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Abstract. In this paper we introduce sound and strongly complete axiomatizations for
XPath with data constraints extended with hybrid operators. First, we present HXPath=,
a multi-modal version of XPath with data, extended with nominals and the hybrid operator
@. Then, we introduce an axiomatic system for HXPath=, and we prove it is strongly
complete with respect to the class of abstract data models, i.e., data models in which data
values are abstracted as equivalence relations. We prove a general completeness result
similar to the one presented in, e.g., [BtC06], that ensures that certain extensions of the
axiomatic system we introduce are also complete. The axiomatic systems that can be
obtained in this way cover a large family of hybrid XPath languages over different classes of
frames, for which we present concrete examples. In addition, we investigate axiomatizations
over the class of tree models, structures widely used in practice. We show that a strongly
complete, finitary, first-order axiomatization of hybrid XPath over trees does not exist,
and we propose two alternatives to deal with this issue. We finally introduce filtrations to
investigate the status of decidability of the satisfiability problem for these languages.

1. XPath as a Modal Logic with Data Tests

XPath is, arguably, the most widely used query language for the eXtensible Markup Language
(XML). Indeed, XPath is implemented in XSLT [Wad00] and XQuery [Wor02] and it is used in
many specification and update languages (e.g., Saxon). It is, fundamentally, a general purpose
language for addressing, searching, and matching pieces of an XML document. It is an open
standard and constitutes a World Wide Web Consortium (W3C) Recommendation [CD99].
In [KRV15] XPath is adapted to be used as a powerful query language over knowledge
bases. Core-XPath [GKP05] is the fragment of XPath 1.0 containing the navigational
behaviour of XPath. It can express properties of the underlying tree structure of the XML
document, such as the label (tag name) of a node, but it cannot express conditions on
the actual data contained in the attributes. In other words, it is essentially a classical
modal logic [BdRV01, BvBW06]. For instance the path expressions child, parent and
descendant-or-self are basically the modal operators ♦, ♦− and ♦∗ respectively.

Core-XPath has been well studied from a modal logic point of view. For instance, its
satisfiability problem is known to be decidable even in the presence of Document Type
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Definitions (DTDs) [Mar04, BFG08]. Moreover, it is known that it is equivalent, in terms of
expressive power, to first-order logic with two variables (FO2) over an appropriate signature
on trees [MdR05], and that it is strictly less expressive than Propositional Dynamic Logic
(PDL) with converse over trees [BK08]. Sound and complete axiomatizations for Core-XPath
have been introduced in [tCM09, tCLM10]. It has been argued that the study of XPath
from a modal logic point of view is not merely a theoretical challenge but it has also concrete
applications. For instance, by investigating the expressive power of XPath fragments it is
possible to determine if an integrity constraint can be simplified. Also, query containment
and query equivalence –two fundamental tasks in query optimization– can be reduced to the
satisfiability problem. In particular these results have direct impact on, e.g., security [FCG04],
type checking [MN07] and consistency of XML specifications [AFL02].

However, from a database perspective, Core-XPath falls short to define the most
important construct in a query language: the join. Without the ability to relate nodes based
on the actual data values of the attributes, the logic’s expressive power is inappropriate for
many applications. The extension of Core-XPath with (in)equality tests between attributes
of elements in an XML document is named Core-Data-XPath in [BMSS09]. Here, we will
call this logic XPath=. Models of XPath= are usually data trees which can be seen as
XML documents. A data tree is a tree whose nodes contain a label from a finite alphabet
and a data value from an infinite domain. From a modal logic perspective, these data
trees are a particular class of relational models. In recent years other data structures have
been considered, and XPath= has been used to query these structures. In particular, in
this article we consider arbitrary data graphs as models for XPath=. Data graphs are the
underlying mathematical structure in graph databases (see, e.g., [LV12, RWE13, AG08]) and
it is important to study the metalogical properties of languages to query this particular kind
of models (see, e.g., [LMV16, ABFF18]). In this respect, we focus on a variant of XPath=

which provides us with several interesting expressivity features.
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Figure 1: Example of a graph-structured database.

Figure 1 shows an example of a data graph, where we can see that edges carry labels
from a finite alphabet (such as “friends”), and whose nodes carry data values, usually
presented as a “key: value” pair, with key being a label from a finite alphabet (e.g., “Name”)
and value being a data value from an infinite domain (e.g., “Alice”).

One of the characteristic advantages of graph databases is that they directly exhibit the
topology of the data. Most of the approaches for querying these databases have focused on
exploring the topology of the underlying graph exclusively. However, little attention has
been paid to queries that check how the actual data contained in the graph nodes relates
with the topology. XPath= allows comparison of data values by equality or inequality, even
though it does not grant access to the concrete data values themselves.

The main characteristic of XPath= is to allow formulas of the form 〈α = β〉 and
〈α 6= β〉, where α, β are path expressions that navigate the graph using accessibility relations:
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successor, predecessor, and for the particular case of tree-like models, descendant, next-
sibling, etc.; and can make tests in intermediate nodes. In addition, in this work we consider
the novel ‘@’ navigation operator that allows us to jump to named nodes. The formula
〈α = β〉 (respectively 〈α 6= β〉) is true at a node x of a data graph if there are nodes y, z
that can be reached by paths satisfying the expressions α and β respectively, and such that
the data value of y is equal (respectively different) to the data value of z.

The benefits of having data comparisons is described in the following example. Consider
a social network which stores the information about the friendship relation between persons,
and also stores the date of birth of each individual in the network. This scene can be
represented as in Figure 1. Topological information is not sufficient to distinguish the Alice
on the left, A1 from the Alice on the right, A2 (formally, these two nodes are bisimilar for
the basic modal logic). However, the expression ‘the person that is friend of someone born
the same day” expressible in XPath=, is true only at A1.

Recent articles investigate XPath= from a modal perspective. For example, satisfiability
and evaluation are discussed in [Fig10, FS11, Fig12], while model theory and expressivity
are studied in [ADF14, FFA14, FFA15, ADF17, ABFF16, ABFF18]. Query power and
complexity of several XPath= fragments are investigated in [LMV16, Fig18]. In [BLS16], a
Gentzen-style sequent calculus is given for a very restricted fragment of XPath=, named
DataGL. In DataGL, data comparisons are allowed only between the evaluation point and
its successors. An extension of the equational axiomatic system from [tCLM10] is introduced
in [ADFF17], allowing downward navigation and equality/inequality tests.

In this article, we will focus on the proof theory of XPath= extended with hybrid
operators. It has been argued that the inclusion of hybrid operators in a modal language
leads to a better proof theory [Bra11]. In particular, it can lead to general completeness
results for axiomatizations by enabling Henkin style completeness proofs [BdRV01, BtC06].
Moreover, we will focus on strong completeness results (i.e., the axiomatizations we introduce
characterize the consequence relation Γ ` ϕ and not only theoremhood ` ϕ).

First results using hybridization techniques were introduced in [AF16] for a basic
axiomatic system for XPath=. In [AFS17] nominals are used as labels in a tableaux system.

Contribution. We will introduce a Hilbert-style axiomatization for XPath= with forward
navigation for multiple accessibility relations, multiple equality/inequality comparisons,
and where node expressions are extended with nominals (special labels that are valid in
only one node), and path expressions are extended with the hybrid operator @ (allowing
the navigation to some particular named node). We call this logic Hybrid XPath with
Data (denoted HXPath=). The language we consider is a variant of XPath fragments for
data graphs in the literature. It improves the expressive power of the fragment XPath=

from [ABFF16, ABFF18], e.g., by enabling us to express global properties. On the other
hand, it has similarities with the fragment GXPathcore(eq) from [LMV16]. GXPathcore(eq)
allows us to express data properties of nodes that are reachable in a finite number of steps,
due to the reflexive-transitive navigation on atomic steps. However, the hybrid operator
@ in HXPath= is enough to capture some of its expressivity by allowing us to ‘jump’ to
nodes that are not accessible in one step, or that are simply not connected with the current
node. One of the advantages of our approach, is that hybrid operators add only first-order
behaviour, whereas reflexive-transitive closure needs second-order expressivity.

We will take advantage of hybrid operators to prove completeness using a Henkin-style
model construction as presented in [Gol84, BdRV01, BtC06, SP10]. In fact, the use of the
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so-called unorthodox inference rules (i.e., inference rules involving side conditions) will help
us define an axiom system whose completeness can be automatically extended to more
expressive logics.

Summing up, our contributions in this article are the following:

• We define a sound and strongly complete axiomatic system for multi-modal HXPath=,
refining the axioms and rules first presented in [AF16].
• We give a Henkin-style completeness proof, proving that the system is strongly complete

for any extension given by pure axioms (formulas involving only nominals) and existential
rules (instantiations of first-order formulas with quantification pattern ∀∃ followed by an
HXPath=-formula). This gives us a strong completeness result with respect to a wide
variety of frame classes.
• Even though the main focus of our work is axiomatizing node expressions, we also provide

as a by-product strong completeness results for path expressions.
• We discuss concrete extensions of HXPath= in which completeness is automatically

obtained. In particular we explore backward and sibling navigation, and equality inclusion.
• We show that a strongly complete, finitary, first-order axiomatization of hybrid XPath

over trees does not exist. Then we introduce an infinite pure axiomatic system that is
strongly complete for a slightly larger class of tree models. We also prove that this system
is weakly complete over tree models. As a corollary of the method we use, we conclude
that the satisfiability problem for HXPath= on trees is decidable in ExpSpace.
• Finally, we prove that the satisfiability problem for the multi-modal logic HXPath= and

some of its pure extensions is decidable in NExpTime, using filtrations to establish a
bounded finite model property. To our knowledge, the best known lower bound can
be obtained by PSpace-hardness of mono-modal hybrid XPath with forward naviga-
tion [AFS17].

Related Work. It is argued in [BtC06] that hybrid logic is a natural setting for deductive
systems involving Kripke semantics. By having nominals in the language, it is possible
to imitate the role of first-order constants to obtain a Henkin-style completeness proof.
Moreover, hybrid operators provide all the necessary machinery to get general completeness
results for a wide variety of systems. The claim is that allowing the use of unorthodox
rules, we can define a basic axiomatic system that can be extended with pure axioms and
existential rules, which lets us obtain complete extensions with respect to diverse classes of
frames, automatically.

One of the first proof systems for data-aware fragments of XPath was introduced
in [BLS16]. It is a Gentzen-style system for a very restricted language named DataGL,
interpreted on finite data trees. In DataGL formulas of the form ♦=ϕ are read as: “the
current node has the same data as a descendant where ϕ holds”. They introduced a sound
and weakly complete sequent calculus for DataGL and established PSpace-completeness for
its validity problem.

An equational system which extends the one presented for navigational fragments of
XPath in [tCLM10] was introduced in [ADFF17]. The authors consider first the fragment of
XPath= without inequality tests, over data trees. Therein, the proof of weak completeness
relies on a normal form theorem for both node and path expressions, and on a canonical
model construction for consistent formulas in normal form inspired by [Fin75]. When
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inequality is also taken into account, similar ideas can be used but the canonical model
construction and the corresponding completeness proof become quite complex.

A Hilbert-style axiomatization for XPath= extended with hybrid operators and backward
navigation was first introduced in [AF16], using ideas from hybrid logic: nominals play the
role of first-order constants in a Henkin-style completeness proof. The system we present
herein is a vast extension of the work from [AF16], and it automatically encompasses a large
family of logics.

In [AFS17] nominals are used as labels in a tableaux system for a restricted variant
of HXPath= with only one accessibility relation and one equality relation. The tableaux
calculus is shown to be sound, complete and terminating, and it is used to prove that the
satisfiability problem for such logic is PSpace-complete.

Organization. The article is organized as follows. In Section 2 we introduce the syntax,
semantics and a notion of bisimulation for HXPath=. We define the axiomatic system HXP
in Section 3 and we prove its completeness. We finish that section by introducing extensions
of HXP and their complete axiomatizations with pure axioms and existential rules. In
Section 4 we introduce an axiomatic system for XPath over the class of data trees. Then, we
use filtrations to show that the satisfiability problem of HXPath= is decidable in Section 5.
To conclude, in Section 6 we discuss the results and introduce future lines of research.

2. Hybrid XPath with Data

In this section we introduce the syntax and semantics for the logic we call Hybrid XPath
with Data (HXPath= for short). Then, we present a notion of bisimulation for HXPath=.

2.1. Syntax and Semantics of HXPath=. Thoughout the text, let Prop be a countable
set of propositional symbols; let Nom be a countable set of nominals such that Prop∩Nom = ∅;
and let Mod and Eq be sets of modal and equality symbols, respectively.

Definition 2.1 (Syntax). The sets PExp of path expressions (which we will note as α, β,
γ, . . .) and NExp of node expressions (which we will note as ϕ, ψ, θ, . . .) of HXPath= are
defined by mutual recursion as follows:

PExp ::= a | @i | [ϕ] | αβ
NExp ::= p | i | ¬ϕ | ϕ ∧ ψ | 〈α =e β〉 | 〈α 6=e β〉,

where p ∈ Prop, i ∈ Nom, a ∈ Mod, e ∈ Eq, ϕ,ψ ∈ NExp, and α, β ∈ PExp. We will refer to
members of PExp ∪ NExp as expressions. In what follows, when referring to expressions of
HXPath= we will reserve the term formula for members of NExp. We say that an expression
is pure if it does not contain propositional symbols.

Notice that path expressions occur in node expressions in data comparisons of the form
〈α =e β〉 and 〈α 6=e β〉, while node expressions occur in path expressions in tests like [ϕ].

In what follows we will always use ∗ for =e and 6=e, when the particular operator used
is not relevant. Other Boolean operators are defined as usual: ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), and
ϕ→ ψ := ¬ϕ ∨ ψ. Below we define other operators as abbreviations.

Definition 2.2 (Abbreviations). Let α, β, δ be path expressions, γ1, γ2 path expressions or
the empty string, ϕ a node expression, i a nominal, and p an arbitrary symbol in Prop. We
define the following expressions:
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> := p ∨ ¬p
⊥ := ¬>
ε := [>]

[α =e β] := ¬〈α 6=e β〉
[α 6=e β] := ¬〈α =e β〉
〈α〉ϕ := 〈α[ϕ] =e α[ϕ]〉
[α]ϕ := ¬〈α〉¬ϕ
@iϕ := 〈@i〉ϕ

〈γ1(α ∪ β)γ2 ∗ δ〉 := 〈γ1αγ2 ∗ δ〉 ∨ 〈γ1βγ2 ∗ δ〉
〈δ ∗ γ1(α ∪ β)γ2〉 := 〈δ ∗ γ1αγ2〉 ∨ 〈δ ∗ γ1βγ2〉

As a corollary of the definition of the semantic relation below, the diamond and box
expressions 〈α〉ϕ and [α]ϕ will have their classical meaning, and the same will be true for
hybrid formulas of the form @iϕ. Notice that we use @i both as a path expression and as a
modality; the intended meaning will always be clear in context. Notice also that, following
the standard notation in XPath logics and in modal logics, the [ ] operation is overloaded: for
ϕ a node expression and α a path expression, both [α]ϕ and α[ϕ] are well-formed expressions;
the former is a node expression where [α] is a box modality, the latter is a path expression
where [ϕ] is a test.

We now define the structures that will be used to evaluate formulas in the language.

Definition 2.3 (Hybrid Data Models). An abstract hybrid data model is a tuple M = 〈M,
{∼e}e∈Eq, {Ra}a∈Mod,V ,nom〉, where M is a non-empty set of elements; for each e ∈ Eq,
∼e ⊆ M ×M is an equivalence relation between elements of M ; for each a ∈ Mod, Ra ⊆
M ×M is the associated accessibility relation; V : M → 2Prop is the valuation function; and
nom : Nom → M is a function that assigns nominals to certain elements. Given m ∈ M ,
(M,m) is called a pointed model (parentheses are usually dropped).

An abstract data frame (or just frame) is a tuple F = 〈M, {∼e}e∈Eq, {Ra}a∈Mod〉. Let F
be a class of frames, its class of models is Mod(F) = {〈M, {∼e}e∈Eq, {Ra}a∈Mod,V ,nom〉 |
〈M, {∼e}e∈Eq, {Ra}a∈Mod, 〉 ∈ F, for V ,nom arbitrary}.

A concrete hybrid data model is a tuple M = 〈M,D, {Ra}a∈Mod,V ,nom, data〉, where
M is a non-empty set of elements; D is a non-empty set of data; for each a ∈ Mod,
Ra ⊆M×M is the associated accessibility relation; V : M → 2Prop is the valuation function;
nom : Nom → M is a function which names some nodes; and data : Eq ×M → D is a
function which assigns a data value to each node of the model (for each type of equality
considered in the model).

Concrete data models are most commonly used in applications, where we encounter
data from an infinite alphabet (e.g., alphabetic strings) associated to the nodes in a semi-
structured database, and different ways of comparing this data. It is easy to see that to each
concrete data model we can associate an abstract data model where data is replaced by an
equivalence relation that links all nodes with the same data, for each equality symbol from
Eq. Vice-versa, each abstract data model can be “concretized” by assigning to each pair
node and symbol from Eq, its equivalence data class as data. We will prove soundness and
completeness over the class of abstract data models and, as a corollary, obtain completeness
over concrete data models.
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Definition 2.4 (Semantics). Let M = 〈M, {∼e}e∈Eq, {Ra}a∈Mod,V ,nom〉 be an abstract
data model, and m,n ∈M . We define the semantics of HXPath= as follows:

M,m, n |= a iff mRan
M,m, n |= @i iff nom(i) = n
M,m, n |= [ϕ] iff m = n and M,m |= ϕ
M,m, n |= αβ iff there is l ∈M s.t. M,m, l |= α and M, l, n |= β
M,m |= p iff p ∈ V (m)
M,m |= i iff nom(i) = m
M,m |= ¬ϕ iff M,m 6|= ϕ

M,m |= ϕ ∧ ψ iff M,m |= ϕ and M,m |= ψ
M,m |= 〈α =e β〉 iff there are n, l ∈M s.t. M,m, n |= α, M,m, l |= β and n ∼e l
M,m |= 〈α 6=e β〉 iff there are n, l ∈M s.t. M,m, n |= α, M,m, l |= β and n 6∼e l.

We say a node expression ϕ (path expression α) is satisfiable if there exists M,m (M,m, n)
such that M,m |= ϕ (M,m, n |= α). Satisfiability for sets of node and path expressions is
defined in the obvious way. Let Γ ∪ {ϕ} be a set of node expressions, Γ |= ϕ if for all M,m,
M,m |= Γ implies M,m |= ϕ. For a class C of models, Γ |=C ϕ if for all M ∈ C and m in
the domain of M, M,m |= Γ implies M,m |= ϕ. When Γ = ∅ we write |= ϕ (respectively
|=C ϕ).

As mentioned, it is a straightforward exercise to show that modal and hybrid operators
have their intended meaning.

Proposition 2.5. Let M be an abstract hybrid data model and m a state in M. Then

M,m |= @iϕ iff M,nom(i) |= ϕ
M,m |= 〈a〉ϕ iff for some n ∈M s.t. mRan, M, n |= ϕ
M,m |= [a]ϕ iff for all n ∈M , mRan implies M, n |= ϕ.

The addition of the hybrid operators to XPath increases its expressive power. The
following examples should serve as illustration.

Example 2.6. We list below some HXPath= expressions together with their intuitive meaning:

α[i] There exists an α path between the current points of evaluation; the
second node is named i.

@iα There exists an α path between the node named i and some other node.
〈@i =e @j〉 The node named i has the same data as the node named j, w.r.t. the

data field e.
〈α =e @iβ〉 There exists a node accessible from the current point of evaluation by an

α path that has the same data than a node accessible from the point
named i by a β path, w.r.t. the data field e.

The next example illustrates the expressivity gained by adding hybrid operators into
the language, in a concrete example.

Example 2.7. Consider the following queries in the data graph from Figure 1 (we omit the
subdindex in the symbols = and 6=, since we deal with only one equality relation).
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〈@A1born[V alue] = @A1friends born[V alue]〉 The person with the id A1 is friend of
someone born in the same day.

[@A2born[V alue] 6= @A2friends born[V alue]] All friends of the person with id A2
were born in a day different to hers.

〈@A1[Name] = @A2[Name]〉 The persons with id A1 and A2 have
∧〈@A1born[V alue] 6= @A2born[V alue]〉 the same value (both are named Alice)

and they were born in different days.

In the last item, the conjunct 〈@A1[Name] = @A2[Name]〉 states that the nodes named
by the nominals A1 and A2 contain a data value corresponding to the key Name, expressed
by the test [Name]; also, these data values coincide, without referring to the actual value.

It is worth noting that with classical XPath= navigation, the two first properties can be
expressed only if we are evaluating the formulas in the node with id A1 and A2, respectively.
This is due the fact that XPath= only allows local navigation. Moreover, the third formula is
not expressible in XPath=, even in the presence of transitive closure operators, as it involves
unconnected components of the graph.

Before concluding this section, we will introduce two classical notions that will be useful
in the rest of the paper: the modal depth and the set of subformulas of a formula. These
definitions are given on node and path expressions seen as strings, in particular they consider
the empty string λ which is not in the language. However, these definitions work as intended.

Definition 2.8. We define the modal depth of an expression, by mutual recursion as follows.

md(λ) = 0 md(p) = 0
md(aα) = 1 + md(α) md(¬ϕ) = md(ϕ)
md([ϕ]α) = max(md(ϕ),md(α)) md(ϕ ∧ ψ) = max(md(ϕ),md(ψ))
md(@iα) = md(α) md(〈α ∗ β〉) = max(md(α),md(β)),

where λ represents the empty string, a ∈ Mod, p ∈ Prop ∪ Nom, i ∈ Nom, ∗ ∈ {=e, 6=e},
ϕ,ψ ∈ NExp and α, β ∈ PExp.

Definition 2.9. We define the set of subformulas of an expression, by mutual recursion as
follows.

Sub(λ) = ∅ Sub(p) = {p}
Sub(aα) = {〈aα〉>} ∪ Sub(α) Sub(¬ϕ) = {¬ϕ} ∪ Sub(ϕ)
Sub([ϕ]α) = {〈[ϕ]α〉>} ∪ Sub(ϕ) ∪ Sub(α) Sub(ϕ ∧ ψ) = {ϕ ∧ ψ} ∪ Sub(ϕ) ∪ Sub(ψ)
Sub(@iα) = {〈@iα〉>, i} ∪ Sub(α) Sub(〈α ∗ β〉) = {〈α ∗ β〉} ∪ Sub(α) ∪ Sub(β),

where λ represents the empty string, a ∈ Mod, p ∈ Prop ∪ Nom, i ∈ Nom, ∗ ∈ {=e, 6=e},
ϕ,ψ ∈ NExp and α, β ∈ PExp.

2.2. A Note on Bisimulations. In the rest of the paper we will sometimes need the
notion of bisimulation for HXPath=. Bisimulation for XPath on data trees was investigated
in [FFA14, FFA15]. In [ABFF16, ABFF18] it is shown that the same notion can be used
in arbitrary models. It is simple to extend these definitions to take into account hybrid
operators (see, e.g., [ABM01, BdRV01]).
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Definition 2.10 (Bisimulations). Let M = 〈M, {∼e}e∈Eq, {Ra}a∈Mod,V ,nom〉 and M′ =
〈M ′, {∼′e}e∈Eq, {R′a}a∈Mod,V

′,nom ′〉 be two abstract hybrid data models, m ∈M , m′ ∈M ′.
An HXPath=-bisimulation between M,m and M′,m′ is a relation Z ⊆M ×M ′ such that
mZm′, and when lZl′ we have:

• (Harmony) V (l) = V ′(l′) and l = nom(i) iff l′ = nom ′(i) (for all i ∈ Nom).
• (Zig=) If there are paths π1 = lRa1h1Ra2 . . . Ran1

hn1 and π2 = lRb1k1Rb2 . . . Rbn2
kn2 (for

ai, bi ∈ Mod), then there are paths π′1 = l′R′a1
h′1R

′
a2
. . . R′an1

h′n1
and π′2 = l′R′b1

k′1R
′
b2
. . .

R′bn2
k′n2

such that

(1) hiZh
′
i for 1 ≤ i ≤ n1.

(2) kiZk
′
i for 1 ≤ i ≤ n2.

(3) hn1 ∼e kn2 iff h′n1
∼′e k′n2

, for all e ∈ Eq.
• (Zag=) If there are paths π′1 = l′R′a1

h′1R
′
a2
. . . R′an1

h′n1
and π′2 = l′R′b1

k′1R
′
b2
. . .

R′bn2
k′n2

(for ai, bi ∈ Mod), then there are paths π1 = lRa1h1Ra2 . . . Ran1
hn1 and π2 =

lRb1k1Rb2 . . . Rbn2
kn2 such that conditions 1, 2 and 3 above are verified.

• (Nom) For all i ∈ Nom, nom(i)Znom ′(i).

We write M,m -M′,m′ (and say that M,m and M′,m′ are HXPath=-bisimilar) if there
is an HXPath=-bisimulation Z such that mZm′.

The notion of HXPath=-bisimulation extends the one for basic modal logic [BdRV01].
As usual, (Harmony) takes care of atomic information (both propositional symbols and
nominals). The standard (Zig) and (Zag) should be strengthened to take into account
that XPath modalities deal with two paths at the same time, and moreover equality of data
values can be checked at their ending points. Finally (Nom) takes care of the @ operator.

It is straightforward to prove that HXPath=-bisimilar models satisfy the same HXPath=-
formulas (see [ABFF18]).

Proposition 2.11. Let M,m and M′,m′ be two pointed data models. If M,m -M′,m′
then for any HXPath=-formula ϕ, M,m |= ϕ if and only if M′,m′ |= ϕ.

We can extend the notion of `-bisimulation introduced in [FFA15] in a similar way. An
`-bisimulation checks model equivalence up to a certain modal depth.

Definition 2.12 (`-bisimulations). LetM = 〈M, {∼e}e∈Eq, {Ra}a∈Mod,V ,nom〉 andM′ =
〈M ′, {∼′e}e∈Eq, {R′a}a∈Mod,V

′,nom ′〉 be two abstract hybrid data models, m ∈M , m′ ∈M ′.
We say that M,m and M′,m′ are `-bisimilar for HXPath= (written M,m -` M′,m′) if
there exists a family of relations (Zj)j≤` in M ×M ′ such that mZ`m

′, and for all j ≤ `,
when lZjl

′ we have:

• (Harmony) V (l) = V ′(l′) and l = nom(i) iff l′ = nom ′(i) (for all i ∈ Nom).
• (Zig=) If there are paths π1 = lRa1h1Ra2 . . . Ran1

hn1 and π2 = lRb1k1Rb2 . . . Rbn2
kn2

(for ai, bi ∈ Mod), n1, n2 ≤ j, then there are paths π′1 = l′R′a1
h′1R

′
a2
. . . R′an1

h′n1
and

π′2 = l′R′b1
k′1R

′
b2
. . . R′bn2

k′n2
such that

(1) hiZ(j−n1)+ih
′
i for 1 ≤ i ≤ n1.

(2) kiZ(j−n2)+ik
′
i for 1 ≤ i ≤ n2.

(3) hn1 ∼e kn2 iff h′n1
∼′e k′n2

, for all e ∈ Eq.
• (Zag=) If there are paths π′1 = l′R′a1

h′1R
′
a2
. . . R′an1

h′n1
and π′2 = l′R′b1

k′1R
′
b2
. . . R′bn2

k′n2

(for ai, bi ∈ Mod), n1, n2 ≤ j, then there are paths π1 = lRa1h1Ra2 . . . Ran1
hn1 and

π2 = lRb1k1Rb2 . . . Rbn2
kn2 such that conditions 1, 2 and 3 above are verified.
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• (Nom) For all i ∈ Nom, nom(i)Z`nom ′(i).

Again, it is straightforward to prove the next proposition.

Proposition 2.13. Let M,m and M′,m′ be two pointed data models. If M,m -`M′,m′
then for any HXPath=-formula ϕ such that md(ϕ) ≤ `,M,m |= ϕ if and only ifM′,m′ |= ϕ.

3. Axiomatization

In this section we introduce the axiomatic system HXP for HXPath=. It is an extension of
an axiomatic system for the hybrid logic HL(@) which adds nominals and the @ operator to
the basic modal language (see [BdRV01]). In particular, we include axioms to handle data
equality and inequality. We will prove that HXP is sound and strongly complete with respect
to the class of abstract hybrid data models. Moreover, we will show that the system is
strongly complete for any extension with some particular kind of axioms and inference rules.
This result will be helpful in order to automatically obtain complete axiomatic systems for
several natural extensions of the language HXPath=. The system is geared for inference
over node expressions, but we will discuss path expressions in Section 3.4. We remind the
reader that when referring to HXPath= we use the term formula for node expressions. In
what follows, we use ∗ in axioms which hold for both =e and 6=e.

3.1. The Basic Axiomatic System HXP. We present axioms and rules step by step,
providing brief comments to help the reader understand their role. In all axioms and rules
ϕ, ψ and θ are node expressions; α, β, γ and η are path expressions; and i, j and k are
nominals. More precisely, we provide axiom and rule schemes, i.e., they can be instantiated
with arbitrary path and node expressions, respecting typing. Hence, ϕ, ψ and θ can be
instantiated with node expressions; α, β, γ and η with path expressions; and i, j and k with
nominals.

Definition 3.1 (Theorems, Syntactic Consequence, Consistency). For A an axiomatic
system, ϕ is a theorem of A (notation: `A ϕ) if it is either an instantiation of an axiom of
A, or it can be derived from an axiom of A in a finite number of steps by application of
the rules of A. Let Γ be a set of node expressions. We write Γ `A ϕ and say that ϕ is a
syntactic consequence of Γ in A if there exists a finite set Γ′ ⊆ Γ such that `A

∧
Γ′ → ϕ

(where
∧
∅ = >). We say that Γ is consistent (for A) if Γ 6`A ⊥. We write ` instead of `A if

A is clear from context.

In addition to a complete set of axioms and rules for propositional logic, HXP includes
generalizations of the K axiom and the Necessitation rule for the basic modal logic to handle
modalities with arbitrary path expressions.

Axiom and rule for classical modal logic

K ` [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)
` ϕ

Nec
` [α]ϕ

Then we introduce generalizations of the inference rules for the hybrid logic HL(@).
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Hybrid rules

` @jϕ
name

` ϕ
` @i〈a〉j ∧ 〈@jα ∗ β〉 → θ

paste
` 〈@iaα ∗ β〉 → θ

j is a nominal different from i that does not occur in ϕ, α, β, θ.

Now we introduce axioms to handle @. Notice that @i is a path expression and as a
result, some of the standard hybrid axioms for @ have been generalized. In particular, the
K axiom and Nec rule above also apply to @i. In addition, we provide axioms to ensure
that the relation induced by @ is a congruence.

Axioms for @ Congruence for @

@-self-dual ` ¬@iϕ↔ @i¬ϕ
@-intro ` i→ (ϕ↔ @iϕ)

@-refl ` @ii
agree ` 〈@j@iα ∗ β〉 ↔ 〈@iα ∗ β〉
back ` 〈γ@iα ∗ β〉 → 〈@iα ∗ β〉

Axioms involving the classical XPath operators can be found below. First we introduce
axioms to handle complex path expressions in data comparisons. Then we introduce axioms
to handle data tests.

Axioms for paths
comp-assoc ` 〈(αβ)γ ∗ η〉 ↔ 〈α(βγ) ∗ η〉
comp-neutral ` 〈αβ ∗ γ〉 ↔ 〈αεβ ∗ γ〉 (α or β can be empty)
comp-dist ` 〈αβ〉ϕ↔ 〈α〉〈β〉ϕ

Axioms for data
equal ` 〈ε =e ε〉
distinct ` ¬〈ε 6=e ε〉
@-data ` ¬〈@i=e@j〉 ↔ 〈@i 6=e@j〉
ε-trans ` 〈ε =e α〉 ∧ 〈ε =e β〉 → 〈α =e β〉
∗-comm ` 〈α ∗ β〉 ↔ 〈β ∗ α〉
∗-test ` 〈[ϕ]α ∗ β〉 ↔ ϕ ∧ 〈α ∗ β〉
@∗-dist ` 〈@iα ∗@iβ〉 → @i〈α ∗ β〉
subpath ` 〈αβ ∗ γ〉 → 〈α〉>
comp∗-dist ` 〈α〉〈β ∗ γ〉 → 〈αβ ∗ αγ〉

It is a straightforward exercise to see that the axiomatic system HXP is sound. However,
we will provide a more general statement of soundness later on.

Below we prove that some useful theorems and rules can be derived within HXP.

Proposition 3.2. The following are theorems and derived rules of HXP, and will be used
(explicitly or implicitly) in the rest of the paper.
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test-dist ` 〈[ϕ] =e [ψ]〉 ↔ ϕ ∧ ψ
test-⊥ ` 〈[ϕ] 6=e [ψ]〉 ↔ ⊥
@-swap ` @i〈α ∗@jβ〉 ↔ @j〈β ∗@iα〉
@-intro’ ` (i ∧ ϕ)→ @iϕ
@-sym. ` @ij → @ji
K−1

@ ` (@iϕ→ @iψ)→ @i(ϕ→ ψ)
nom ` @ij ∧ 〈@iα ∗ β〉 → 〈@jα ∗ β〉
bridge ` 〈α〉i ∧@iϕ→ 〈α〉ϕ
name’ If ` i→ ϕ then ` ϕ, if i does not appear in ϕ

Proof. (test-dist and test-⊥). Let ∗ be =e or 6=e. Then:

` 〈[ϕ] ∗ [ψ]〉 ↔ 〈[ϕ]ε ∗ [ψ]〉 (comp-neutral)

` 〈[ϕ]ε ∗ [ψ]〉 ↔ ϕ ∧ 〈ε ∗ [ψ]〉 (∗-test)

` ϕ ∧ 〈ε ∗ [ψ]〉 ↔ ϕ ∧ 〈[ψ] ∗ ε〉 (∗-comm)

` ϕ ∧ 〈[ψ] ∗ ε〉 ↔ ϕ ∧ 〈[ψ]ε ∗ ε〉 (comp-neutral)

` ϕ ∧ 〈[ψ]ε ∗ ε〉 ↔ ϕ ∧ ψ ∧ 〈ε ∗ ε〉 (∗-test)

Replacing ∗ by =e we get ϕ ∧ ψ by equal. Replacing it by 6=e we get 〈ε 6=e ε〉, and given
distinct we can derive ⊥.
(@-swap).

` @i〈α =e @jβ〉 ↔ 〈@iα =e @i@jβ〉 (@ =-dist)

` 〈@iα =e @i@jβ〉 ↔ 〈@i@jβ =e @iα〉 (=-comm)

` 〈@i@jβ =e @iα〉 ↔ 〈@jβ =e @iα〉 (agree)

` 〈@jβ =e @iα〉 ↔ 〈@iα =e @jβ〉 (=-comm)

` 〈@iα =e @jβ〉 ↔ 〈@j@iα =e @jβ〉 (agree)

` 〈@j@iα =e @jβ〉 ↔ @j〈@iα =e β〉 (agree)

` @j〈@iα =e β〉 ↔ @j〈β =e @iα〉 (=-comm)

(@-intro’). Direct from @-intro.
(@-sym.).

` (j ∧ i)→ @ji (@-intro’ )

` (@ij ∧@ii)→ @i@ji (Nec, K )

` @ij → @ji (@-refl., back)

(K−1
@ ).

` (@i¬(ϕ→ ψ)→ @iϕ) ∧ (@i¬(ϕ→ ψ)→ @i¬ψ) (prop, Nec, K )

` @i¬(ϕ→ ψ)→ (@iϕ ∧@i¬ψ) (prop)

` ¬@i(ϕ→ ψ)→ (@iϕ ∧ ¬@iψ) (@-self-dual)

` (@iϕ→ @iψ)→ @i(ϕ→ ψ) (prop)

(nom).

` (j ∧ 〈@jβ ∗ α〉)→ @j〈@jβ ∗ α〉 (@-intro’ )

` (@ij ∧@i〈@jβ ∗ α〉)→ @i@j〈@jβ ∗ α〉 (Nec, K )
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` (@ij ∧@j〈@iα ∗ β〉)→ @i@j〈@jα ∗ β〉 (@-swap, ∗-comm)

` (@j@ij ∧@j〈@iα ∗ β〉)→ @j〈@jα ∗ β〉 (agree)

` @j(@ij ∧ 〈@iα ∗ β〉 → 〈@jα ∗ β〉) (K−1
@ )

` @ij ∧ 〈@iα ∗ β〉 → 〈@jα ∗ β〉 (name)

(bridge). Using contrapositive, bridge is equivalent to 〈α〉i ∧ [α]ϕ→ @iϕ. Using the modal
theorem ` 〈α〉ϕ ∧ [α]ψ → 〈α〉(ϕ ∧ ψ), we reason:

` 〈α〉i ∧ [α]ϕ→ 〈α〉(i ∧ ϕ)

` 〈α〉(i ∧ ϕ)→ 〈α〉(@iϕ) (@-intro’ )

` 〈α〉(@iϕ)→ @iϕ (back)

(name’). Suppose ` i→ ϕ. Then:

` @i(i→ ϕ) (Nec)

` @ii→ @iϕ (K )

` @iϕ (@-refl.)

` ϕ (name)

3.2. Extended Axiomatic Systems. In the next section we will prove that not only
HXP is complete with respect to the class of all models, but that extensions of HXP with
pure axioms and existential saturation rules preserve completeness with respect to the
corresponding class of models. In this section we present such extensions.

The use of nominals, and in particular pure axioms and existential saturation rules,
allows us to characterize classes of models that are not definable without them. For instance,
the hybrid axiom @i¬〈a〉i forces the accessibility relation related to a in the model to be
irreflexive, which cannot be expressed in the basic modal logic. In this way, we can express
properties about the underlying topology of a data model and also impose restrictions about
the data fields. For instance, the axiom 〈@i =e @j〉 → 〈@i =d @j〉 for data inclusion that
will be discussed in Section 3.5, expresses that if two nodes coincide in the data field e, then
they must also coincide in the data field d.

Standard Translation. In order to establish frame conditions associated to pure axioms
and existential saturation rules we define the standard translation of HXPath= into first-order
logic, by mutual recursion between NExp and PExp.

Definition 3.3. The correspondence language for expressions of HXPath= is a relational
language with a unary relation symbol Pi for each pi ∈ Prop, a binary relation symbol Ra for
each a ∈ Mod and a binary relation symbol De for each e ∈ Eq. Moreover, for each nominal
i ∈ Nom we will associate an indexed variable xi. The function ST′x from HXPath=-formulas
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into its correspondence language is defined by

ST′x(i) = x = xi
ST′x(p) = P (x)
ST′x(¬ϕ) = ¬ST′x(ϕ)
ST′x(ϕ ∧ ψ) = ST′x(ϕ) ∧ ST′x(ψ)
ST′x(〈α =e β〉) = ∃y, z. ST′x,y(α) ∧ ST′x,z(β) ∧De(y, z)
ST′x(〈α 6=e β〉) = ∃y, z. ST′x,y(α) ∧ ST′x,z(β) ∧ ¬De(y, z),

where y, z are first-order variables which have not been used yet in the translation, and
where ST′x,y is defined as

ST′x,y(a) = Ra(x, y)
ST′x,y(@i) = y = xi
ST′x,y([ϕ]) = x = y ∧ ST′y(ϕ)
ST′x,y(αβ) = ∃z. ST′x,z(α) ∧ ST′z,y(β),

with z not used yet in the translation. Finally, let Eq(e) be the first-order formula stating
that the relation De is an equivalence relation (i.e., reflexive, symmetric and transitive), we
define the standard translation STx of a formula ϕ as

STx(ϕ) =
∧
{Eq(e) | =e appearing in ϕ} ∧ ST′x(ϕ).

Since the standard translation mimics the semantic clauses for HXPath=-formulas, the
following proposition holds.

Proposition 3.4. Let ϕ be an HXPath=-formula, and letM = 〈M, {∼e}e∈Eq, {Ra}a∈Mod,V ,
nom〉 be an abstract hybrid data model with m ∈ M . Then M,m |= ϕ if and only if
M, g |= STx(ϕ), where g is an arbitrary first-order assignment such that g(xi) = nom(i)
and g(x) = m.

Notice, in the proposition above, that M = 〈M, {∼e}e∈Eq, {Ra}a∈Mod,V ,nom〉 is used
to interpret STx(ϕ) with V (p) interpreting the unary relation symbol P , each accessibility
relation Ra interpreting the binary relation symbol Ra and each relation ∼e interpreting the
binary relation De.

Pure Axioms and Existential Saturation Rules. We have now all the ingredients
needed to define pure axioms and existential saturation rules, together with their associated
frame conditions.

Definition 3.5 (Pure Axioms). We say that a formula (or in particular, an axiom) is pure
if it does not contain any occurrences of propositional symbols. Let Π be a set of pure
axioms, we define FC(Π), the frame condition associated to Π as the universal closure of the
standard translation of the axioms in Π, i.e.,

FC(Π) =
∧
{∀x.∀xi1 . . . ∀xin .STx(ϕ) | ϕ ∈ Π, i1, . . . , in all the nominals in ϕ}.

Definition 3.6 (Existential Saturation Rules). Let ϕ(i1, . . . , in, j1, . . . , jm) be an HXPath=

formula with no propositional symbols such that i1, . . . , in, j1, . . . , jm is an enumeration of
all nominals appearing in ϕ. An existential saturation rule is a rule of the form

` ϕ(i1, . . . , in, j1, . . . , jm)→ ψ

` ψ
provided that j1, . . . , jm do not occur in ψ.
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We will call ϕ the head of the rule, i1, . . . , in its universally quantified nominals (notation:
ϕ∀), and j1, . . . , jm its existentially quantified nominals (notation: ϕ∃)

1. Let P be a set of
existential saturation rules, we define FC(P), the frame condition associated to P as follows:

FC(P) =
∧
{∀x.∀xi1 . . . ∀xin .∃xj1 . . . ∃xjm .STx(ϕ) | ϕ is the head of a rule ρ ∈ P,

ik ∈ ϕ∀ and jl ∈ ϕ∃}.

Let Π be a set of pure formulas and let P be a set of existential saturation rules, in what
follows we write HXP + Π + P for the axiomatic system HXP extended with Π as additional
axioms and P as additional inference rules. In the coming sections we will show that this
system is strongly complete with respect to the class of models based on frames satisfying
the frame condition FC(Π) ∧ FC(P).

Example 3.7. The axiom p→ [a]〈b〉p is not pure, since it contains the propositional symbol p.
On the other hand, Π = {i→ [a]〈b〉i, i→ [b]〈a〉i} is a set of pure axioms. Its corresponding
frame condition FC(Π) indicates that Rb is the inverse of Ra. Indeed, FC(Π) is equivalent
to ∀x.∀y.(Ra(x, y)↔ Rb(y, x)).

Consider the formula @i〈a〉i. It can be used to define two different existential saturation
rules:

ρ1 =
` @i〈a〉i→ ψ

` ψ
(no side condition)

and

ρ2 =
` @i〈a〉i→ ψ

` ψ
where i does not occur in ψ.

FC({ρ1}) is equivalent to ∀x.Ra(x, x) while FC({ρ2}) is equivalent to ∃x.Ra(x, x).
Consider now the rule corresponding to the Church-Rosser property discussed in [BtC06]:

` (@i〈a〉j ∧@i〈a〉k → @j〈a〉l ∧@k〈a〉l)→ ψ

` ψ
where l does not occur in ψ.

The frame condition corresponding to this rule is:

∀x.∀xi.∀xj .∀xk.∃xl.STx(@i〈a〉j ∧@i〈a〉k → @j〈a〉l ∧@k〈a〉l),
which is equivalent to ∀xi.∀xj .∀xk.∃xl.(Ra(xi, xj) ∧Ra(xi, xk)→ Ra(xj , xl) ∧Ra(xk, xl)).

It is not difficult to see that any pure axiom π is equivalent to the rule that uses π
as head without side conditions (i.e., π∃ is empty). In that sense, any axiomatic system
HXP + Π + P is equivalent to some HXP + P′, as pure axioms do not introduce additional
expressive power. On the other hand, properties that mix both universal and existential
quantification like the Church-Rosser property mentioned above cannot be captured using
only pure axioms. However, axioms are simpler than rules with side conditions; and pure
axioms are expressive enough to characterize many interesting properties.

1Notice that given a particular ϕ, different existential saturation rules can be defined depending on which
nominals are listed in its side condition.
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3.3. Soundness and Completeness. It is a fairly straightforward exercise to prove that
the axioms and rules of HXP are sound with respect to the class of all models. Similarly,
any set Π of pure axioms is sound with respect to the class of models obtained from frames
satisfying FC(Π), and any set P of existential saturation rules is sound with respect to the
class of frames satisfying FC(P) (the proof is similar to the one provided in [BtC06]).

Theorem 3.8 (Soundness). Let Π be a set of pure axioms and let P be a set of existential
saturation rules. All the axioms and rules from HXP are valid over the class of abstract
hybrid data models satisfying the frame condition FC(Π) ∧ FC(P).

Now we will devote ourselves to show that the axiomatic system is also strongly complete.
The completeness argument follows the lines of the completeness proof for HL(@) and similar
approaches (see, e.g., [Gol84, BtC06, SP10]), which is a Henkin-style proof with nominals
playing the role of first-order constants.

We will prove in this section that the system HXP+Π+P is strongly complete with respect
to the class of abstract hybrid data models obtained from frames satisfying FC(Π) ∧ FC(P).
More precisely, given a particular extension HXP + Π + P, we will show that if C = Mod(F)
for F the class of frames satisfying FC(Π) ∧ FC(P), then Γ |=C ϕ implies Γ `HXP+Π+P ϕ,
where Γ ∪ {ϕ} is a set of HXPath=-formulas. Or, equivalently, we need to show that every
consistent set of formulas (for HXP + Π + P) is satisfiable in some abstract hybrid data
model (in C). Recall that subscripts in relations ` and |= are ommited when they are clear
from the context.

Definition 3.9. Let Γ be a set of formulas, we say that Γ is an HXP + Π + P maximal
consistent set (MCS for short) if and only if Γ 0 ⊥ and for all ϕ /∈ Γ we have Γ ∪ {ϕ} ` ⊥.

Proposition 3.10. Let Γ be an MCS. Then, the following facts hold:

(1) If {i, ϕ} ⊆ Γ then @iϕ ∈ Γ.
(2) If @i〈α =e β〉 ∈ Γ then 〈@iα =e @iβ〉 ∈ Γ.
(3) If 〈α =e @iβ〉 ∈ Γ then 〈α =e @j@iβ〉 ∈ Γ.

Proof. Item 1 is a consequence of @-intro’, 2 follows from @=-dist and 3 can be proved
using agree and =-comm.

The next fact follows from the definition of MCS, as expected:

Fact 3.11. Let Γ be an MCS. Then for all ϕ, either ϕ ∈ Γ or ¬ϕ ∈ Γ.

So far, we presented an axiom system together with the standard tools for proving its
completeness. We also introduced non-orthodox rules (i.e., rules with side conditions), which
will play a crucial role in the Henkin-style model we will build for proving completeness.
The paste rule expresses that path expressions can control what happens in accessible states
from a named state. The name rule says that if ϕ is provable to hold in an arbitrary state
named by j, then ϕ is also provable. Now we introduce some properties that will be required
in the construction of the Henkin-style model.

Definition 3.12 (Named, Pasted and ρ-saturated sets). Let Σ be a set of HXPath=-formulas.

• We say that Σ is named if for some nominal i we have that i ∈ Σ (and we will say that Σ
is named by i).
• We say that Σ is pasted if the following holds:

(1) 〈@iaα =e β〉 ∈ Σ implies that for some nominal j, @i〈a〉j ∧ 〈@jα =e β〉 ∈ Σ.



AXIOMATIZING HYBRID XPATH WITH DATA 17

(2) 〈@iaα 6=e β〉 ∈ Σ implies that for some nominal j, @i〈a〉j ∧ 〈@jα 6=e β〉 ∈ Σ.
• For ϕ a formula and i1, . . . , in, j1, . . . , jn ∈ Nom, let ϕ[i1/j1, . . . , j1/jn] be the simultaneous

substitution of ik by jk, 1 ≤ k ≤ n in ϕ. Let ρ be an existential saturation rule with
head ϕ, ϕ∀ = i1, . . . , in and ϕ∃ = j1, . . . , jm. Then Σ is ρ-saturated if for all nominals
i′1, . . . , i

′
n ∈ Σ, ϕ[i1/i

′
1, . . . , in/i

′
n, ji/j

′
n, . . . , jm/j

′
m] ∈ Σ for some j′1, . . . , j

′
m ∈ Nom. For P

a set of existential saturation rules, Σ is P-saturated if it is ρ-saturated for all ρ ∈ P.

Now we are going to prove a crucial property in our completeness proof: the Extended
Lindenbaum Lemma. Intuitively, it says that the rules of HXP + Π + P allow us to extend
MCSs to named and pasted MCSs, provided we enrich the language with new nominals.
This lemma will be useful to obtain the models we need from an MCS.

Lemma 3.13 (Extended Lindenbaum Lemma). Let Nom′ be a (countably) infinite set of
nominals disjoint from Nom, and let HXPath′= be the language obtained by adding these new
nominals to HXPath=. Then, every consistent set of formulas in HXPath= can be extended
to a named and pasted MCS in HXPath′=.

Proof. Enumerate Nom′ and let k be the first nominal in the enumeration. Given Σ a
consistent set in HXPath=, Σ ∪ {k} is consistent, otherwise for some conjunction θ from Σ,
` k → ¬θ. By the name’ rule, ` ¬θ, contradicting the consistency of Σ.

Now enumerate all formulas in HXPath′=. Define Σ0 = Σ ∪ {k} and suppose we have
defined Σn, for n ≥ 0. Let ϕn+1 be the (n+ 1)th formula in the enumeration of HXPath′=.
Define Σn+1 as follows. If Σn ∪ {ϕn+1} is inconsistent, then Σn+1 = Σn. Otherwise:

(1) Σn+1 = Σn ∪ {ϕn+1} if ϕn+1 is not of the form 〈@iaα ∗ β〉.
(2) Σn+1 = Σn ∪ {ϕn+1} ∪ {@i〈a〉j ∧ 〈@jα ∗ β〉}, if ϕn+1 is of the form 〈@iaα ∗ β〉. Here

j is the first nominal in the enumeration that does not occur in any formula of Σn or
〈@iaα ∗ β〉.
Let Σω =

⋃
n≥0 Σn. This set is named (by k), maximal and pasted. Furthermore, it is

consistent as a direct consequence of the paste rule.

Lemma 3.14 (Rule Saturation Lemma). Let Nom′ be a (countably) infinite set of nominals
disjoint from Nom, and let HXPath′= be the language obtained by adding these new nominals
to HXPath=. Let Π be a set of pure axioms, and P be a set of existential saturation rules.
Then, every consistent set of formulas in HXPath= can be extended to a named, pasted and
P-saturated MCS in HXPath′=.

Proof. Let Σ be a consistent set of formulas in HXPath=. First, we will show that Σ
can be extended to some Σ+ such that for every rule ρ ∈ P with head ϕ, ϕ∀ = i1 . . . in,
and ϕ∃ = j1 . . . jm, and for all i′1, . . . , i

′
n ∈ Σ, there are nominals j′1, . . . , j

′
m such that

ϕ(i1/i
′
1, . . . , in/i

′
k, j1/j

′
1, . . . , j

′
m) ∈ Σ+.

Let Nom′ be a (countably) infinite set of nominals disjoint from Nom. Given Σ and P,
say that a pair (ρ, ī) is well-formed if ρ ∈ P with head ϕ, and ī is a sequence of nominals in
Σ with length equal to the length of ϕ∀. For Σ and P countable, the set of well-formed pairs
is countable and can be enumerated. Define Σ0 = Σ. Let (ρn+1, i

′
1 . . . i

′
k) be the (n+ 1)th

pair in the enumeration. Define Σn+1 as follows.

Σn+1 = Σn ∪ {ϕ(i1/i
′
1, . . . , ik/i

′
k, j1/j

′
1, . . . , jm/j

′
m)} where ϕ is the head of ρn+1, ϕ∀ =

i1, . . . , ik, ϕ∃ = j1, . . . , jm, and j′1, . . . , j
′
m are the first m nominals in Nom′ that do not

occur in any formula of Σn.
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We define Σ+ =
⋃

n≥0 Σn, which is consistent and extends Σ as described above.

Now consider any consistent set of formulas Γ. Let Γ0 = Γ, and for all n ≥ 0 let Γn+1

be a named and pasted MCS extending (Γn)+ (which exists by Lemma 3.13). Then we have
the following chain of inclusions:

Γ = Γ0 ⊆ (Γ0)+ ⊆ Γ1 ⊆ (Γ1)+ ⊆ . . .
Let Γω =

⋃
n≥0 Γn. Then Γω is a named, pasted and P-saturated MCS in HXPath′=. As we

used only countably many new nominals, this set is also countable.

From a named and pasted MCS we can extract a model:

Definition 3.15 (Extracted Model). Let Γ be a named and pasted MCS2. Define MΓ =
〈M, {∼e}e∈Eq, {Ra}a∈Mod,V ,nom〉, the extracted model from Γ, as

• M = {∆i | ∆i = {j | @ij ∈ Γ}}
• ∆iRa∆j iff @i〈a〉j ∈ Γ
• p ∈ V (∆i) iff @ip ∈ Γ
• nom(i) = ∆i

• ∆i ∼e ∆j iff @i〈ε =e @j〉 ∈ Γ.

We need to prove that MΓ is well defined, and that it is actually an abstract hybrid
data model.

Proposition 3.16.

(1) ∆i = ∆j implies @iϕ ∈ Γ iff @jϕ ∈ Γ.
(2) For all e ∈ Eq, ∼e is an equivalence relation.

Proof. Item 1 ensures that the definition of MΓ does not depend of the particular nominal
taken as representative of ∆i. The property follows directly from bridge.

For item 2, we prove:
- Reflexivity: We need to show that ∆i ∼e ∆i, which by definition is equivalent to @i〈ε =e

@i〉 ∈ Γ. By equal we have 〈ε =e ε〉 ∈ Γ, and applying Nec we get @i〈ε =e ε〉 ∈ Γ. Also,
by comp=-dist, 〈@i = @i〉 ∈ Γ, and by agree 〈@i =e @i@i〉 ∈ Γ. Then, by @ =-dist,
@i〈ε =e @i〉 ∈ Γ, as wanted.
- Symmetry: ∆i ∼e ∆j iff @i〈ε =e @j〉 ∈ Γ. By neutral and =-comm we get @i〈ε =e @jε〉 ∈ Γ.
Then, by @-swap @j〈ε =e @iε〉 ∈ Γ. Therefore (by neutral) @j〈ε =e @i〉 ∈ Γ.
- Transitivity: Suppose ∆i ∼e ∆j and ∆j ∼e ∆k, iff @i〈ε =e @j〉 ∈ Γ and @j〈ε =e @k〉 ∈ Γ.
This means that we have (by @-swap) @j〈ε =e @i〉 ∈ Γ, and @j〈ε =e @k〉 ∈ Γ. Then
@j(〈ε = @i〉 ∧ 〈ε =e @k〉) ∈ Γ (let us call this fact (†) for later use). On the other
hand, 〈ε =e @i〉 ∧ 〈ε =e @k〉 → 〈@i =e @k〉 ∈ Γ because of ε-trans. Then (by Nec)
@j(〈ε =e @i〉 ∧ 〈ε =e @k〉 → 〈@i =e @k〉) ∈ Γ, and by K and distributivity of @ with respect
to ∧, @j〈ε =e @i〉 ∧@j〈ε =e @k〉 → @j〈@i =e @k〉 ∈ Γ. By Modus Ponens with (†) we have
@j〈@i =e @k〉 ∈ Γ, and by comp=-dist 〈@j@i =e @j@k〉 ∈ Γ. Using back and agree we get
〈@i =e @i@k〉 ∈ Γ. Hence by @=-dist, @i〈ε =e @k〉 ∈ Γ, which gives us ∆i ∼e ∆k.

Proposition 3.17. Let MΓ = 〈M, {∼e}e∈Eq, {Ra}a∈Mod,V ,nom〉 be the extracted model,
for some Γ. Then,

(1) ∆i 6∼e ∆j if and only if @i〈ε 6=e @j〉 ∈ Γ,
(2) if ∆iRa∆j then for all @jϕ ∈ Γ, @i〈a〉ϕ ∈ Γ.

2For this definition, it is irrelevant whether Γ is P-saturated.
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Proof. Item 1 follows from @-data; for item 2 suppose ∆iRa∆j , then we have @i〈a〉j ∈ ∆i.
Let @jϕ ∈ Γ, then by comp-dist we have 〈@ia〉j ∈ Γ, hence by bridge we get 〈@ia〉ϕ ∈ Γ.
Therefore, by @∗-dist, @i〈a〉ϕ ∈ Γ.

Now, given a named and pasted MCS Γ we can prove the following lemma:

Lemma 3.18 (Existence Lemma). Let Γ be an MCS andMΓ = 〈M, {∼e}e∈Eq, {Ra}a∈Mod,V ,
nom〉 be the extracted model from Γ. Let ∆i ∈M , then

(1) @i〈aα =e β〉 ∈ Γ implies there exists ∆j ∈M s.t. ∆iRa∆j and @j〈α =e @iβ〉 ∈ Γ.
(2) @i〈aα 6=e β〉 ∈ Γ implies there exists ∆j ∈M s.t. ∆iRa∆j and @j〈α 6=e @iβ〉 ∈ Γ.
(3) @i〈@jα =e @kβ〉 ∈ Γ implies @j〈α =e @kβ〉 ∈ Γ.
(4) @i〈@jα 6=e @kβ〉 ∈ Γ implies @j〈α 6=e @kβ〉 ∈ Γ.

Proof. First, we discuss 1 (2 is similar). We suppose @i〈aα =e β〉 ∈ Γ. Then, by @=-dist,
〈@iaα =e @iβ〉 ∈ Γ. Because Γ is pasted, @i〈a〉j ∧ 〈@jα =e @iβ〉 ∈ Γ. As Γ is an MCS,
@i〈a〉j ∈ Γ and 〈@jα =e @iβ〉 ∈ Γ. By definition of MΓ we obtain ∆iRa∆j , and by agree,
we have 〈@jα =e @j@iβ〉 ∈ Γ. Then, @j〈α =e @iβ〉 ∈ Γ by @=-dist.

For 3 (4 is similar) assume @i〈@jα =e @kβ〉 ∈ Γ, then by comp=-dist, 〈@i@jα =e

@i@kβ〉 ∈ Γ. Applying agree twice, we have 〈@jα =e @j@kβ〉 ∈ Γ, then by @=-dist
@j〈α =e @kβ〉 ∈ Γ.

Corollary 3.19. Let Γ be an MCS and let MΓ = 〈M, {∼e}e∈Eq, {Ra}a∈Mod,V ,nom〉 be the
extracted model, and ∆i ∈M . If @i〈aα〉ϕ ∈ Γ, then there exists ∆j ∈M such that ∆iRa∆j

and @j〈α〉ϕ ∈ Γ.

Proof. Let ∆i ∈ M . By hypothesis, @i〈aα[ϕ] =e aα[ϕ]〉 ∈ Γ, then by Lemma 3.18 there
exists ∆j ∈M such that ∆iRa∆j and @j〈α[ϕ] =e @iα[ϕ]〉 ∈ Γ. By comp=-dist, 〈@jα[ϕ] =e

@j@iα[ϕ]〉 ∈ Γ, and by comp-neutral and subpath we get 〈@jα[ϕ]〉> ∈ Γ. Then, using
comp-dist, comp-assoc and =-test, we have @j〈α〉ϕ ∈ Γ.

Now we are ready to prove the Truth Lemma that states that membership in an MCS
generating an extracted model is equivalent to being true at a state in the extracted model.
First let us introduce a notion of size for node and path expressions, which we will use in
the inductive cases of the proof.

Definition 3.20. We define inductively the size of a path and node expression (notation
| · |) as follows:

|a| = 2 |p| = 1, p ∈ Prop ∪ Nom
|@i| = 1 |¬ϕ| = |ϕ|
|[ϕ]| = 1 + |ϕ| |ϕ ∧ ψ| = |ϕ|+ |ψ|
|αβ| = |α|+ |β| |〈α ∗ β〉| = |α|+ |β|,

where α, β are path expressions and ϕ,ψ are node expressions.

Lemma 3.21 (Truth Lemma). Let MΓ = 〈M, {∼e}e∈Eq, {Ra}a∈Mod,V ,nom〉 be the ex-
tracted model from an MCS Γ, and let ∆i ∈M . Then, for any formula ϕ,

MΓ,∆i |= ϕ iff @iϕ ∈ Γ.

Proof. In fact we will prove a stronger result. Let ∆i,∆j ∈M , ϕ be a node expression and
α be a path expression.

(IH1): MΓ,∆i |= ϕ iff @iϕ ∈ Γ.
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(IH2): MΓ,∆i,∆j |= α iff @i〈α〉j ∈ Γ.

The proof is a double induction argument, proceeding first on the structural complexity
of ϕ and α, and then on the size of path-formulas as per Definition 3.20. First, we prove the
base cases:

- α = a: Suppose MΓ,∆i,∆j |= a, iff ∆iRa∆j (by |=), iff @i〈a〉j ∈ Γ (by definition of
extracted model).

- α = @k: Suppose MΓ,∆i,∆j |= @k, iff nom(k) = ∆j . But by definition of nom, ∆j = ∆k,
and because we know that j ∈ ∆j we have j ∈ ∆k. Then, we have @kj ∈ Γ, and by agree,
@i@kj ∈ Γ.

- ϕ = p: MΓ,∆i |= p iff p ∈ V (∆i), iff @ip ∈ Γ.

- ϕ = j: MΓ,∆i |= j iff nom(j) = ∆i, iff ∆i = ∆j iff j ∈ ∆i, iff @ij ∈ Γ.

Now we prove the inductive cases:

- ϕ = ψ ∧ θ and ϕ = ¬ψ are direct from (IH1).

- α = [ψ]: MΓ,∆i,∆j |= [ψ] iff ∆i = ∆j and MΓ,∆i |= ψ. By (IH1), we have @iψ ∈ Γ and
j ∈ ∆i, then @ij ∈ Γ. As Γ is an MCS, we have @i(ψ ∧ j) ∈ Γ, and by idempotence of the
conjunction we have @i(ψ ∧ ψ ∧ j ∧ j) ∈ Γ. Also, 〈ε =e ε〉 is a theorem, by Nec we have
@i〈ε =e ε〉 ∈ Γ, then @i(ψ ∧ ψ ∧ j ∧ j ∧ 〈ε =e ε〉) ∈ Γ. Using =-test and =-comm we obtain
@i〈[ψ][j] =e [ψ][j]〉 ∈ Γ (which is the same as @i〈[ψ]〉j) as we wanted.

- α = aβ: For the left to right implication, letMΓ,∆i,∆j |= aβ iff there is some ∆k ∈M such
that MΓ,∆i,∆k |= a and MΓ,∆k,∆j , |= β. By (IH2), we have @i〈a〉k ∈ Γ and @k〈β〉j ∈ Γ,
then @i〈a〉k ∧ @k〈β〉j ∈ Γ. By agree, we have @i〈a〉k ∧ @i@k〈β〉j ∈ Γ, and with a simple
hybrid logic argument, we get @i(〈a〉k ∧@k〈β〉j) ∈ Γ. By bridge, we have @i〈a〉〈β〉j ∈ Γ,
hence by comp-dist @i〈aβ〉j ∈ Γ.

For the other direction, assume @i〈aβ〉j ∈ Γ. Then, by Corollary 3.19 there exists some
k such that ∆iRa∆k and @k〈β〉j ∈ Γ. Then, applying (IH2) twice, we get MΓ,∆i,∆k |= a
and MΓ,∆k,∆j |= β. Therefore, MΓ,∆i,∆j |= aβ as needed.

- α = @kβ and α = [ψ]β: these cases are similar to the previous one.

For node expressions of the form 〈α ∗ β〉 we need to do induction on the size of α and β.
Notice that by ∗-comm, @i〈α ∗ β〉 ∈ Γ iff @i〈β ∗ α〉 ∈ Γ. And by the semantic definition,
MΓ,∆i |= 〈α ∗ β〉 iff MΓ,∆i |= 〈β ∗ α〉. So we need only carry out the inductive steps for α.
Moreover, by comp-neutral, ` 〈α ∗ β〉 ↔ 〈αε ∗ β〉 which is also a validity. So we can assume
that every path ends in a test. The base case then is when |α|+ |β| = 2, and both α and β
are tests.

- ϕ = 〈[ψ] =e [θ]〉: direct from test-dist.

- ϕ = 〈[ψ] 6=e [θ]〉: By test-⊥ the formula is equivalent to ⊥, hence not in Γ. Moreover, by
the defined semantics the formula is unsatisfiable.

Now, let us consider |α|+ |β| ≥ 3:

- ϕ = 〈aβ =e γ〉: Let us prove the right to left direction. Suppose @i〈aβ =e γ〉 ∈ Γ. By
the Existence Lemma, there is ∆j ∈ M such that ∆iRa∆j , and @j〈β =e @iγ〉 ∈ Γ, for
some j ∈ Nom. Notice that |@j〈β =e @iγ〉| ≤ |@i〈aβ =e γ〉|. Applying (IH1) we obtain
MΓ,∆j |= 〈β =e @iγ〉, so there exists ∆1,∆2 ∈M such that

(1) MΓ,∆j ,∆1 |= β,
(2) MΓ,∆j ,∆2 |= @iγ,
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(3) ∆1 ∼e ∆2.

From 1 and ∆iRa∆j we getMΓ,∆i,∆1 |= aβ and from 2 and the semantic interpretation
of @ we get MΓ,∆i,∆2 |= γ. Then, together with 3 we get MΓ,∆i |= 〈aβ =e γ〉, as wanted.

For the other direction, suppose MΓ,∆i |= 〈aβ =e γ〉, iff there are ∆j ,∆k such that
MΓ,∆i,∆j |= aβ, MΓ,∆i,∆k |= γ and ∆j ∼e ∆k. First notice that MΓ,∆i,∆j |= aβ iff
there exists ∆t ∈M s.t. MΓ,∆i,∆t |= a and MΓ,∆t,∆j |= β. Then we have, ∆iRa∆t, and
by definition of MΓ we get @i〈a〉t ∈ Γ. On the other hand, by (IH2) on MΓ,∆t,∆j |= β we
obtain @t〈β〉j ∈ Γ. Since {@i〈a〉t,@t〈β〉j} ⊆ Γ, by comp-dist we have:

(1) @i〈aβ〉j ∈ Γ.

By (IH2) on MΓ,∆i,∆k |= γ, and by definition of MΓ together with ∆j ∼e ∆k we
obtain, respectively:

(2) @i〈γ〉k ∈ Γ, and
(3) @j〈ε =e @k〉 ∈ Γ.

By 1 and Corollary 3.19 there exists ∆l such that

(4) @l〈β〉j ∈ Γ.

(‡) From 2 we have @i〈γ〉k ∈ Γ and from 3 we can obtain @k〈ε =e @j〉 ∈ Γ, then we
have 〈@iγ〉k ∧ @k〈ε =e @j〉 ∈ Γ, by comp-dist. By bridge, 〈@iγ〉〈ε =e @j〉 ∈ Γ, then by
comp=-dist and back, we get 〈@iγ =e @j〉 ∈ Γ. Applying =-comm, comp-neutral, agree and
@-dist, @j〈ε =e @iγ〉 ∈ Γ.

Also, from 4 we have @l〈β〉j ∈ Γ, then @j〈ε =e @iγ〉 ∧ 〈@lβ〉j ∈ Γ (by MCS and
comp-dist), and by bridge we get 〈@lβ〉〈ε =e @iγ〉 ∈ Γ. By comp=-dist and comp-neutral,
〈@lβ =e @lβ@iγ〉 ∈ Γ, then by back, agree and @=-dist we have @l〈β =e @iγ〉 ∈ Γ. Then
we have

@l〈β =e @iγ〉 ∈ Γ

⇒ @i〈a〉〈β =e @iγ〉 ∈ Γ (∆iRa∆l, Prop. 3.17 item 2)

⇒ @i〈aβ =e a@iγ〉 ∈ Γ (comp=-dist)

⇒ @i〈aβ =e @iγ〉 ∈ Γ (back)

⇒ 〈@iaβ =e @i@iγ〉 ∈ Γ (comp=-dist)

⇒ 〈@iaβ =e @iγ〉 ∈ Γ (back)

⇒ @i〈aβ =e γ〉 ∈ Γ (@=-dist)

- ϕ = 〈[ψ]β =e γ〉: Let us prove the right to left direction. Suppose @i〈[ψ]β =e γ〉 ∈ Γ.
By =-test, we have @i(ψ ∧ 〈β =e γ〉) ∈ Γ, iff (by using an argument purely based on
modal reasoning), @iψ ∈ Γ and @i〈β =e γ〉 ∈ Γ. By (IH1) on both expressions we get
MΓ,∆i |= ψ and MΓ,∆i |= 〈β =e γ〉. Then, by the semantic interpretation of ∧ and [ψ],
we get MΓ,∆i |= 〈[ψ]β =e γ〉, as wanted.

For the other direction, suppose MΓ,∆i |= 〈[ψ]β =e γ〉, iff there are ∆j ,∆k such that
MΓ,∆i,∆j |= [ψ]β, MΓ,∆i,∆k |= γ and ∆j ∼e ∆k. Then, by (IH2) and definition of MΓ

we have:

(1) @i〈β〉j ∈ Γ,
(2) @i〈γ〉k ∈ Γ,
(3) @j〈ε =e @k〉 ∈ Γ, and
(4) @iψ ∈ Γ.
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Using the same argument as in (‡) the proof that @i〈[ψ]β =e γ〉 ∈ Γ is straightforward.

- ϕ = 〈@jβ =e γ〉: For the left to right direction supposeMΓ,∆i |= 〈@jβ =e γ〉, iff there are
∆k,∆l such that MΓ,∆i,∆k |= @jβ, MΓ,∆i,∆l |= γ and ∆k ∼e ∆l. Then, by (IH2) and
definition of MΓ we have:

(1) @i〈@jβ〉k ∈ Γ iff @j〈β〉k ∈ Γ,
(2) @i〈γ〉l ∈ Γ, and
(3) @l〈ε =e @k〉 ∈ Γ, iff @k〈ε =e @l〉 ∈ Γ.

By 1 and 3, applying bridge we get @j〈β〉〈ε =e @l〉 ∈ Γ, iff (by comp=-dist) @j〈β =e

β@l〉 ∈ Γ. By back, we get @j〈β =e @l〉 ∈ Γ, which is equivalent to @l〈ε =e @jβ〉 ∈ Γ (by
agree and comp=-dist). Together with 2 and bridge we get @i〈γ〉〈ε =e @jβ〉 ∈ Γ, hence
@i〈γ =e γ@jβ〉 ∈ Γ iff (by back and =-comm) @i〈@jβ =e γ〉 ∈ Γ.

For the other direction suppose @i〈@jβ =e γ〉 ∈ Γ. First notice that, in all the cases we
considered so far, the induction is on the path expression appearing on the left side of the =.
However, an analogous argument can be applied if we do induction in the path expression on
the right side of the =, by =-comm. Suppose we proceed as above for the node expression
〈@jβ =e γ〉. If we apply the exact same steps, we will find out that this time we need to do
induction on γ; but, as we mentioned, the cases for a and [ϕ] are symmetric in both sides of
the =. As a consequence, it all boils down to consider only the case γ = @kη.

Suppose @i〈@jβ =e @kη〉 ∈ Γ. By Existence Lemma we have @j〈β =e @kη〉 ∈ Γ, hence
by (IH1) MΓ,∆j |= 〈β =e @kη〉. By semantics of @, and the fact that MΓ is named,
MΓ,∆i |= 〈@jβ =e @kη〉.
- The cases involving 6=e are analogous, using item 1 from Proposition 3.17 to obtain
@j〈ε =e @k〉 /∈ Γ in item 3 above.

Lemma 3.22 (Frame Lemma). If Γ is a named, pasted and P-saturated MCS of HXP+Π+P,
then the underlying frame of MΓ satisfies FC(Π) ∧ FC(P).

Proof. Since MΓ is a named model and Γ contains all instances of elements of Π, it follows
that the underlying frame of MΓ satisfies FC(Π). Since MΓ is a named model and Γ is
P-saturated, it follows that the underlying frame of MΓ satisfies FC(P).

As a result we obtain the completeness result.

Theorem 3.23 (Strong Completeness). Let Π be a set of pure axioms and P a set of
existential saturation rules. Let C = Mod(F) for F the class of all frames satisfying FC(Π) ∧
FC(P). Then, the axiomatic system HXP + Π + P is strongly complete for C.

Proof. We need to prove that every set of HXPath=-formulas Σ is consistent if and only if
Σ is satisfiable in an abstract hybrid data model satisfying the frame properties defined by
Π and P.

For any consistent Σ, we can use the Rule Saturation Lemma to obtain Σω, which is
a named, pasted and P-saturated MCS in HXPath= extended by a set Nom′ of additional
nominals. Let MΣω = 〈M, {∼e}e∈Eq, {Ra}a∈Mod,V ,nom〉 be the extracted model from Σω.
Let i ∈ Σω, for all ϕ ∈ Σ, by @-intro we have @iϕ ∈ Σω since Σω is MCS. Then by the
Truth Lemma, MΣω ,∆i |= ϕ. By the Frame Lemma, MΣω satisfies all required frame
properties.

Because the class of abstract data models is a conservative abstraction of concrete data
models, we can conclude:
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Corollary 3.24. The axiomatic system HXP + Π + P is strongly complete for the class of
concrete hybrid data models satisfying the frame conditions FC(Π) ∧ FC(P).

3.4. Completeness for path formulas. The main contribution of this article is a charac-
terization of (local) semantic consequence between node formulas by means of an axiomatic
system. Given that soundness of an axiomatic system is usually granted, this is the main
outcome of the strong completeness result we just proved. In the setting of XPath it also
makes sense to discuss the issue of inference between path formulas. Path inference can
be traced back to [Pra91], in the context of dynamic algebras. We will now show how
Theorem 3.23 can also be used to characterize path inference.

First, recall that previous work like [tCLM10, ADFF17] provided equational axioma-
tizations that characterize theorems of the form ` ϕ ≡ ψ (for ϕ,ψ node expressions) and
` α ≡ β (for α, β path expressions). The first are obviously covered by our results that
characterize theoremhood for arbitrary node expressions (in this case ≡ is nothing more
than ↔). For equivalence between path formulas the following proposition suffices:

Proposition 3.25. Let α, β be path expressions in HXPath=, then |= α ≡ β iff |= @i〈α〉j ↔
@i〈β〉j for i, j not appearing in α, β.

Hence, completeness for equivalence theorems between path formulas follow from The-
orem 3.23. More interesting is to consider whether a strong completeness result for path
consequence is also possible. We need first to introduce this notion. There exists at least
two natural possible definitions:

Definition 3.26. Let Λ ∪ {α} be a set of path formulas in HXPath=, and let C be a class
of models. Define

• Λ |=1
C α iff for any model M∈ C, (∀m,n, M,m, n |= Λ implies M,m, n |= α).

• Λ |=2
C α iff for any model M∈ C, (∀m,n, M,m, n |= Λ implies ∀m,n, M,m, n |= α).

As before we write |= instead of |=C if the intended class is clear from context. From
the above definition it is easy to show that |=1

C implies |=2
C but not vice versa. Now, both

|=1 and |=2 can be captured using Theorem 3.23.

Theorem 3.27. Let Π be a set of pure axioms and P be a set of existential saturation rules.
Let C = Mod(F) for F the class of frames satisfying FC(Π)∧ FC(P). Let Λ∪ {α} be a set of
path expressions in HXPath= then

(1) Λ |=1
C α implies {@i〈β〉j | β ∈ Λ} ` @i〈α〉j, for i, j not in Λ ∪ {α}.

(2) Λ |=2
C α implies {@i〈β〉j | β ∈ Λ} ` @k〈α〉l, for i, j, k, l not in Λ ∪ {α}.

Proof. The result is a corollary of Theorem 3.23 because the following hold:

(1) Λ |=1
C α iff {@i〈β〉j | β ∈ Λ} |=C @i〈α〉j, for i, j not in Λ ∪ {α}.

(2) Λ |=2
C α iff {@i〈β〉j | β ∈ Λ} |=C @k〈α〉l, for i, j, k, l not in Λ ∪ {α}.

3.5. Some Concrete Examples of Pure Extensions. In this section we introduce some
extensions of HXPath=, and their corresponding extended axiomatic systems. In all cases,
we can apply the result from previous section and automatically obtain completeness, since
we only use pure axioms and/or existential saturation rules.
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Backwards Navigation. We start with the language HXPath=(9), i.e., HXPath= extended
with the path expression a9 (backwards navigation). The intuitive semantics for a9 is

M, x, y |= a9 iff xR−1
a y,

i.e., a9 is interpreted on the inverse of the accessibility relation associated to a. Equivalently,

M, x, y |= a9 iff yRax.

In fact, following our presentation, a9 is an additional modal operator from Mod (to
which all rules and axioms of HXP apply), and in addition we will insist that in models of
HXPath=(9), this accessibility relation is always interpreted as the inverse of the one for a.

Formally, consider two modal symbols a and a9 in Mod (and assume that their respective
accessibility relations in a model are Ra and Ra9). Define the set Π1 of pure axioms that
characterizes the interaction between a and a9 as

Axioms for a, a9-interaction
down-up ` i→ [a]〈a9〉i
up-down ` i→ [a9]〈a〉i

Since the axioms presented above are pure, the axiom system we obtain is complete for
models obtained from frames satisfying FC(Π1). It is a simple exercise to verify that FC(Π1)
is equivalent to ∀x.∀y.(Ra(x, y)↔ Ra9(y, x)).

Proposition 3.28. HXP + Π1 is sound and strongly complete for HXPath=(9).

Sibling Navigation. We consider now the extension of HXPath=(9) with sibling navigation
s, denoted HXPath=(9, s). Intuitively,

M, x, y |= s iff x 6= y and there is some z s.t. zRax and zRay,

where a ∈ Mod is fixed.
Consider now three modal symbols a, a9 and s in Mod (and their respective accessibility

relations Ra, Ra9 and Rs). Define the set Π2 of pure axioms that characterizes their
interaction as the axioms in Π1 together with

Axioms for siblings
is-sib ` 〈s〉i→ 〈a9〉〈a〉i
has-sib ` ¬i ∧ 〈a9〉〈a〉i→ 〈s〉i
irref-sib ` i→ ¬〈s〉i

As Π2 extends Π1, FC(Π2) ensures that Ra9 and Ra are inverses, and in addition that
∀x.∀y.(Rs(x, y)↔ ((x 6= y) ∧ (∃z.(Ra9(x, z) ∧Ra(z, y))))).

Proposition 3.29. HXP + Π2 is sound and strongly complete for HXPath=(9, s).

Data Equality Properties. As a final, very simple, example let us consider pure axioms
defining the behaviour of equality tests. Consider a language with two equality test operators
=e and =d such that one defines finer equivalence classes than the other (i.e., if ∼e and ∼d

are their respective accessibility relations we want to ensure that ∼e ⊆ ∼d). Let us call this
logic HXPath=(⊆). Let Π3 be the singleton set containing the axiom

Axioms for equality inclusion
incl ` 〈@i =e @j〉 → 〈@i =d @j〉
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FC(Π3) is equivalent to ∀x.∀y.(De(x, y)→ Dd(x, y)).

Proposition 3.30. HXP + Π3 is sound and strongly complete for HXPath=(⊆).

4. Hybrid XPath on Trees

The Henkin-style model construction from Section 3.3 provides us with the tools to obtain
complete axiomatizations for a wide variety of extensions of HXPath=. However there are
interesting cases in which completeness is not a direct corollary of the results we already
presented. One such case is the class of tree models which we call Ctree.

We will devote this section to investigate hybrid XPath over the class of tree models.
First, in Section 4.1 we will show that it is not possible to get a strongly complete finitary
first-order axiomatization over trees. In Section 4.2 we show that it is possible to obtain a
strongly complete infinite first-order axiomatization over a slightly larger class of models,
while in Section 4.3 we prove that this axiomatization is weakly complete for Ctree.

Tree models are interesting in this context since XPath is commonly used as a query
language over XML documents; and mathematically, the relational structure of an XML
document is a tree. In our setting, this consists of asking that the union of all relations in a
model has a tree-shape.

Without loss of generality, in the rest of this section we will work in a mono-modal setting,
with a unique basic path expression a, and with single equality/inequality comparisons
denoted = and 6=. The path expression a will be interpreted over an accessibility relation
Ra, representing the union of all the accessibility relations in the model. To achieve this,
we need to work in a signature where the set Mod is finite. Therefore, we can include the
followig additional axiom:

a-definition 〈a〉> ↔ 〈a1 ∪ . . . ∪ ak〉> with Mod = {a1, . . . , ak}

It is a straightforward exercise to show that this axiom characterizes Ra as the union of
all the relations of the model, in a signature where Mod is finite. As a consequence, in this
section we will focus on axiomatizing Ra as the acessibility relation of a tree. In this way,
we obtain the intended meaning for XPath as a query language for XML documents.

Hence, a model in this signature is a tuple M = 〈M,∼, Ra,V ,nom〉, in which we have
a unique data equality relation ∼ and the accessibility relation Ra.

4.1. Failure of Strong Completeness over Trees. Let us start by formally defining the
structures we will consider.

Definition 4.1. Ctree is defined as the class of abstract hybrid data models 〈M,∼, Ra,V ,nom〉
satisfying:

• there is a unique point in M without predecessors by Ra, which we call the root ;
• every node n ∈M is reachable from the root by Ra in zero or more steps;
• for all n, l, l′ ∈M , if lRan and l′Ran, then l = l′; and
• there is no n ∈M such that n is reachable by Ra from itself in one or more steps.

Intuitively, a model 〈M,∼, Ra,V ,nom〉 is in Ctree if 〈M,Ra〉 is a tree.
In order to show that there is no finitary first-order axiomatization for HXPath= over

Ctree, we will use a standard tool from first-order model theory: the compacteness theorem.
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In particular, we will show that HXPath= over Ctree is not compact, and consequently, a
finitary axiomatization may not exist (see, e.g., [End01] for details).

Proposition 4.2. HXPath= is not compact over the class Ctree.

Proof. We need to show that there exists an infinite set of HXPath=-formulas such that
every finite subset Γfin ⊂ Γ is satisfiable in the class Ctree, but Γ is not.

Without loss of generality, we will use natural numbers as names for nominals, i.e.,
Nom = N. We start by defining the following formula indicating that, at the given point,
the nominal k is the only one satisfied from the set {0, . . . , n}:

Onlynk = @k(
∧

0≤j 6=k≤n
¬j).

We can define for n ≥ 0:

Lin(n) =
∧

0<i≤n
@i(〈a〉i− 1) ∧

∧
0≤i≤n

Onlyni .

The formula Lin(n) states that there exists a linear chain of named states of length n. Now
let us define the set ΓLin = {Lin(n) | n ∈ N}. Notice that ΓLin enforces structures with at
least one infinite branch of the shape

. . .
3 2 1 0

ΓLin satisfies the following properties:

(1) ΓLin does not have a model in Ctree, since it enforces an infinite chain without a root
(since every node has a predecessor), and

(2) for all finite sets Γfin
Lin ⊂ ΓLin, Γfin

Lin has a model in Ctree.

Hence, the proposition follows.

Theorem 4.3. There is no finitary first-order axiomatization which is strongly complete
for HXPath= over Ctree.

Proof. Suppose there is some finitary first-order axiomatization H which is sound and strongly
complete for HXPath= over Ctree, and let ` be obtained from H. For any set of formulas Γ,
we know:

(†) if for all finite set Γfin ⊆ Γ, Γfin is consistent (i.e., Γfin 6` ⊥), then Γ is consistent.

This follows from the fact that any proof is finite, so in order to make Γ inconsistent,
only a finite set of its formulas is needed.

Since H is strongly complete, by item 2 in Proposition 4.2, each set Γfin
Lin defined therein

is consistent. Then, by item (†) also ΓLin is consistent, and again by strong completeness of
H we can conclude that ΓLin has a model in Ctree, contradicting item 1 in Proposition 4.2.
Therefore, there is no finitary first-order axiomatic system H strongly complete for Ctree.

Corollary 4.4. There are no Π and P such that HXP+ Π + P is strongly complete for Ctree.
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4.2. Axiomatizing the Class Cforest− with Pure Axioms. Define the class Cforest− as
follows:

Definition 4.5. Let Cforest− be the class of models 〈M,∼, Ra,V ,nom〉 such that

• there is no n ∈M such that n is reachable by Ra from itself in one or more steps;
• for all n ∈M,n has at most one predecessor by Ra.

Notice that the class Cforest− admits forests made of a collection of models that consist
of a tree, possibly extended with an infinite chain attached to the root. Models from the
class Cforest− differ from those in Ctree, given that we relaxed the first two conditions from
Definition 4.1. We will introduce a strongly complete axiomatization for Cforest− . Let

Πforest− be the set of axioms below. Define a1 as a, and an+1 as aan.

Axioms for forests
no-loops ` @i¬〈an〉i for all n > 0

no-join ` @j〈a〉i ∧@k〈a〉i→ @jk

In the table above, no-loops is an infinite set of axioms preventing loops of any size,
whereas no-join prevents the existence of more than one predecesor. Since our axioms are
pure and enforce the appropriate structures, from Theorem 3.23 we get:

Theorem 4.6. The axiomatic system HXP + Πforest− is strongly complete for Cforest−.

4.3. A Weakly Complete Axiomatization for Trees. In this section we will show that
the axiom system HXP + Πforest− introduced before, is weakly complete for Ctree. Recall
that for weak completeness we need to show that for any HXPath=-formula ϕ, |= ϕ implies
` ϕ. In order to achieve this result we need to work on the extracted model.

In what follows we use mRh
an to denote mRau1Ra . . . Rauh−1Ran, for some sequence of

states u1, . . . , uh−1.

Definition 4.7. Let M = 〈M,∼, Ra,V ,nom〉 be a hybrid data model, N ⊆ Nom, N 6= ∅,
and n ≥ 0. We define M�(n,N) as

M�(n,N) = 〈S,∼�S , Ra�S ,V�S ,nom�S〉,
where

• S = {m | there is some i ∈ N such that nom(i)→h m, with h ≤ n},
• ∼�S = ∼ ∩ (S × S);
• Ra�S = Ra ∩ (S × S);
• V�S(m) = V (m), for all m ∈ S; and

• nom�S(i) =

{
nom(i) if i ∈ N
m if i /∈ N, m ∈ S arbitrary.

Intuitively, M�(n,N) is the restriction of M to the states reached from a nominal in N ,
in at most n steps. It is obvious that M�(n,N) has finite depth if N is finite.

In what follows, we will write Nom(ϕ) to denote the set of nominals appearing in the
formula ϕ.

Proposition 4.8. Let ϕ be an HXPath=-formula, and let MΓ = 〈M,∼, Ra,V ,nom〉 be the
extracted model from some HXP + Πforest− MCS Γ, such that MΓ,∆i |= ϕ, for some ∆i.
Let (MΓ)�(md(ϕ),Nom(ϕ)∪{i}) = 〈S,∼�S , Ra�S ,V�S ,nom�S〉, then,



28 C. ARECES AND R. FERVARI

(1) ∆i ∈ (MΓ)�(md(ϕ),Nom(ϕ)∪{i}), and
(2) (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆i |= ϕ.

Proof. Item 1 follows from the definition of (MΓ)�(md(ϕ),Nom(ϕ)∪{i}), since i ∈ ∆i by MCS.
For item 2, we will prove a stronger result.

(IH1): For all α ∈ PExp such that md(α) ≤ md(ϕ) and Nom(α) ⊆ Nom(ϕ), if ∆j ,∆k ∈
(MΓ)�(md(ϕ),Nom(ϕ)∪{i}) then

MΓ,∆j ,∆k |= α iff (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆j ,∆k |= α.

(IH2): For all ψ ∈ NExp such that md(ψ) ≤ md(ϕ) and Nom(ψ) ⊆ Nom(ϕ), if ∆j ∈
(MΓ)�(md(ϕ),Nom(ϕ)∪{i}) then

MΓ,∆j |= ψ iff (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆j |= ψ.

The proof is by induction on α and ψ. Assume ∆j ,∆k ∈ (MΓ)�(md(ϕ),Nom(ϕ)∪{i}). Let us
start by the base cases.

- α = a: Suppose MΓ,∆j ,∆k |= a, iff ∆jRa∆k. Since ∆j ,∆k ∈ (MΓ)�(md(ϕ),Nom(ϕ)∪{i}), by
definition we have ∆j →�S ∆k. Therefore, (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆j ,∆k |= a. The other
direction is straightforward, since ∆jRa�S∆k implies ∆jRa∆k.

- α = @l: Suppose MΓ,∆j ,∆k |= @l, iff nom(l) = ∆k. By assumption, Nom(@l) ⊆ Nom(ϕ),
then nom�S(l) = nom(l) = ∆k, therefore (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆j ,∆k |= @l. The other
direction follows from the fact that Nom(@l) = {l} ⊆ Nom(ϕ), then nom(l) = ∆k.

- ψ = p: Suppose MΓ,∆j |= p, iff p ∈ V (∆j). By assumption ∆j ∈ S, then p ∈ V�S(∆j).
Hence, (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆j |= p. The other direction is similar.

- ψ = k ∈ Nom(ϕ): Suppose MΓ,∆j |= k, iff nom(k) = ∆j . By assumption ∆j ∈ S, then
nom�S = ∆j . Hence, (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆j |= k. The other direction is similar.

Now we prove the inductive cases.

- α = [θ]: Suppose MΓ,∆j ,∆k |= [θ], iff ∆j = ∆k and MΓ,∆k |= θ. By ∆j ∈ S and (IH2),
we have (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆j |= θ, iff (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆j ,∆k |= [θ]. For the
other direction, use similar steps.

- α = βγ: Suppose MΓ,∆j ,∆k |= βγ, iff there exists ∆l such that MΓ,∆j ,∆l |= β and
MΓ,∆l,∆k |= γ. Notice that since ∆j ,∆k ∈ S, and md(α) ≤ md(ϕ), we have ∆j →n ∆l,
for some n ≤ md(ϕ), then ∆l ∈ S. By (IH1), we have (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆j ,∆l |= β
and (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆l,∆k |= γ. Therefore, (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆j ,∆k |= βγ.
The other direction is direct from (IH1).

- ψ = ¬θ and ψ = θ ∧ θ′: are direct from (IH2).

- ψ = 〈β = γ〉: MΓ,∆j |= 〈β = γ〉, iff there exists ∆k,∆l such that MΓ,∆j ,∆k |= β,
MΓ,∆j ,∆l |= γ and ∆k ∼ ∆l. From the fact that md(ψ) ≤ md(ϕ), we have md(β) ≤ md(ϕ)
and md(γ) ≤ md(ϕ). Then, ∆j →n ∆k, and ∆j →m ∆l, for some n,m ≤ md(ϕ). As
a consequence, ∆k,∆l ∈ S, then by (IH1) we get (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆j ,∆k |= β
and (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆j ,∆l |= γ. On the other hand, since ∆k ∼ ∆l, we also get
∆k ∼�S ∆l, therefore (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆j |= 〈β = γ〉. The other direction follows
from (IH1).

- ψ = 〈β 6= γ〉: Analogous to the previous case.

With this construction at hand, we obtain almost the structure of the model we are
looking for.
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Lemma 4.9. Let MΓ be the extracted model for some MCS Γ, n ∈ N and N ⊆ Nom finite.
(MΓ)�(n,N) is a forest composed by a finite number of disjoint trees.

Proof. It is a straightforward exercise to check that from each nominal i ∈ N , we generate a
tree (remember that by no-loops there are no cycles in MΓ, and by no-join each node has
at most one precedessor). Since N is finite, we generate only a finite number of trees.

Definition 4.10. Let M�(n,N) be a model as in Definition 4.7. We define MIT
�(n,N) as the

tree resulting of adding a new node r to M�(n,N), and edges from r to the root to each of

its subtrees. Essentially, MIT
�(n,N) is of the form:

r

i1 i2

i4

i3
...

in

Proposition 4.11. Let MΓ be the extracted model for some HXP + Πforest− MCS Γ and
let ϕ be an HXPath=-formula such that MΓ,∆i |= ϕ, for some ∆i. Then,

(1) (MΓ)IT�(md(ϕ),Nom(ϕ)∪{i}) is a tree of finite height, and

(2) (MΓ)IT�(md(ϕ),Nom(ϕ)∪{i}),∆i |= ϕ.

Proof. For 1, by construction it is obvious that (MΓ)IT�(md(ϕ),Nom(ϕ)∪{i}) is a tree of fi-

nite height. To prove 2 we can use a bisimulation-based argument. Define Z as the
identity relation between the states in (MΓ)�(md(ϕ),Nom(ϕ)∪{i}) and (MΓ)IT�(md(ϕ),Nom(ϕ)∪{i})
(therefore r is not in the relation). It is a straightforward exercise to show that Z is an
HXPath=-bisimulation. Since (MΓ)�(md(ϕ),Nom(ϕ)∪{i}),∆i |= ϕ, by Proposition 2.11 we get

(MΓ)IT�(md(ϕ),Nom(ϕ)∪{i}),∆i |= ϕ.

Because we were able to transform the extracted model into a model in Ctree which still
satisfies the intended formula, we obtain the intended completeness result.

Theorem 4.12. The system HXP + Πforest− is weakly complete for Ctree.

Moreover, (MΓ)IT�(md(ϕ),Nom(ϕ)∪{i}) can be transformed into a bounded finite model, and

hence, also decidability of the validity problem follows.

Definition 4.13. Let ϕ be an HXPath=-formula, and let M = 〈M,∼, Ra,V ,nom〉 ∈ Ctree.
We write m ≡Γ m

′ if for all n, nRam if and only if nRam
′, and M,m |= ϕ if and only if

M,m′ |= ϕ, for all ϕ ∈ Γ. If Γ is finite, ≡Γ is an equivalence relation of finite index.
Given an equivalence relation ≡ over a set M , a selection function s for ≡ is a function

s : M/≡ →M such that s([m]) = m′, for m′ ∈ [m] arbitrary.

Definition 4.14. Let (MΓ)IT�(md(ϕ),Nom(ϕ)∪{i}) = 〈M,∼, Ra,V ,nom〉 be as in Definition 4.10,

let ϕ be an HXPath=-formula, and let s be a selection function for ≡Sub(ϕ). We define

(MΓ)FT
�(md(ϕ),Nom(ϕ)∪{i}) = 〈F,∼�F , Ra�F ,V�F ,nom�F 〉 where

• F = {s([m]) | m ∈M};
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• ∼�F = ∼ ∩ (F × F );
• Ra�F = Ra ∩ (F × F );
• V�F (m) = V (m), for all m ∈ F ; and

• nom�F (i) =

{
nom(i) if i ∈ Nom(ϕ)
m if i /∈ Nom(ϕ),m ∈ F arbitrary.

Proposition 4.15. Let MΓ be the extracted model for some HXP + Πforest− MCS Γ and
let ϕ be an HXPath=-formula such that MΓ,∆i |= ϕ, for some ∆i. Then,

(1) (MΓ)FT
�(md(ϕ),Nom(ϕ)∪{i}) is a finite tree, and

(2) (MΓ)FT
�(md(ϕ),Nom(ϕ)∪{i}), s([∆i]) |= ϕ.

Proof. 1 follows from the fact that (MΓ)IT�(md(ϕ),Nom(ϕ)∪{i}) is a tree of finite height, and the

selection function selects only one representant for each equivalence class, which gives us
finite width. In order to prove 2, let d(m) be the distance from m to the root, define:

mZmd(ϕ)s([m]) if d(m) ≤ d(∆i)
mZmax(md(ϕ)−(d(∆i)−d(m)),0)s([m]) if d(m) > d(∆i).

We claim

(MΓ)IT�(md(ϕ),Nom(ϕ)∪{i}),∆i -md(ϕ) (MΓ)FT
�(md(ϕ),Nom(ϕ)∪{i}), s([∆i]),

therefore (by Propositions 2.13 and 4.11), (MΓ)FT
�(md(ϕ),Nom(ϕ)∪{i}), s([∆i]) |= ϕ.

As a consequence we get:

Theorem 4.16. HXPath= on trees has the bounded model property.

The model constructed in Definition 4.15 has size at most exponential in the input
formula. Moreover, the algorithm below shows that model checking for HXPath= can be
solved in polynomial time. Thus, for a given formula we can guess a model of exponential
size and do model checking in polynomial time, solving the problem in NExpSpace (which
coincides with the class ExpSpace).

Let M = 〈M, {∼e}e∈Eq, {Ra}a∈Mod,V ,nom〉 be a model and ϕ a formula in HXPath=,
let e1, . . . , en be an enumeration, ordered by size, of the subexpressions of ϕ. Define the func-
tions Labelne and Labelpe inductively as follows. Initially, set Labelne(m) = Labelpe(m1,m2) =
{} for any m, m1, m2. Then extend these labeling functions using the following rules.

(1) ei = a ∈ Mod: add(Labelpe(m1,m2), a) iff Ra(m1,m2).
(2) ei = @i: add(Labelpe(m1,m2),@i) iff m2 = nom(i).
(3) ei = [ψ]: add(Labelpe(m,m), [ψ]) iff m ∈ Labelne(ψ).
(4) ei = aα: add(Labelpe(m1,m2), aα) iff there ism3 s.t.Ra(m1,m3) and α ∈ Labelpe(m3,m2).
(5) ei = @iα: add(Labelpe(m1,m2)@iα) iff α ∈ Labelpe(nom(i),m2).
(6) ei = [ψ]α: add(Labelpe(m1,m2), [ψ]α) iff ψ ∈ Labelne(m1) and α ∈ Labelpe(m1,m2).
(7) ei = p ∈ Prop: add(Labelne(m), p) iff p ∈ V (m).
(8) ei = i ∈ Nom: add(Labelne(m), i) iff m = nom(i).
(9) ei = ¬ψ: add(Labelne(m),¬ψ) iff ψ 6∈ Labelne(m).

(10) ei = ψ1 ∧ ψ2: add(Labelne(m), ψ1 ∧ ψ2) iff ψ1, ψ2 ∈ Labelne(m).
(11) ei = 〈α1 =e α2〉: add(Labelne(m), 〈α1 =e α2〉) iff there arem1,m2 s.t. α1 ∈ Labelpe(m,m1),

α2 ∈ Labelpe(m,m2) and m1 ∼e m2.
(12) ei = 〈α1 6=e α2〉: add(Labelne(m), 〈α1 6=e α2〉) iff there arem1,m2 s.t. α1 ∈ Labelpe(m,m1),

α2 ∈ Labelpe(m,m2) and it is not the case that m1 ∼e m2.
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As a result we obtain the following upper bound for HXPath=-satisfiability in Ctree.

Corollary 4.17. The satisfiability problem for HXPath= on trees is decidable in ExpSpace.

5. Decidability via Filtrations

In the previous section we already obtained decidability for HXPath= on trees. In this
section we introduce filtrations, a notion which will help us to establish a bounded finite
model property and an upper bound for the complexity of satisfiability for HXPath=(9)3

over the class of all abstract hybrid data models. Recall that HXPath=(9) is the extension
of HXPath= with inverse modalities.

In Section 2 we introduced path expressions of the form α ∪ β as an abbreviation, but
this definition potentially leads to an exponential blow up in the size of the formula. In this
section we will consider ∪ as part of the language of HXPath=(9) to avoid this blow up.

Definition 5.1. Let Σ be a set of formulas of HXPath=. We say that Σ is closed if:

• ¬ϕ ∈ Σ implies ϕ ∈ Σ
• ϕ ∧ ψ ∈ Σ implies ϕ,ψ ∈ Σ
• 〈α ∗ β〉 ∈ Σ implies 〈α〉>, 〈β〉> ∈ Σ
• 〈[ϕ]〉> ∈ Σ implies ϕ ∈ Σ
• 〈@i〉> ∈ Σ implies i ∈ Σ
• 〈αβ〉> ∈ Σ implies 〈α〉>, 〈β〉> ∈ Σ
• 〈α ∪ β〉> ∈ Σ implies 〈α〉>, 〈β〉> ∈ Σ.

Definition 5.2. Let Σ be a closed set of formulas, and M be an abstract hybrid data
model with m,n states in M. We define m!Σ n if and only if for all ϕ ∈ Σ (M,m |= ϕ
iff M, n |= ϕ).

Now let us introduce filtration, the construction that will help us to obtain a small
model property and give us decidability.

Definition 5.3 (Filtrations). Let M = 〈M, {∼e}e∈Eq, {Ra}a∈Mod,V ,nom〉, be an abstract

hybrid data model, and Σ a closed set of formulas. A filtration of M via Σ is any Mf =

〈Mf , {∼f
e}e∈Eq, {Rf

a}a∈Mod,V
f ,nomf 〉, such that

• Mf = M/!Σ

• If mRan then [m]Rf
a [n]

• If [m]Rf
a [n] then for all 〈a〉> ∈ Σ, for all m′ ∈ [m] there exists n′ ∈ [n] such that

M,m′, n′ |= a

• [m] ∼f
e [n] iff m ∼e n

• nomf (i) = [nom(i)]
• V f ([m]) = {p | p ∈ V (m)}.
The smallest filtration is a filtration that satisfies

[m]Rf
a [n] iff there exist m′ ∈ [m], n′ ∈ [n] such that m′Ran

′.

3In [AFS17] it has been proved that the satisfiability problem for HXPath= with a single accessibility
relation and a single data relation is PSpace-complete. However, for multiple relations the exact complexity
is unknown.
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Theorem 5.4. Let M be an abstract hybrid data model and Mf a filtration of M for a
closed set Σ. Then

(1) For all ϕ ∈ Σ, for all m ∈M, Mf , [m] |= ϕ iff M,m |= ϕ, and
(2) For all 〈α〉> ∈ Σ, for all m,n ∈ M, Mf , [m], [n] |= α iff for all m′ ∈ [m] there exists

n′ ∈ [n] such that M,m′, n′ |= α.

Proof. By structural induction. First we prove 1. The base and Boolean cases are simple.
Let us consider 〈α =e β〉 ∈ Σ. Mf , [m] |= 〈α =e β〉 iff there are [n], [u] such that

(i) Mf , [m], [n] |= α iff (by IH and 〈α〉> ∈ Σ) there exist m′ ∈ [m], n′ ∈ [n] such that
M,m′, n′ |= α,

(ii) Mf , [m], [u] |= β iff (by IH and 〈β〉> ∈ Σ) there exist m′′ ∈ [m], u′ ∈ [u] such that
M,m′′, u′ |= β, and

(iii) [n] ∼f
e [u] iff (definition ofMf ) n ∼e u. Since [n] = [n]′ and [u] = [u]′ we have n′ ∼e u

′.

Notice that the problem is that m′ might be different from m′′. Suppose for contradiction
that M,m′, u′ 6|= β. Since 〈β〉> ∈ Σ, m′ ∈ [m], and u′ ∈ [u], by using (ii) above we get
Mf , [m], [u] 6|= β, which is a contradiction. Therefore, M,m′ |= 〈α =e β〉. The case for
〈α 6=e β〉 is similar.

Now let us prove 2:
- Case 〈[ϕ]〉> ∈ Σ. For the left to the right direction, supposeMf , [m], [n] |= [ϕ], iff [m] = [n]
and Mf , [m] |= ϕ. By 1 we have M,m |= ϕ, then by definition of [m], M,m′ |= ϕ, for all
m′ ∈ [m]. Hence M,m′,m′ |= [ϕ] as wanted, since m′ ∈ [n].

For the other direction, suppose that for all m′ ∈ [m] there exists n′ ∈ [n] s.t. M,m′, n′ |=
[ϕ]. Then m′ = n′ andM,m′ |= ϕ. By 1,Mf , [m′] |= ϕ, and since [m] = [m′],Mf , [m] |= ϕ.
Therefore Mf , [m], [n] |= [ϕ], because n′ = m′ implies [n] = [n′] = [m′] = [m].

- Case 〈@i〉> ∈ Σ. For the left to the right direction suppose Mf , [m], [n] |= @i, iff
nomf (i) = [n]. By definition of nomf , we have nomf (i) = [nom(i)], then nom(i) = n.
Hence M,m, n |= @i.

For the other direction, suppose that for all m′ ∈ [m] there exists n′ ∈ [n] s.t. M,m′, n′ |=
@i, iff nom(i) = n′. Then [n′] = {n′} = [n], therefore Mf , [m], [n] |= @i.

- Case 〈a〉> ∈ Σ. For the left to the right direction suppose Mf , [m], [n] |= a, iff [m]Rf
a [n].

Then, since 〈a〉> ∈ Σ, for all m′ ∈ [m] there exists n′ ∈ [n] s.t. M,m′, n′ |= a (by the second

condition on the definition of Rf
a ), as wanted.

For the right to the left direction, suppose for all m′ ∈ [m] there exists n′ ∈ [n] s.t.

M,m′, n′ |= a. Then m′Ran
′, and by the first condition of the definition of Rf

a we have

[m′]Rf
a [n], iff [m]Rf

a [n]. Hence, Mf , [m], [n] |= a.

- Case 〈αβ〉> ∈ Σ. For the left to the right direction suppose Mf , [m], [n] |= αβ, iff there
exists [z] such that Mf , [m], [z] |= β and Mf , [z], [n] |= αβ. By IH, for all m′ ∈ [m] there
exists z′ ∈ [z] s.t. M,m′, z′ |= α and for all z′ ∈ [z] there exists n′ ∈ [n] s.t. M, z′, n′ |= β.
This implies that for all m′ ∈ [m] there exists n′ ∈ [n] s.t. M,m′, n′ |= αβ.

For the other direction, suppose for all m′ ∈ [m] there exists n′ ∈ [n] s.t. M,m′, n′ |= αβ.
Then there exists z′ s.t. M,m′, z′ |= α and M, z′, n′ |= β. By IH we have Mf , [m], [z′] |= α
and Mf , [z′], [n] |= β. Hence Mf , [m], [n] |= αβ.

- Case 〈α ∪ β〉> ∈ Σ. For the left to the right direction suppose Mf , [m], [n] |= α ∪ β, iff
Mf , [m], [n] |= α or Mf , [m], [n] |= β. By IH, for all m′ ∈ [m] there exists n′ ∈ [n] s.t.
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M,m′, n′ |= α or M,m′, n′ |= β. This implies that for all m′ ∈ [m] there exists n′ ∈ [n] s.t.
M,m′, n′ |= α ∪ β.

For the other direction, suppose for all m′ ∈ [m] there exists n′ ∈ [n] s.t. M,m′, n′ |= α∪
β, iff M,m′, n′ |= α or M,m′, n′ |= β. By IH we have Mf , [m], [n] |= α or Mf , [m], [n] |= β.
Hence Mf , [m], [n] |= α ∪ β.

As it happens for many modal logics the previous result gives us a bounded model
property for satisfiability: if a formula ϕ is satisfiable it is satisfiable in a model of size at
most exponential in the size of ϕ. Moreover, filtrations preserve some structural properties
of the accessibility relations. In particular the following is true:

Proposition 5.5. Let M = 〈M, {∼e}e∈Eq, {→a}a∈Mod,V ,nom〉 be a model, and let Mf be

the smallest filtration of M. Then, a9 = (a)−1 implies (a9)f = (af )−1

Proof. Suppose that a9 = (a)−1. We want to prove that (a9)f = (af )−1. Then suppose

[m]Rf
a9 [n]. Since f is the smallest filtration, there exist m′ ∈ [m], n′ ∈ [n] such that m′Ra9n

′.

But by hypothesis, we have n′Ram
′, and by definition of filtration we get [n′]Rf

a [m′]. Since

[m′] = [m] and [n′] = [n], we obtain [n]Rf
a [m].

As a result we obtain an upper bound for the complexity of satisfiability.

Corollary 5.6. The satisfiability problem of HXPath=(9) is in NExpTime.

On the other hand, if we consider sibling navigation the argument does not work. In
the figure below we represent a relation Ra by black arrows, and the sibling relation Rs

by dotted arrows. Let Σ = {〈a〉>}. The model on the right is the filtration by Σ of the
model on the left. As we can see, any filtration collapses v and u into a unique equivalence
class with a reflexive arrow, but the sibling relation must be irreflexive. Hence the notion of
filtration we introduced is not appropriate to handle siblings.

M
w

v u

Mf

{w}

{v, u}
Finally, we show that filtration does not work for proving that the satisfiability problem

for HXPath= over Ctree is decidable. This is why, in order to show Corollary 4.17 we used
a more specialized method. Consider again Σ = {〈a〉>}. The model on the right is the
filtration by Σ of the model on the left (assuming all nodes are equal for the data relation).
Any filtration collapses all nodes from M into a single reflexive node. Clearly, Mf /∈ Ctree.

M . . .
w

Mf

[w]
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6. Discussion

We introduced a sound and strongly complete axiomatization for HXPath=, i.e., the lan-
guage XPath with forward navigation for multiple accessibility relations; multiple equality/
inequality data comparisons; and where node expressions are extended with nominals, and
path expressions are extended with the hybrid operator @. The hybridization of XPath
allowed us to apply a completeness argument similar to the one used for the hybrid logic
HL(@) shown in, e.g., [BtC06]. This ensures that certain extensions of the axiomatic system
we introduce are also strongly complete. The axiomatic systems that can be obtained in
this way cover a large family of hybrid XPath languages over different classes of frames.

Our system extends the calculus introduced previously in [AF16]. The most important
improvement is that we provide a minimal system which can be extended with axioms and
rules of certain kind, such that strong completeness immediately follows. The kind of axioms
and rules we allow in the extensions ensures completeness with respect to a large family
of frame classes. We showed interesting examples of such extensions. In particular, we
obtain a strongly complete axiomatization for the logic extended with backward and sibling
navigation, and for data equality inclusion.

One particularly interesting class of structures used in practice is the class of tree
models, since the main applications of XPath in, e.g., web semantics are related to XML
documents. From a mathematical point of view, XML documents are trees. In this respect,
we investigate axiomatizations for HXPath= on tree models. First, we showed that there
is no finitary first-order axiomatization which is strongly complete for HXPath= on trees.
Then we discussed two alternatives for dealing with tree-like structures. On the one hand, it
is possible to relax some condition on the models. We consider the class Cforest− , which are
forest-like models but possibly with infinite chains with respect to the predecessor relation.
More precisely, we extend the basic axiom system with an infinite set of pure axioms to
strongly axiomatize the class Cforest− . Another alternative is giving up strong completeness.
We showed weak completeness for the class Ctree, using pure axioms.

We also investigated the status of decidability for the satisfiability problem of HXPath=

and some extensions. We used a standard technique in modal logics named filtrations [BvB06].
The filtration method is a way to build finite models by taking a large model and collapsing
as many states as possible. We replicate this technique for HXPath=(9), and obtain a
NExpTime upper bound for its satisfiability problem. We showed that filtrations do not
work on some extensions of HXPath=. In particular, for the case of tree models we proved
that the satisfiability problem is decidable in ExpSpace using a more specialized approach.

As future work, it would be interesting to investigate XPath= fragments with the
reflexive-transitive path a∗. One of the main limitations of the framework we introduced in
this paper is that it can only axiomatize first-order languages. For that reason, transitive
closure operators cannot be accounted for, and a different proof strategy is needed. We
conjecture that it is possible to adapt the results from [HKT00] for Propositional Dynamic
Logic (PDL) to obtain a weakly complete axiom system for HXPath=(∗) (i.e., HXPath=

extended with a∗) over the class of all models. However, for axiomatizing HXPath=(∗) over
trees, the filtration technique used in [HKT00] does not seem to work, and new developments
are needed, as for other logics with fix point operators over tree-like structures (see, e.g., the
case of CTL∗ in [Rey01]).

The exact computational complexity of the logics we considered has not been investigated
yet. It has been proved that XPath= with single accessibility and data relations extended
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with hybrid operators is PSpace-complete [AFS17]. Moreover, we provided upper bounds
for multi-modal HXPath=(9) over arbitrary models and for HXPath= on trees, but without
giving a tight lower bound. It would be also interesting to investigate the complexity of
the multi-modal languages we studied in this article, enriched with backward and sibling
navigation, reflexive-transitive closures, and over the class of trees. We conjecture that we
can adapt the automata proof given in [Fig10], with the method used to account for hybrid
operators presented in [SV01] to get exact bounds.
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