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Abstract. Default Logic refers to a family of formalisms designed to
carry out non-monotonic reasoning over a monotonic logic (in general,
Classical First-Order or Propositional Logic). Traditionally, default logics
have been de�ned and dealt with via syntactic consequence relations.
Here, we introduce a family of default logics de�ned over modal logics.
First, we present these default logics syntactically. Then, we elaborate
on an algebraic counterpart. We do the latter by extending the notion
of a modal algebra to acommodate for the main elements of default
logics: defaults and extensions. Our algebraic treatment of default logics
concludes with an algebraic completeness result. To our knowledge, our
approach is novel, and it lays the groundwork for studying default logics
from a dynamic logic perspective.

1 Introduction

Default Logic refers to a family of non-monotonic formalisms tailored to reason-
ing with incomplete knowledge, and to dealing with contradictory information.
The main features of a default logic DL are defaults and extensions. Defaults are
used as a tool to handle reasoning from incomplete knowledge. In turn, exten-
sions are a mechanism for reasoning in the presence of contradictory information
(via consistent alternatives). Intuitively, defaults can be seen as defeasible rules
of inference, i.e., rules of inference whose conclusions are subject to annulment;
whereas extensions can be understood as sets of formulas closed under the ap-
plication of defaults.

The history of Default Logic traces back to Reiter's seminal work [21]. Since
then, many variants of Reiter's original ideas have been proposed � with each
variant giving rise to a di�erent default logic (see [2] for a comprehensive sum-
mary). For the most part, these variants have focused their attention on what
is meant by an extension. In particular, the emphasis has been on how di�er-
ent interactions between defaults, and the rules of inference of the underlying
proof calculus,4 concoct di�erent notions of an extension satisfying one or more
properties of interest. This treatment of extensions carries with it the de�nition
and analysis of a default logic from a syntactic perspective. The other side of
the coin is missing. In studying a logic (of any kind), we also wish to address

4 Typically the underlying proof calculi is one for Classical First-Order Logic (FOL)
(see, e.g., [21]) or for Classical Propositional Logic (CPL) (see, e.g., [17,22,6,19]).
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it from a semantic perspective via a model theory and/or a class of algebras.
This yields interesting completeness results, interpolation properties, bisimula-
tions, etc. This semantic perspective on default logics is mostly absent, making
it di�cult to investigate their logical properties using standard semantic tools.

Our work. Following the tradition in Default Logic, we start with a formulation
of default logics over modal logics via deducibility (i.e., syntactical consequence
in the proof calculus). We rely on the notion of global deducibility for modal log-
ics [10]. Our formulation of a default logic is parametric, and can be instantiated
with any modal system from K to S5 extended with the universal modality [4].

For each default modal logic, we make explicit how defaults interact with the
rules of inference of the underlying proof calculus by integrating the use of the
former into the notion of deducibility of the latter. In addition, we show how we
can parametrically de�ne for each default modal system an algebraic counter-
part. We do this by extending modal algebras to accommodate for defaults and
extensions. Modal algebras are Boolean algebras with additional operators for
modalities, and they make up the algebraic counterpart of modal systems [28,12].

The algebraic treatment of defaults and extensions is done as follows. We
carry out a Lindenbaum-Tarski construction that acts as an algebraic canonical
model for a set of permisses. We enrich this construction with an operator to deal
with defaults. This operator can be thought of as �updating� the Lindenbaum-
Tarski algebra w.r.t. the application of a default. The result of the update is
the algebraic counterpart of an extension. On this basis we prove an algebraic
completeness result.

Related work. Our treatment of defaults and extensions enables us to think of
default logics as algebraic �model changing� logics; in the sense of, e.g., public
announcement logic [20].

In our case, a model update corresponds to the application of a default (a
sort of inference step). The idea of updating a model dynamically to represent
syntactic steps of inference can be found in several places in the literature on
dynamic logics. For instance, the problem of logical omniscience in epistemic
logic (see, e.g., [26]) has been thought of as a property to be achieved after
the application of a dynamic operation. In [7,1,16,23], omniscience is achieved
by updating models containing sets of formulas. In [25,15] the updates are per-
formed over awareness relational models. Dynamics of evidence are presented
in [24,27] over neighbourhood models. Finally, dynamic modalities allowing to
achieve introspective states over Kripke models are introduced in [8,9].

Closer to our work is the algebraic treatment of public announcements in-
troduced in [18]. Therein, the algebraic submodel relation induced by the an-
nouncement of a formula ψ is represented by taking the quotient algebra modulo
an equivalence relation given by ψ. We show that the application of a default
δ can be captured in a similar way, i.e., by taking the quotient algebra modulo
the equivalence relation given by the conclusion of δ.
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Motivation. Our choice of de�ning default logics over modal logics is not arbi-
trary. Modal logics provide a wide spectrum of logics which are more expressive
than CPL, with better computational properties than FOL. Moreover, these log-
ics have a well-developed algebraic theory in terms of modal algebras. In our
constructions we exploit the combination of these two features. As we will see,
defaults are better modeled by means of a global consequence relation, which
will be captured by the use of the universal modality. While not pursued on here,
building default logics on modal logics is also interesting if one has applications
of the developed formalism in mind. This is particularly true in the setting of de-
scription logics � wherein it is possible to think of defaults as a way of capturing
exceptions to a taxonomy of concepts modeled in a knowledge base (see [3]).

Main contributions. We provide a syntactic and algebraic treatment of default
logics built over modal logics and study their properties. Syntactically, our con-
struction of a default modal system is parametric on a modal system and a set
of defaults. We make precise how defaults interact with the rules of inference of
the underlying modal system. Algebraically, we address defaults and extensions
via modal algebras. This enables us to obtain an algebraic completeness result.
Moreover, it enables us the use of standard algebraic tools to study metalogical
properties of default modal systems. We view this work as a �rst step towards
an algebraization of default logic, and towards a better understanding of default
systems from a logical perspective. Finally, the algebraic construction for default
logics over modal logics lays the groundwork to study default systems from a
dynamic logic perspective.

Structure of the article. Sec. 2 covers background material. Sec. 3 contains our
main results. Sec. 3.1 introduces default modal systems. Sec. 3.2 presents default
deducibility. Sec. 4 provides our algebraic characterization of defaults and exten-
sions, and a completeness theorem. In Sec. 4 we discuss default modal systems
from a dynamic logic perspective. In Sec. 5 we o�er some �nal remarks.

2 Background

2.1 Boolean Algebra in a Nutshell

We introduce some de�nitions and notation for Boolean algebras (see, e.g., [13]
for details).

De�nition 1. A Boolean Algebra (BA) is a structure A = 〈A, ∗,−, 1〉 satis-
fying a well-known set of equations. A is also denoted as |A|. Occasionally, we
consider operations + and 0 de�ned as a+ b = −(−a ∗ −b), and 0 = −1.

De�nition 2. Every BA A brings in a partial order �A de�ned as x �A y
i� x = x ∗ y (sometimes we omit the subindex A and write just �). We write
↑X = { y | there is x ∈ X s.t. x � y }. A �lter is a non-empty subset F ⊆ |A|
s.t.: F = ↑F and for all x, y ∈ F , (x ∗ y) ∈ F . A �lter is principal if it is of the
form ↑{a} for a ∈ |A|. A �lter F is proper if 0 /∈ F .
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2.2 Modal Systems

We begin by making precise the set Form of well formed formulas we work with.

De�nition 3. Let Prop = { pi | i ∈ N } be a denumerable set of proposition
symbols; the set Form of well formed formulas (w�s, or simply formulas) is
determined by the grammar

ϕ,ψ ::= pi | > | ¬ϕ | ϕ ∧ ψ | 2ϕ | u2ϕ.

We use ⊥, ϕ ∨ ψ, ϕ → ψ, ϕ↔ ψ, 3ϕ and u3ϕ as abbreviations de�ned in the
usual way.

The set Form can be seen as an enrichment of the basic modal language with
the universal modality u2. We use the universal modality as a technical tool to
internalize a global consequence relation.

A modal system is determined by a subset of Form, called axioms, and the
rules of inference in Def. 4.

De�nition 4. The set of rules of inference of a modal system consists of

ϕ ϕ→ ψ

ψ
(mp)

ϕ
u2ϕ (u).

The modal system K u2 is determined by the axioms in Def. 5.

De�nition 5. The axioms of K u2 is the smallest set of formulas which contains
all instances of propositional tautologies and the schemas:

1. 2(ϕ→ ψ)→ (2ϕ→ 2ψ); 3. u2ϕ→ ϕ; 5. u2ϕ→ u2 u2ϕ;
2. u2(ϕ→ ψ)→ ( u2ϕ→ u2ψ); 4. ϕ→ u2 u3ϕ; 6. u2ϕ→ 2ϕ.

We take K u2 as our basic modal system. The rest of the modal systems we
consider are constructed by enlarging the set of axioms of K u2 with (all instances
of) any of the schemas below, or any combination thereof, as additional axioms.

(4) 2ϕ→ 22ϕ (5) 3ϕ→ 23ϕ (B) ϕ→ 23ϕ (D) 2ϕ→ 3ϕ (T) 2ϕ→ ϕ

E.g., the system D u2 is obtained by adding to the axioms of K u2 all instances of
the schema D as further axioms. Similarly, the systems S4

u2 and S5
u2 are obtained

by adding the schemas T and 4, and T and 5, respectively.
For each modal system M, we de�ne a consequence relation `M between sets

of formulas and formulas. This relation is made precise in Def. 6.

De�nition 6. Let M be a modal system; an M-deduction of ϕ from Φ is a �nite
sequence ψ1 . . . ψn of formulas such that ψn = ϕ, and for each k < n at least
one of the following conditions hold:

1. ψk is an axiom of M;
2. ψk is a premiss, i.e., ψk ∈ Φ;
3. ψk is obtained from two earlier formulas using mp, i.e., there are i, j < k

s.t. ψj = ψi → ψk;
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4. ψk is obtained from an earlier formula using u, i.e., there is j < k s.t.
ψk = u2ψj.

We write Φ `M ϕ i� there is an M-deduction of ϕ from Φ. The relation `M is
commonly referred to as global consequence.

If there is no need to distinguish between modal systems, we simply speak
of a relation ` and of a deduction.

We end this section by taking note of the following properties of `M. Notice
that the �rst item refers to the necessitation property in modal logics, whereas
the second item refers to a version of the deduction theorem.

Proposition 1. The following properties hold:

1. If `M ϕ, then, `M 2ϕ.
2. If Φ ∪ {ϕ} `M ψ, then, Φ `M u2ϕ→ ψ.

2.3 Algebraizing Modal Systems

We present the semantics of a modal system from an algebraic perspective.
Following [28], and borrowing ideas and results from [12,14], we associate with
any modal systemM a suitable class of algebras in a way such that the properties
of M are in correspondence to the properties of this class.

For the case of the modal systems we consider we will use u2-modal algebras.
We use this algebraic treatment of modal systems to perform default reasoning
from a semantic point of view. This algebraic treatment is also instrumental
to viewing default reasoning as a logic of updates over algebras. But this is us
getting ahead of ourselves. For now, we focus on introducing some basic concepts
and results regarding u2-modal algebras.

De�nition 7. The formula algebra corresponding to the set Form of formulas
is the structure F = 〈Form,∧,¬,>,2, u2〉 where: ¬, 2, u2 are unary functions
on Form, and ∧ is a binary function on Form, such that ¬ applied to ϕ ∈ Form
returns ¬ϕ ∈ Form, 2 applied to ϕ ∈ Form returns 2ϕ ∈ Form, u2 applied to ϕ ∈
Form returns u2ϕ ∈ Form, and ∧ applied to ϕ,ψ ∈ Form returns ϕ ∧ ψ ∈ Form.

Just as Boolean algebras (as interpretation structures) and �lters (as the
semantic counterpart of deducibility) are fundamental for the algebraization of
Classical Propositional Logic, u2-modal algebras and open �lters are fundamental
for the algebraization of modal systems.

De�nition 8. A u2-modal algebra is a structure M = 〈B, ∗,−, 1, f2, f u2〉 where:
〈B, ∗,−, 1〉 is a Boolean algebra; and f2 and f u2 are unary functions on B sat-
isfying the following equations

f2(1) = 1 f u2(b1) 4 b1
f2(b1 ∗ b2) = f2(b1) ∗ f2(b2) f u2(b1) 4 f u2(−f u2(−b1))

f u2(1) = 1 f u2(b1) 4 f u2f u2(b1)

f u2(b1 ∗ b2) = f u2(b1) ∗ f u2(b2) f u2(b1) 4 f2(b1).
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An open �lter is a subset F ⊆ B such that F is a �lter in 〈B, ∗,−, 1〉, and for
all b ∈ F , f u2(b) ∈ F .

De�nition 9. An interpretation of the formula algebra F on a u2-modal algebra
M = 〈B, ∗,−, 0, f2, f u2〉, a.k.a. an interpretation on M, is a homomorphism
v : F→M such that:

v(>) = 1 v(¬ϕ) = −v(ϕ) v(2ϕ) = f2(v(ϕ))

v(ϕ ∧ ψ) = v(ϕ) ∗ v(ψ) v( u2ϕ) = f u2(v(ϕ)).

Proposition 2. Every interpretation v on M is uniquely determined by an as-
signment v0 : Prop→ |M|.

De�nition 10. Let M be a u2-modal algebra; we de�ne:

1. an equation is a member of Form2; we write an equation (ϕ,ψ) as ϕ ≈ ψ;
2. an equation ϕ ≈ ψ is valid under an interpretation v on M i� v(ϕ) = v(ψ);

we write M, v � ϕ ≈ ψ if ϕ ≈ ψ is valid under v;
3. an equation ϕ ≈ ψ is valid in M i� M, v � ϕ ≈ ψ for all interpretations v

on M; we write M � ϕ ≈ ψ if ϕ ≈ ψ is valid in v.

We are now in a position to connect u2-modal algebras and modal systems.

Proposition 3. Let M be a modal system; the relation ∼=Φ
M de�ned as: ϕ ∼=Φ

M ψ
i� Φ `M ϕ↔ ψ yields a congruence on F.

De�nition 11. Let M be a modal system; the M-Lindenbaum-Tarski algebra of
a set Φ of w�s is the structure LΦM = 〈Form/∼=Φ

M
, ∗∼=Φ

M
,−∼=Φ

M
, 1∼=Φ

M
, f2
∼=Φ

M
, f u2
∼=Φ

M
〉 where:

Form/∼=Φ
M

= { [ϕ]∼=Φ
M
| ϕ ∈ Form }; and

1∼=Φ
M

= [>]∼=Φ
M

−∼=Φ
M

([ϕ]∼=Φ
M

) = [¬ϕ]∼=Φ
M

f2
∼=Φ

M
([ϕ]∼=Φ

M
) = [2ϕ]∼=Φ

M

[ϕ]∼=Φ
M
∗∼=Φ

M
[ψ]∼=Φ

M
= [ϕ ∧ ψ]∼=Φ

M
f u2
∼=Φ

M
([ϕ]∼=Φ

M
) = [ u2ϕ]∼=Φ

M
.

The canonical interpretation v on LΦM is de�ned as v(ϕ) = [ϕ]∼=Φ
M
.

Proposition 4. Every M-Lindenbaum-Tarski algebra is a u2-modal algebra.

Theorem 1. For every modal system M, Φ `M ϕ i� LΦM � ϕ ≈ >.

The algebraic completeness of a modal system M w.r.t. a corresponding sub-
class of u2-modal algebras is obtained as a corollary of Thm. 1. In other words, an
M-Lindenbaum-Tarski u2-modal algebra acts as an `algebraic canonical model' for
a set of formulas in the modal system M, i.e., they provide a witness for Φ 6`M ϕ.
We make full use of M-Lindenbaum-Tarski u2-modal algebras in Sec. 3.3.

3 Default Modal Logic

In this section we integrate the elements of Default Logic, defaults and exten-
sions, into modal systems. This integration yields what we call a default modal
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system. For each default modal system, we introduce an associated notion of de-
fault consequence and show how defaults interact with the rules of the Hilbert-
style notion of deduction for the underlying modal system. Moreover, we present
how a default modal system can be viewed from an algebraic perspective, and
prove a completeness result using algebraic tools. Later on, we discuss how the
algebraic treatment of default modal systems can be seen as an update opera-
tion on algebraic structures. This opens up the door to thinking about default
systems from a dynamic logic perspective (akin to public announcements).

3.1 Default Modal Systems

The main elements of Default Logic, i.e., defaults and extensions, are given in
Defs. 12 and 13, respectively. These de�nitions are adapted from [21]. For the
rest of this section we assume that M is an arbitrary but �xed modal system.

De�nition 12. A default is a triple (π, ρ, χ) of formulas written as π : ρ / χ.
The formulas π, ρ, and χ, are called prerequisite, justi�cation, and consequent.

De�nition 13. Let Φ be a set of formulas and ∆ a set of defaults. Let EΦ∆M be a
function s.t. for all sets of formulas Ψ , EΦ∆M(Ψ) is the ⊆-smallest set of formulas
which satis�es:

(a) Φ ⊆ EΦ∆M(Ψ);

(b) EΦ∆M(Ψ) = {ψ | EΦ∆M(Ψ) `M ψ };
(c) for all π : ρ / χ ∈ ∆, if π ∈ EΦ∆M(Ψ) and ¬ρ /∈ Ψ , then, χ ∈ EΦ∆M(Ψ).

A set Ε ⊆ Form is an M-extension of Φ under ∆ i� it is a �xed point of EΦ∆,
i.e., i� Ε = EΦ∆(Ε). We write E Φ

∆M for the set of all M-extensions of Φ under ∆.

Intuitively, an M-extension can be thought of as a set of formulas which
contains Φ, is closed under `M, and is saturated under the application of the
defaults in ∆. When it can be clearly understood from the context, we will drop
the pre�x M and refer to an M-extension as an extension.

In the literature on Default Logic, defaults are intuitively understood as de-
feasible rules of inference, i.e., rules of inference whose conclusions are subject to
annulment, or rules which allow us to �jump� to conclusions. In turn, extensions
are intuitively understood as sets of formulas closed under the application of de-
faults. The next two examples illustrate two properties of extensions: multiplicity
and absence of extensions.

Example 1. Let Φ = {3p} and ∆ = {3p : 3¬p / 3¬p,3p : 2p / 2p}; the set
E Φ
∆M of extensions of Φ under ∆ consists of exactly two extensions: (1) the set
Ε1 = {ϕ | {3p,3¬p} `M ϕ }; and (2) the set Ε2 = {ϕ | {3p,2p} `M ϕ }.

Each of the extensions in Ex. 1 corresponds to the application of each default
in ∆. Once one default has been applied, the application of the other one is
blocked. This example illustrates how to handle contradictory information.
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Example 2. Let Φ = {3p} and ∆ = {3p : 3q / 2¬q}; the set E Φ
∆M of extensions

of Φ under ∆ is empty, i.e., E Φ
∆M = ∅, i.e., there are no extensions of Φ under ∆.

Ex. 2 highlights a subtletly in thinking of extensions as being constructed by
the successive application of defaults: applying a default may result in its own
annulment. To make this point clear, w.l.o.g., notice that plausible candidates for
extensions are: the set Ε1 = {ϕ | {3p} `M ϕ } (i.e., not applying the default); or
the set Ε2 = {ϕ | {3p,2¬q} `M ϕ } (i.e., result of applying the default to Ε1).
Neither of these sets is a �xed point of EΦ∆, i.e., E

Φ
∆(Ε1) = Ε2 and EΦ∆(Ε2) = Ε1.

This results in E Φ
∆M = ∅.

We are now in a position to de�ne what we mean by a default modal system.
This de�nition arises as a natural construction over a modal system M.

De�nition 14. A default modal system is a tuple ∆M = 〈∆,M〉 where ∆ is a
set of defaults and M is a modal system.

In analogy with the case in modal systems, we associate with each default
modal system ∆M a relation ‖∼∆M between sets of formulas and formulas. This
relation is based on the relation `M and it can be understood as its default
version. This is made clear in Def. 15.

De�nition 15. Let ∆M be a default modal system; de�ne

Φ ‖∼∆M ϕ i� ϕ ∈ Ε for some Ε ∈ E Φ
∆M.

We use ‖∼∆M ϕ as a shorthand for ∅ ‖∼∆M ϕ. The relation ‖∼∆M is called
credulous in the literature on Default Logic, because the existence of just one
extension is enough to grant the inference (see [2]). The principle of monotonicity
fails for ‖∼∆M. In other words: it is not necessarily the case that if Φ ‖∼∆M ϕ,
then Φ ∪ Ψ ‖∼∆M ϕ (for an arbitrary Ψ).

Building the relation ‖∼∆M on the underlying relation `M raises the question
of which properties of `M are preserved at the level of ‖∼∆M. Def. 16 sets a basis
on which to start answering this question.

De�nition 16. The relation ‖∼∆M interprets `M i� if Φ `M ϕ then Φ ‖∼∆M ϕ.

Interpretability seems to be a natural requirement on ‖∼∆M. However, as
established in Ex. 2 (which shows that sometimes extensions do not exist) this
property fails to hold in general. To overcome this problem we can go down two
possible paths: (i) modify Def. 13 to guarantee the existence of extensions; or (ii)
single out defaults for which extensions are guaranteed to exist. Among the most
popular modi�cations of Def. 13 which guarantee the existence of extensions we
have: justi�ed extensions (see [17]); and constrained extensions (see [6]). For
option (ii), we have the set of well-behaved5 defaults as a very large and natural
set which guarantees the existence of extensions (see [21]). Going down path
(i) overburdens the de�nition of an extension with additional machinery which

5 In the literature on Default Logic well-behaved defaults are called normal. We avoid
using this terminology here to avoid any confusion with normality in Modal Logic.
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departs from the purposes of our work here. For this reason, we choose to go down
path (ii); i.e., we restrict ourselves to well-behaved defaults. Interestingly, the
notions of extensions, justi�ed extensions, and constrained extensions, coincide
for well-behaved defaults (see [11,5]).

De�nition 17. A default π : ρ / χ is well-behaved, written π/χ, i� ρ = χ. A
set of defaults ∆ is well-behaved i� all defaults in ∆ are well-behaved. A default
modal system ∆M is well-behaved i� ∆ is well-behaved.

Proposition 5. Let ∆M be a default modal system; if ∆M is well-behaved, then,
‖∼∆M interprets `M.

We conclude this section by drawing attention to an interesting point regard-
ing necessitation in default modal systems in Prop. 6 (cf. item 1 in Prop. 1).

Proposition 6. If ‖∼∆M ϕ, then ‖∼∆M 2ϕ.

Proof. Suppose that ‖∼∆M ϕ; by de�nition, there is an M-extension Ε ∈ E Φ
∆M s.t.

Ε `M ϕ. It follows that Ε `M 2ϕ. Thus, ‖∼∆M 2ϕ.

The analogous to item 2 in Prop. 1, a form of the deduction theorem, i.e., if
Φ ∪ {ϕ} ‖∼∆M ψ, then, Φ ‖∼∆M u2ϕ→ ψ fails to hold for an arbitrary ∆M (even
with the presense of u2).

3.2 Deducibility in Default Modal Systems

We formulate a notion of ∆M-deduction for an arbitrary but �xed well-behaved
default modal system ∆M. This notion of a ∆M-deduction extends that of an
M-deduction by incorporating defaults in a natural way.

De�nition 18. A ∆M-deduction of ϕ from Φ is a �nite sequence ψ1 . . . ψn of
formulas s.t. ψn = ϕ, and for each k < n at least one of the following conditions
hold:

1. ψk is an axiom of M;
2. ψk is a premiss, i.e., ψk ∈ Φ;
3. ψk is obtained from two earlier formulas using mp, i.e., there are i, j < k

s.t. ψj = ψi → ψk;
4. ψk is obtained from an earlier formula using u, i.e., there is j < k s.t.

ψk = u2ψj.
5. ψk is obtained from an earlier formula using ∆-detachment, i.e., there is

j < k s.t. ψj/ψk ∈ ∆;

A ∆M-deduction is credulous whenever:

(Φ ∪ {ψi | 1 ≤ i ≤ n }) `M ⊥ i� Φ `M ⊥. (1)

We de�ne Φ |∼∆M ϕ i� there is a credulous ∆M-deduction of ϕ from Φ.



10 Cassano, Fervari, Areces and Castro

The notion of a credulous ∆M-deduction extends the notion of M-deduction
with a rule of default detachment and the condition of being credulous. The
rule of default detachment shows how defaults interact with the rules of the
underlying proof system. The condition of being credulous in Eq. (1) captures
the fact that defaults cannot be a source of inconsistency. Intuitively, a credulous
∆M-deduction of ϕ from Φ internalizes the construction of (part of) an extension
containing ϕ together with the M-deduction which witnesses this containment.
This is made precise in the following result.

Theorem 2. Φ |∼∆M ϕ i� Φ ‖∼∆M ϕ.

3.3 Towards an Algebraic Treatment of Default Modal Systems

We turn now our attention to a characterization of defaults and extensions by
means of Lindenbaum-Tarski u2-modal algebras. This algebraic treatment of de-
faults and extensions reveals how default modal systems may be thought of as up-
dates on u2-modal algebras. For the rest of this section, we assume that ∆M is an
arbitrary but �xed well-behaved default modal system. We use L to indicate the
class of Lindenbaum-Tarski u2-modal algebras of M, i.e., L = {LΦM | Φ ⊆ Form }.
We drop the sub-indexM and use Φ instead of ∼=Φ

M as a way of further simplifying
the notation. We construct this section around the following de�nition.

De�nition 19. Let δ = π/χ ∈ ∆; the function δ̂ : L→ L is de�ned as:

δ̂(LΦ) =

{
LΦ∪{χ} if [π]Φ = 1Φ and 0Φ /∈ ↑{[ u2χ]Φ}

LΦ otherwise.

(2a)

(2b)

Def. 19 is the algebraic counterpart of the application of a default w.r.t. a
set of sentences. More precisely, δ = π/χ is applicable w.r.t. a set Φ satisfying
Φ = {ϕ | Φ ` ϕ } if: (a) π ∈ Φ; and (b) Φ ∪ {χ} 6` ⊥. Applying the default
δ results in {ϕ | Φ ∪ {χ} ` ϕ }. On the algebraic side, we capture the appli-
cation of a default as a transformation between Lindenbaum-Tarski u2-modal
algebras. More precisely, consider the Lindenbaum-Tarski u2-modal algebra for
Φ, i.e., LΦ. The condition (a) of applicability of δ = π/χ w.r.t. LΦ is captured
in (2a) as [π]Φ = 1Φ; and the condition (b) of applicability is captured in (2a)
as 0Φ /∈ ↑{[ u2χ]Φ}. In other words, the equivalence class of 1Φ captures the de-
ducibility of π from Φ, i.e., π ∈ Φ, alt., Φ ` π. In turn, the condition of being
proper on the (open) �lter generated by [ u2χ]Φ captures the consistency of χ
w.r.t. Φ, i.e., Φ ∪ {χ} 6` ⊥. Notice that if the default is applicable, the return

value of δ̂ incorporates χ to LΦ, i.e., it results in LΦ∪{χ}. Otherwise, δ̂ has no
e�ect on LΦ. When seen in this light, the operator δ̂ performs an update re-
�ecting the application of δ on its input. The situation with δ̂ is similar to the
case in dynamic logics such as Public Announcement Logic [20] (in particular,
in relation to the approach proposed in [18]). We retake this discussion in Sec. 4.

Having dealt with defaults we turn our attention to extensions. For well-
behaved defaults, extensions can be seen as being constructed in a step-wise
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fashion applying defaults one at a time. From a syntactic perspective, this con-
struction of an extension starts with a closed set Φ, and applies the defaults
δ ∈ ∆ one by one until we obtain a closed set of formulas that is saturated under
the application of defaults. From the perspective of Lindenbaum-Tarski u2-modal
algebras we obtain the following.

Proposition 7. Each function δ̂ induces a function δ̄ : |L| → |δ̂(L)| de�ned as:
δ̄([ϕ]Φ) = [ϕ]Φ∪{χ} if Eq. (2a) holds; or δ̄([ϕ]Φ) = [ϕ]Φ if Eq. (2b) holds. The

function δ̄ is a homomorphism from L to δ̂(L).

Proof. That δ̄ is a function is trivial. The proof that δ̄ is a homomorphism is by
cases. If Eq. (2b) holds, then, the result is obtained immediately. Otherwise:

δ̄(f2
Φ ([ϕ]Φ)) = δ̄([2ϕ]Φ) = [2ϕ]Φ∪{χ} = f2

Φ∪{χ}([ϕ]Φ∪{χ}) = f2
Φ∪{χ}(δ̄([ϕ]Φ)).

The remaining cases are similar.

The following are some immediate properties of default operators.

De�nition 20. Let L1,L2 ∈ L; we write L1 ≤ L2 i� there is a homomorphism
h : L1 → L2; and L1 < L2 i� L1 ≤ L2 and L1, L2 are not isomorphic.

Proposition 8. Every δ̂ is extensive and idempotent, i.e., it satis�es L ≤ δ̂(L)

and δ̂(L) = δ̂(δ̂(L)), resp. An arbitrary δ̂ needs not satisfy monotonicity, i.e.,

there are δ = π/χ s.t. L1 ≤ L2 and δ̂(L1) � δ̂(L2).

Proof. Extensivity follows from Prop. 7. Idempotence is proven by cases. If
Eq. (2b) holds, then, the result is obtained immediately. Otherwise, Eq. (2a)

holds. In this case, δ̂(LΦ) = LΦ∪{χ}. Trivially, δ̂(LΦ∪{χ}) = LΦ∪{χ}. For a

counter-example to monotonicity consider L∅K u2 and L
{2p}
K u2 , and δ = >/3¬p.

The set ∆ of defaults leads naturally to a set { δ̂ : L→ L | δ ∈ ∆ }. Each
δ̂ in this set can be seen as �taking a step� in the construction of the algebraic
counterpart of an extension. To carry out this construction, we would need to
compose such steps. This leads to the formulation of Def. 21.

De�nition 21. The default monoid associated to ∆M is the monoid D∗ freely
generated by { δ̂ | δ ∈ ∆ }, i.e., D∗ = 〈D,−;−, id〉 where:

1. D is the ⊆-smallest set s.t.: { δ̂ : L→ L | δ ∈ ∆ } ⊆ D; id : L→ L ∈ D; and
if {d1 : L→ L, d2 : L→ L} ⊆ D, then (d1;d2) : L→ L ∈ D;

2. id and −;− satisfy: id(L) = L; and (d1;d2)(L) = d2(d1(L)).

Proposition 9. Every d ∈ |D∗| is either: the identity, i.e., d = id; or a compo-

sition of the form d = (δ̂1; . . . ;δ̂n), where δi ∈ ∆.

We de�ne id([ϕ]Φ) = [ϕ]Φ; and (δ̂1; . . . ;δ̂n) = (δ̄1; . . . ;δ̄n).
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De�nition 22. Let L be a Lindenbaum-Tarski u2-modal algebra in L, and v be
an assignment on L; for an equation ϕ ≈ ψ, de�ne:

D∗,L, v |≈ ϕ ≈ ψ i� d(L), (v;d̄) � ϕ ≈ ψ for some d ∈ |D∗|.

We write D∗,L |≈ ϕ ≈ ψ i� D∗,L, v |≈ ϕ ≈ ψ for all assignments v.

Intuitively, the Lindenbaum-Tarski u2-modal algebra d(L) in Def. 22 is the al-
gebraic counterpart of the concept of an extension. This is made clear in Thm. 3.

Theorem 3. Φ |∼ ϕ i� D∗,LΦ |≈ ϕ ≈ >.

Proof. The interesting part is the right-to-left implication: if D∗,LΦ |≈ ϕ ≈ >,
then, Φ |∼ ϕ. We prove the contrapositive: if Φ 6|∼ ϕ, then, D∗,LΦ 6|≈ ϕ ≈ >. Let
Φ 6|∼ ϕ, the proof is concluded if for all d ∈ |D∗|, d(LΦ) 6� ϕ ≈ >. We continue
by induction on d. Let d = id; we must have id(LΦ) 6� ϕ ≈ >; otherwise we
would obtain Φ ` ϕ (from Thm. 1); and so that Φ |∼ ϕ (which contradicts our

assumption). For the next case, let d = δ̂ for δ = π/χ ∈ ∆; either Eq. (2b) holds

or Eq. (2a) holds. If Eq. (2b) holds, δ̂ behaves like id (and we are back to the

previous case). If Eq. (2a) holds, δ̂(LΦ) = LΦ∪{χ}. Assuming (i) LΦ∪{χ} � ϕ ≈ >
leads to a contradiction. More precisely, if Eq. (2a) holds, from Thm. 1, we
obtain Φ ` π and Φ ∪ {χ} 6` ⊥. From (i) and Thm. 1, we obtain Φ ∪ {χ} ` ϕ.
If we place the M-deduction of π from Φ in front of the M-deduction of ϕ from
Φ∪{χ}, we obtain Φ |∼ ϕ. This yields the contradiction. For the inductive step, let
d = (δ̂1; . . . ;δ̂n;δ̂(n+1)). Suppose that (δ̂1; . . . ;δ̂n)(LΦ) = LΦ

′
. From the inductive

hypothesis, we obtain LΦ
′ 6� ϕ ≈ >. Assuming that δ̂(n+1)(L

Φ′
) � ϕ ≈ ψ leads

to a contradiction using the same argument as in (i).

We conclude this section by taking some steps beyond dealing with defaults
and extensions in the context of Lindenbaum-Tarski u2-modal algebras. In par-
ticular, we show how some of the constructions used in Sec. 3.3 can be extended
to a more abstract setting via suitable congruences.

De�nition 23. Let LΦ be a Lindenbaum-Tarski u2-modal algebra and χ a for-
mula; de�ne [ϕ1]Φ ≡χ [ϕ2]Φ i� [ϕ1]Φ ∗Φ [ u2χ]Φ = [ϕ2]Φ ∗Φ [ u2χ]Φ.

Def. 23 is a step towards treating the application of default as a device for
obtaining a u2-modal algebraM updated by the element [χ]Φ in LΦ. The updated
u2-modal algebra M is meant to be obtained as a quotient algebra modulo the
congruence ≡χ. Prop. 10 shows that ≡χ indeed is a congruence.

Proposition 10. The relation ≡χ is a congruence on LΦ.

Proof. That ≡χ is an equivalence relation is immediate. To improve notation
we drop the subscript Φ. We need to show that: if [ϕ1] ≡χ [ϕ2] and [ϕ3] ≡χ
[ϕ4], then, [ϕ1] ∗ [ϕ3] ≡χ [ϕ2] ∗ [ϕ4]; −[ϕ1] ≡χ −[ϕ2]; f2([ϕ1]) ≡χ f2([ϕ2]); and
f u2([ϕ1]) ≡χ f u2([ϕ2]). The proof continues by cases (we only show the cases f2

and f u2, the rest are routine):
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f2([ϕ1]) ∗ [ u2χ]

≥ f2([ϕ1] ∗ [ u2χ]) ∗ [ u2χ]

= f2([ϕ2] ∗ [ u2χ]) ∗ [ u2χ]

= f2([ϕ2]) ∗ (f2([ u2χ]) ∗ [ u2χ])

≥ f2([ϕ2]) ∗ [ u2χ]

f u2([ϕ1]) ∗ [ u2χ]

= f u2([ϕ1]) ∗ [ u2 u2χ]

= f u2([ϕ1]) ∗ f u2([ u2χ])

= f u2([ϕ1] ∗ [ u2χ])

= f u2([ϕ2] ∗ [ u2χ])

= f u2([ϕ2]) ∗ f u2([ u2χ])

= f u2([ϕ2]) ∗ [ u2 u2χ]

= f u2([ϕ2]) ∗ [ u2χ].

Proposition 11. The quotient algebra LΦ/≡χ is isomorphic to LΦ∪{χ}.

Proof (sketch). Observe that Φ ∪ {χ} ` (ϕ1 ↔ ϕ2) i� Φ ` (ϕ1 ∧ u2χ↔ ϕ2 ∧ u2χ).
The isomorphism between LΦ/≡χ

and LΦ∪{χ} is given by mappings ι1 and ι2
de�ned as: ι1([[ϕ]Φ]≡χ

) = [ϕ]Φ∪{χ}; and ι2([ϕ]Φ∪{χ}) = [[ϕ]Φ]≡χ
.

The isomorphism in Prop. 11 shows that the relation ≡χ yields the �correct�
congruence if the application of a default is to be seen as an update on a u2-
modal algebra. Moreover, it is possible to de�ne a function ε : LΦ/≡χ → LΦ

de�ned by ε([[ϕ]Φ]≡χ) = [ϕ]Φ ∗Φ [χ]Φ. The image of ε is also isomorphic to

LΦ∪{χ}. The results discussed in this paragraph open a pathway on how to lift
the constructions in Defs. 19 and 21 to the setting of arbitrary u2-modal algebras.

4 On Defaults as Model Updates

We are now in a position to establish a connection between our algebraic ap-
proach for default modal systems and the algebraic treatment of Public An-
nouncement Logic (PAL) in [18]. To set up context for discussion, we brie�y
introduce some basic notions of PAL (see, e.g., [20] for details). As a modal logic,
PAL extends the modal logic S5 (seen as the logic of knowledge) with a new
modality 〈!ψ〉 of announcement. Intuitively, a formula 〈!ψ〉ϕ states that after
the truthful announcement of ψ, ϕ holds. Model theoretically, the interpretation
of announcing ψ relativizes the model in which ψ is announced to the submodel
in which ψ holds. The formula ϕ is then evaluated on the relativized model. It
is important to remark that the announcement of ψ must be truthful: it occurs
only if ψ is true. Otherwise, the announcement fails and 〈!ψ〉ϕ evaluates to false.

There are some interesting similarities between announcements in PAL and
defaults. From an algebraic perspective, an announcement may be understood as
a homomorphism between the modal algebra in which the announcement occurs
and the modal algebra corresponding to the submodel in which the announced
formula holds. The algebraic machinery introduced in Sec. 3.3 sets the basis for
thinking about the application of defaults as a logic of updates between par-
ticular modal algebras (Lindenbaum-Tarski u2-modal algebras). In other words,
we may construe the algebraic semantics of a default as an update from the
Lindenbaum-Tarski u2-modal algebra in which the default is considered, and the
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one updated with the consequent of the default (if the default is applicable).
Notice that a default update takes place only if the prerequisite of the default
is provable and its justi�cation does not yield an inconsistency. The situation
here is similar to the case of announcements, where the update takes place only
if the formula being announced is true. In both cases, that of an announcement
and that of the algebraic application of a default, the update is captured by a
homomorphism from the original modal algebra to an updated modal algebra
(obtained as a quotient construction). There is, however, subtle di�erence be-
tween announcements and defaults: if the announcement of ψ is not truthful
the whole formula 〈!ψ〉ϕ amounts to a falsity; whereas if the prerequisite of a
default is not provable, or its justi�cation is inconsistent in the modal algebra,
the application of the default has no e�ect.

The similarities between announcements in PAL and defaults are even more
apparent when contrasted with the proposal presented in [18]. This proposal
exploits the duality between models and algebras in order to algebraize PAL. In
particular, in [18], a formula ψ is interpreted as an element b in an S5 modal
algebra M = 〈B, ∗,−, f2〉. The result of announcing this formula is a modal
algebra constructed as a quotient modulo a congruence ≡b de�ned as b1 ≡b b2 i�
b1 ∗ b = b2 ∗ b. This congruence bears a close resemblance to the one we presented
in Sec. 3.3. The main di�erence between this congruence and ours rests on the
fact that the former is presented in the setting of S5, whereas ours is presented
in a setting where global modal consequence is taken as the basis on which to
build default modal systems. This said, the approach in [18] is more abstract
than ours; since it considers arbitrary modal algebras and not just Lindenbaum-
Tarski modal algebras.

The discussion above o�ers only some �rst steps in understanding the rela-
tionship between defaults and updates: both in terms of a full algebraization of
default modal systems, and in terms of establishing a tight connection with logics
of updates. In working towards a full algebraization of default modal systems,
we would like to interpret the application of a default over arbitrary modal alge-
bras, and not only as an update over Lindenbaum-Tarski u2-modal algebras. In
this regard, the main challenge is how to generalize the way in which we capture
the application of one default to the application of a sequence of defaults needed
to build an extension. Moreover, it would also be interesting to know whether it
is possible to develop a class of algebraic structures for default modal systems
parallel to the class of modal algebras for modal systems. This would require
an internalization of defaults as algebraic operators. In turn, in what refers to
establishing a tight connection with logics of updates, it would be interesting to
be able to prove a reduction result between a default modal system and a logic
of announcement (or establishing a di�erence in expressive power between one
and the other). In this case, the challenge is deciding on an adequate logic of
announcement and in �nding whether it is possible to faithfully translate the
application of a default as a form of update in this logic. Finally, upon de�ning
the semantics of defaults as updates, we would like to study defaults as dynamic
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epistemic operators. In particular, we would like to explore whether defaults can
be used to represent some novel form of communication in a multi-agent setting.

5 Final Remarks

We presented a family of default logics built over modal logics and studied some
properties.

First, we presented default logics syntactically as a default modal system.
For each default modal system we formulated a notion of default deducibility
to make explicit how defaults interact with the rules of the underlying proof
calculus. Then, we o�ered an algebraic treatment of defaults and extensions.
The algebraic treatment enabled us to obtain an algebraic completeness result.
To our knowledge, this is the �rst work addressing default logic algebraically.

Moreover, we discussed a connection between default modal systems and
modal logics with updates. In particular, our algebraic treatment of defaults
is inspired by the ideas introduced in [18] for PAL. We believe that considering
default modal systems as logics of updates is an interesting pathway to the study
of the meta-logical properties of such systems from a semantic perspective.
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