩ J¬χKMw−U ), that is, R
−U
w [u] ∩ J¬χKMw−U

≠ ∅.

Therefore, so (R−Uw )i[w] ⊆ J◇¬χKMw−U , as required.

Now, the n + 1 = m case. Take any u ∈ (R−Uw )n+1=m[w]. Again, the first
edges added by the operation are from worlds that are m steps away from w, so
R
n+1[w] = (R−Uw )n+1[w], so u ∈ R

n+1=m[w]. Here there are two possibilities,

depending on whether R[u] ⊆ JχKM holds. On the one hand, if it does not

(so no edges are added from u), then R[u] ∩ J¬χKM ≠ ∅, that is, there is v ∈

(R[u]∩J¬χKM). But then v ∈ R
−U
w [u] (no edges are removed by the operation)

and v ∈ J¬χKMw−U (the extra requirement); thus, R
−U
w [u]∩ J¬χKMw−U

≠ ∅. On
the other hand, if it does, the operation guarantees that, in the new model,
there is a v reachable from u such that J¬χKM (such v in R[w]∩ J¬χKM exists
because of the antecedent of the formula) and, from the requirement once more,

v ∈ (R−Uw [u] ∩ J¬χKMw−U ), that is, R
−U
w [u] ∩ J¬χKMw−U

≠ ∅ again. Thus,
in both cases, in the new model u has a successor that satisfies ¬χ; hence,
(R−Uw )n+1[w] ⊆ J◇χKMw−U , as required. �

Again, the property above does not hold for arbitrary formulas:

Fact 5.3 /⊩ (⋀n
i=0 □

i ¬□χ ∧ ¬□n+1 ¬□χ) → ⟨⟨−χ⟩⟩ (⋀n+1
i=0 □

i ¬□χ). In
particular, ¬□χ ∧ ¬□¬□χ ∧ ⟨⟨−χ⟩⟩ (□χ) is satisfiable.

Proof. Let χ ∶=◇ p, and consider the relational state (M,w1) below on the left.
Clearly we have (M,w1)⊩ (¬□◇ p∧¬□¬□◇ p), or equivalently (M,w1)⊩
(◇□¬p∧◇□◇ p), since there exists a successor of w1 whose successors satisfy
both ¬p and ◇ p.

w1

p

w2

w4

w3

p

w5 w1

p

w2

w4

w3

p

w5

M Mw1−◇p

After updating the accessibility relation with w1 the reference point, we obtain
Mw1−◇p. Notice that we have now (Mw1+◇p, w) ⊩ □◇ p, because we add a
loop in the node w2, producing a change on the original knowledge. �

6. Conclusion and further work

This paper studies positive and negative introspection as epistemic actions
that modify the agent’s knowledge. In both cases, three possibilities are con-
sidered: operations changing the general knowledge of the agent, operations
updating the agent’s knowledge with respect a particular formula, and local
operations adding one step to the agent’s introspection.
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The general operations work by giving the indistinguishability relation the
relational properties that guarantee the introspection properties. In the posi-
tive introspection case, edges are added to make the relation transitive; yet, as
discussed, this idea works by considering that introspection fails not because
of what the agent knows about her knowledge, but rather because of what she
knows. Thus, the operation drops non-introspective knowledge, only preserving
the introspective one. In the negative introspection case, edges are added to
make the relation Euclidean, and the operation works for those formulas whose
falsity is preserved by the operation.

The particular operations focus in a specific formula instead. In the positive
introspection case, it now eliminates edges from χ-worlds to ¬χ-worlds, forcing
the agent to know that she knows χ while keeping the rest of her knowledge
‘as before’. In the negative introspection case, it adds edges once again. In
both cases, the operation works as expected for formulas whose truth/falsity is
preserved by the operation, respectively.

Finally, the operations for increasing introspection by ‘one degree’, i.e., for
going from □n ϕ to □n+1 ϕ without reaching necessarily □n+2 ϕ, and for going
from □n ¬□ϕ to □n+1 ¬□ϕ, without necessarily reaching □n+2 ¬□ϕ. In order
to achieve that, both operations work locally, looking for the first ‘problematic’
world (the closest to the evaluation point disproving the introspection property),
and deleting/adding edges accordingly, respectively.

Modalities for the four global operations (two general, two particular) have
been axiomatised by means of the DEL reduction axioms strategy, translating
formulas with dynamic modalities into formulas without them. However, the
local operations require further tools, as they should work only on worlds af-
fecting an introspection property from the point of view of the given evaluation
point. Therefore, we conjecture that more powerful tools are needed, such as
nominals and hybrid logic binders (see e.g. [58] for details) in order to refer to
specific points in a path of the model.

An aspect that has not been discussed is the computational behaviour of
the proposed logics. The global ones can be effectively translated into some
decidable logic (PDL) via the provided reduction axioms; thus,

Corollary 6.1 The satisfiability problem for all the logics introduced in Sec-
tions 3 and 4 is decidable. �

For future work, there are some natural lines. First, on the specific proposal,
one can look for the additional tools required to provide a sound and complete
axiomatisations of the modalities for local operators. Then, one would like to
analyse the exact complexity of all the logics we studied, as well as finding con-
crete applications, for instance for reasoning problems in artificial intelligence.
A second direction consists on taking a step back and look at additional inter-
esting introspection operations: an appealing one would provide both positive
and negative introspection simultaneously.

Finally, an interesting project is to investigate similar operations in a multi-
agent setting (e.g., public, private versions of these operations), focusing addi-
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tionally on operations for reaching common knowledge.
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