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Abstract. We investigate dynamic operations acting over a knowing
how logic. Our approach makes use of a recently introduced semantics
for the knowing how operator, based on an indistinguishability relation
between plans. This semantics is arguably closer to the standard pre-
sentation of knowing that modalities in classic epistemic logic. Here, we
discuss how the semantics enables us to define dynamic modalities rep-
resenting different ways in which an agent can learn how to achieve a
goal. In this regard, we study two types of updates: ontic updates (for
which we provide axiomatizations over a particular class of models), and
epistemic updates (for which we investigate some semantic properties).

1 Introduction

Over the last years, a new family of epistemic languages for reasoning about
knowing how assertions [8] have received much attention. Intuitively, an agent
knows how to achieve ¢ given 9 if she has at her disposal a suitable course
of action guaranteeing that ¢ will be the case, whenever she is in a situation
in which v holds. The concept of knowing how is important not only from a
philosophical perspective, but also from a computer science point of view. For
instance, it can be seen as a formal account for automated planning and strategic
reasoning in AT (see, e.g., [2]).

Most traditional approaches for representing knowing how rely in connecting
logics of knowing that with logics of action (see, e.g., [22,18,14]). However, while
a combination of operators for knowing that and ability (e.g., [26]) produces a de
dicto concept ( “the agent knows she has an action that guarantees the goal”), a
proper notion of “knowing how to achieve ¢” requires a de re clause ( “the agent
has an action that she knows guarantees the goal”; see [15,13] for a discussion).
Based on these considerations, [31,32] introduced a new framework based on a
knowing how binary modality Kh(v, p). At the semantic level, this language is
interpreted over relational models — called in this context labeled transition
systems (LTSs). In these models, relations describe the actions an agent has at
her disposal (in some sense, her abilities). Then, Kh(1, ¢) holds if and only if
there is a “proper plan” (a sequence of actions satisfying certain constraints) in
the LTS that unerringly leads from every i-state only to y-states.
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While variants of this idea have been explored in the literature (see, for in-
stance, [19,20,9,30]), most of them share a fundamental characteristic: relations
are interpreted as the agent’s available actions; and the abilities of an agent
depend only on what these actions can achieve. The framework presented in [5]
changed this underlying idea by adding a notion of ‘indistinguishability’ between
plans, related to the notion of strategy indistinguishability of, e.g., [16,7]. The
intuitive idea is, first, that some plans might not be available to the agent. More
importantly, she might consider some of them indistinguishable from some oth-
ers. In such cases, having a proper plan o that leads from any -state to only
p-states is not enough. Instead, the agent also needs for all her available plans
that she cannot distinguish from o to satisfy such requirements. As argued in [5],
the benefits of these new semantics are threefold. First, it provides an epistemic
‘indistinguishability-based’ view of an agent’s abilities. Second, it enables us to
deal with multi-agent scenarios in a more natural way. Third, this new perspec-
tive leads to a natural definition of operators that represent dynamic aspects of
knowing how, more aligned with dynamic epistemic logic (DEL; [28]).

This paper focuses on the latter point. We will make use of the indistinguisha-
bility-based semantics to investigate some dynamic operators describing changes
in the agents’ abilities, and hence in their corresponding epistemic states. To the
best of our knowledge, this is the first time in which this problem is addressed
(except by the brief discussion introduced in [32] about announcements in the
context of knowing how). We start by investigating operators that restrict the
models based on some sort of announcement, in the spirit of [24]. However, as
we will see, this kind of updates in the context of knowing how can be seen as
ontic updates, rather than epistemic updates. Then, we will exploit the provided
semantics in order to define operations that perform actual epistemic updates.
In particular, we will discuss how the indistinguishability relation between plans
can be refined in order to perform an epistemic change. We consider our work
as the first step towards a dynamic epistemic theory over knowing how logics.

Outline. The paper is organized as follows. Sec. 2 recalls the syntax, semantics
and a complete axiomatization of the multi-agent knowing how logic from [5],
discussing also a corresponding notion of bisimulation. These notions are useful
in the rest of the paper. Then, Sec. 3 is devoted to investigate different dynamic
operators for updating knowing how. First, we introduce ontic updates, based
on public announcements [24] and arrow updates [17]. We discuss the properties
of the operations, and provide reduction axioms. Then, we provide alternatives
for epistemic updates, and discuss some of their semantic properties. In Sec. 4
we offer some final remarks and discuss future lines of work.

2 Basic Definitions

Throughout the text, let Prop be a countable set of propositional symbols, Act
a denumerable set of action symbols, and Agt a non-empty finite set of agents.

Definition 1. Formulas of the language Lkyn, are given by
pu=p|-o|eVe|Khilp ),
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with p € Prop and i € Agt. Other Boolean connectives are defined as usual. The
formula Kh; (v, ) is read as “when 1 is the case, the agent ¢ knows how to make
¢ true”. Define also Ap := ;cpg Khi(mp, L) and Ep := =A~p; they will turn
out to be the global universal and existential modalities, respectively.

In [31,32], formulas are interpreted over labeled transition systems (LTSs):
relational models in which each (basic) relation indicates the source and target
of a particular type of action the agent can perform. In the setting introduced
in [5], LTSs are extended with a notion of uncertainty between plans.

Definition 2 (Actions and plans). Let Act® be the set of finite sequences
over Act. Elements of Act™ are called plans, with € being the empty plan. Given
o € Act™, let |o| be the length of o (note: |e|:=0). For 0 < k <|c|, the plan oy,
is 0’s initial segment up to (and including) the kth position (with oo :=€). For
0 < k <|o|, the action o[k] is the one in c’s kth position.

Definition 3 (Uncertainty-based LTS). An uncertainty-based LTS (LTSY)
for Prop, Act and Agt is a tuple M = (W, R,S, V) where: W is a non-empty set
of states (called the domain, and denoted by Dag); R = {Rq C W x W | a € Act}
is a collection of binary relations on W; S = {S; C 22\ {0} | i € Agt} assigns to
every agent a non-empty collection of pairwise disjoint non-empty sets of plans:
(’L) SZ # (D, (’I/L) T, Ty € Sz with s # o) implies T N7y = @, and (’I/LZ) @ ¢ Si,'
and V : W — 2P s g labeling function. Given an LTSY M and w € Dy, the
pair (M, w) (parenthesis usually dropped) is called a pointed LTSY.

Intuitively, P; = UT[€Si 7t is the set of plans that agent ¢ has at her disposal,
and each 7t € S; is an indistinguishability class. Note that, as discussed in [5],
there is a one-to-one correspondence between each S; and an ‘indistinguishability
relation’ ~; C P; x P; describing the agent’s uncertainty over her available plans
(01 ~; o9 iff there is 7t € S; such that {01,092} C 7). The presentation used here
simplifies the definitions that will follow.

Given her uncertainty over Act®, the abilities of an agent ¢ depend not on
what a single plan can achieve, but rather on what a set of them can guarantee.

Definition 4. Given R = {R, € WxW | a € Act} and o € Act”, define
R, € W x W in the standard way. Then, for m C Act® and UU{u} C' W, define

Rr:=U,crRo, Ru(u) := U, e Ro(u), and Rp(U) := J,cpy Rn(u).

Definition 5 (Strong executability of plans). Let M = (W,R,S,V) be
an LTSY, with R = {R, € WxW | a € Act}. A plan o € Act” is strongly
executable (SE) at u € W if and only if v € Ry, (u) implies Ry(pq1)(v) # 0 for
every k € [0... |o| —=1]. We define the set SEM (o) := {w € W | o is SE at w}.
Then, a set of plans m C Act™ is strongly executable at u € W if and only if
every plan o € 7 is strongly executable at u. Hence, SEM (mt) = Noen SEM(0)
1s the set of the states in W where 7 is strongly executable.

Thus, a plan is strongly executable (at a state) when all its partial executions
can be completed. Then, a set of plans is strongly executable when all its plans
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are strongly executable. When the model is clear from the context, we will drop
the superscript M and write simply SE(o) and SE(7).

Now, we have all the ingredients to define the semantics of the logic.

Definition 6. Let M = (W, R, {S;}icagt, V) be an LTSY; take w € W. The
satisfiability relation |= for Lk, s inductively defined as:

M,w=p iff.; p€Vw)
Maw):_“p iﬁdcf M,’LU%QO
MwEYPVe iﬁdef M,w = or Myw = ¢
M,w = Khi(p, @) iff,, thereismeS; such that:
(i) [Y]™ C SE(n), and
(i) R([¢]™) € [e]™,
where: [x[M = {w € W | M,w = x}. Define: M |= ¢ iff [e]" =W, and |= ¢
iff M |= ¢, for all LTSY M.

Note: the above-defined modalities A and E are indeed the global modalities
from [11]. Indeed, for every model M and every state w, M,w = Ap holds if
and only if ¢ is true in all states in M [5].

Ezample 1. Let us consider a simplified scenario for baking a cake, with two
agents ¢ and j. The two agents attempt to produce a good cake (represented by
the propositional symbol g). Suppose that they are following a similar recipe,
and that they have all the ingredientes (h). The recipe states that g is achieved
via the following steps: adding eggs (e), beating the eggs (b), adding flour (f),
adding milk (m), stir (s) and finally, bake the preparation (p). Thus, the plan
needed to achieve g is ebfmsp. Agent i, who is an experienced chef, is aware
that is the way to get a good cake. On the other hand, agent j has no cooking
experience, so she considers that the order in the instructions do not matter.

r& f (Q 5= { {ebfmsp} )
M (——O)——O—">)——>©@ s ={{ctfmsp, cbmfsp} }

The diagram shows, on the right, the set of indistinguishable plans in S; and
in S;. Notice that agent ¢ knows how to get a good cake, provided that she has
all the ingredients (i.e., M | Kh;(h,g)). This is due to the fact that agent i
distinguishes ebfmsp as the “good plan”. On the other hand, as j considers that
adding milk and adding flour can be done in any order, we have M (= Kh;(h, g).

Bisimulations. Bisimulation is a crucial tool for understanding the expressive
power of a formal language. Here we introduce a generalization of the ideas
from [10], now for Lkp, over LTSVs.

Definition 7. Let M = (W, R, {S;}icag, V) be an LTSY over Prop, Act and
Agt. Take me 2AY) U T CW and i € Agt.

— Write U & T iff,, U C SE(m) and R.(U) C T.
— WriteU = T iff,.; there is € S; such that U LT
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Axioms Taut F ¢ for ¢ a propositional tautology
DistA + A(e — ¢) = (Ap — Ay)
TA FAp = ¢
4KhA  F Kh; (¢, ) — AKh; (¢, @)
5KhA  F =Kh; (¢, ¢) = A=Kh; (¢, @)
KhE  + (Ev A Kh; (v, ¢)) — Ep
KA F (A(x — %) A Khi(, @) A Al — 0)) = Khi(x, 0)

Rules MP From F ¢ and F ¢ — ¢ infer - 4
NecA From F ¢ infer - Agp

Table 1: Axiomatization Lky,; for LKhi w.r.t. LTSYs.

Additionally, U C W is propositionally definable in M if and only if there is a
propositional formula ¢ such that U = [p]M.

Definition 8 (Lkp,-bisimulation). Let M = (W, R, {S;}icagt, V) and M’ =
(W R {S}}icag, V') be LTSYs. A non-empty Z C W x W' is called an Lgp,-
bisimulation between M and M’ if and only if wZw' implies all of the following.

Atom: V(w) = V'(w').

— Kh;-Zig: for any propositionally definable U C W, if U = T for some
T CW, then there is T' CW' s.t. 1) Z(U) = T', and 2) T' C Z(T).

— Kh;-Zag: analogous to Kh;-Zig.

— A-Zig: for all w € W there is a v’ € W’ such that uZu'.

— A-Zag: for allu' € W’ there is a u € W such that uZu'.

We write M,w < M’ ;w’ when there is an Ly, -bisimulation Z between M and
M’ such that wZw'.

Theorem 1. Let M,w and M',w’ be two LTSYs. M,w € M’ w' implies
Mw E g iff M',w' = ¢, for all Lkn,-formula ¢.

Axiomatization. We finish this section by recalling an axiom system for Lgp,.

Theorem 2 ([5]). The aziom system from Table 1 is sound and strongly com-
plete w.r.t. the class of all LTSYs.

3 Dynamic Knowing How Logics

In this section we will explore different ways in which a dynamic operation can
be added to Lkn,. We can consider a dynamic operator as the indication of
performing an update on a model, so that the evaluation of the formula should
continue in the modifed model. Some of these model transformations can be
interpreted as actions that affect the agents’ abilities or her epistemic state. In
this section we explore some of these alternatives.

There are at least two ways in which an agent’s information might change. It
might change because the world changes and she observes this (the belief update
of the belief change literature; [12]), and it might change because she receives
information about the world while the world remains the same (the belief revision
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of the belief change literature; [12]). The former can be called ontic change,
whereas the latter can be called epistemic change. Within dynamic epistemic
logic, the first can be represented by a change in valuation, while the second can
be represented by changes in the agents’ uncertainty [27].

In an LTSY M = (W, R, {S;}icag V), there is a clear distinction between
ontic and epistemic information. On the one hand, while R provides ontic, objec-
tive information indicating what the actions themselves can achieve, V describes
the actual propositions being true at each state. On the other hand, the epis-
temic state of an agent ¢ (w.r.t. her knowing how capabilities) is given by her
indistinguishability relation over plans (the set S; at her disposal). Hence, in
what follows we will consider both ontic and epistemic updates.

3.1 Ontic Updates via Public Announcements

Consider first a model operation removing states (and thus updating the rela-
tions). Within the DEL literature, this is interpreted as a public announcement
(PAL; [24]): an epistemic action through which agents get to know publicly that
the announced formula is true. Such a model update operation is typically de-
scribed with the operator [x], semantically interpreted as

M,w k= Xle iff M,w = x implies My, w = ¢,

with M, being the submodel of M that arises from taking [x]*™ as the new
domain, and with the relations and the valuation restricted accordingly (see [28]).

In the original knowing how setting from [31], the relations define the agent’s
abilities. Thus, an update corresponds to both an ontic and an epistemic change
(available actions change, and hence so do the agent’s abilities). However, in the
LTSY-based semantics, relations provide only ontic information; thus, an update
operation produces an ontic change, but not an epistemic one.

The update operator adds expressivity to our Lkp, (a similar result was es-
tablished in [32] for a Kh modality with intermediate constraints).

Proposition 1. Adding [x] to Lkn, increases its expressive power.

Proof. The two LTSYs M and M’ (with S; = S, = {{a}}) below are bisimi-
lar and hence indistinguishable in Lkn,. However, M, w |= [p|Kh;(p, ¢) whereas
M w' - [p]Kh;i(p, q). Dashed lines indicate nodes and edges removed after [p].

U __a_.>’-.l /
w \_ M

A consequence of Prop. 1 is that the modality for PAL-like updates is not re-
ducible to the base logic. This makes sense, as the underlying static logic (Lkn,)
only expresses properties relative to the existence of a way to achieve certain tar-
get states from certain origin states. There is no way to characterize the updates
produced by [x] with the expressive power provided by the Kh; modality. This
is in contrast with what happens when these modalities are added to standard
epistemic logic, where reduction axioms can be defined (see, e.g., [28]).
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Is it possible to define an alternative, PAL-like update operator, for which
reduction axioms exists in Lkp,? We will answer this question below.

Definition 9. Formulas of the language PALkp, are given by

pu=p|-eleVelKhilee) | [lele,
with p € Prop and i € Agt.

Definition 10. Let M = (W,R,S,V) be an LTSY, and let x be a PAlLkp, -
formula. We define My, = (Wi, Riy, Sy, Vi), where:

- WIX = [[XHM7
~ (Ri)a = {(w,v) €Ra | w € ], Ra(w) C [XIM} for every a € Act,
- Siy =S8, and Vi (w) = V(w) (for all w € Wy, ).

We extend the satisfaction relation |= from Def. 6 with the case:
M,w = [IX]e iff M,w = x implies My, w = ¢.

The only difference between the M, introduced above and the standard M,
(which is the restriction of M to the states satisfying x) is in the definition of
the relations. In the proposal here, a stronger condition is needed for an a-edge
from a state w € [x]™ to survive after the update: if Rq(w) € [x]™ then
(Riy)a(w) = 0, but if Re(w) C [x]™ then (Riy)a(w) = Rq(w). Notice that in
this context, the elimination of some states indicates that the situations they
describe are no longer reachable, rather than no longer possible.

The two forms of model update discussed above bear a resemblance to the two
forms of updating neighbourhood models from [21]. Recall that a neighbourhood
model [25,23] is given by: a non-empty domain W, an atomic valuation, and a
neighbourhood function N : W — 22W, assigning a set of sets of states to each
possible state. Let U C W be a non-empty set of states. On the one hand, the U-
intersection submodel defined in [21] has U as its domain, with its neighbourhood
function built by restricting each set in a neighbourhood to the new domain,
analogous to what M, (a standard announcement) does. On the other hand,
the U-subset submodel therein also has U as its domain, but its neighbourhood
function is built by keeping only those sets that are already a subset of the new
domain, analogous to what M, does. We argue that this second approach is
more appropriate in the context of knowing how.

Even with this, more restricted, version of update, the resulting logic fails to
have reduction axioms as the following proposition shows.

Proposition 2. PALkp, is more expresive than Lgn, over arbitrary LTSYs.

Proof. Let M and M’ be the single agent models depicted below (states and
edges depicted with dashed lines are those removed in M), and Mj,., respec-
tively), with S; := {{ab}} and S := {{a}}:
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RAtom F [!Ix]p < (x — p)
R- FIx]-e < (x = =[Ix]le)
Rv FIX](e V) < [Ix]e v [IX]¥

RKh - [Ix]Khi(p, ¥) < (x = Khi (x A [Ixde, x A [Ix]9))
RE[y From F ¢ <> 1 derive F [Ix]e < [Ix]¢

Table 2: Reduction axioms l:pALKh‘ .
i

Both models are Lgp,-bisimilar (Def. 8); hence, they satisfy the same formulas
in Lgp,. However, M, w = [Ir]Kh;(p, q) since M, w |= r and My, w ~ Kh;(p, q),
whereas M’ w' |= [Ir]Kh;(p, ¢) since M’,w’ = r and M., w = Kh;(p, ¢).

By furthermore restricting the class of models in which we will evaluate
formulas, we are able to obtain reasonable reduction axioms.

Note that LTSUs contain a set S; of sets of plans for each agent i, which
determines the perception of the agent with respect to her abilities. For instance,
it may be the case that two plans ab and cd belong to some 7 € §;, i.e., they
are indistinguishable for agent 4. In [5] it has been shown that the logic cannot
distinguish between the class of arbitrary LTSYs, and the class of models where
each 7t € S; is a singleton with 7t C Act. This is no longer the case in the presence
of ['x] (as the proof of Prop. 2 shows).

Definition 11. Define M! as the class of models M = (W, R,S,V) such that
for alli € Agt and m e S;, m C Act.

M constitutes a restricted class of models, which could correspond, for ex-
ample, to a more abstract representation of the abilities of the agents, in which a
course of action is modeled as a single action. The reduction axioms from Table 2
are valid in the class of models M!. Moreover, we can use them to eliminate an-
nouncements by iteratively replacing the innermost occurrence of a [!x] modality.
Thus, we get completeness for PALkp, .

Theorem 3. Lkp, together with the reduction azioms for [Ix] in Table 2 are a
sound and strongly complete aziomatization for PALky, w.r.t. M!.

3.2 Ontic Updates via Arrow Updates

Another framework for modifying relational models is Arrow Update Logic (AUL;
[17]). Tt differs from PAL in that it removes only edges, thus keeping the do-
main intact. In standard epistemic logic, this corresponds to changes in uncer-
tainty (e.g., the epistemic indistinguishability might be reduced, so intuitively
the agents gain knowledge). For knowing how logics, the situation is different:
updating edges in an LTS corresponds to updating the abilities of the agents,
as arrows represent execution of actions. We introduce now a logic for arrow
updates in the context of our knowing how logic.

Definition 12. Formulas of the language AULkp, are given by

pu=p|l-w|eVe|Kh(p )| U,
U= (p,0) | U, (0,0),
with p € Prop and i € Agt.
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Rloin (Ul < (A1, 0is A, 0]

RAtom [(6,0")]p < p
R [(6,0")] = « =[(0, 0)]¢
Rv (0, 9'%]@7 V) < [(0,0")]e v [(0,07)]

RKh (0, 0")]Kh; (o, %) < A([(0,0)]@ — 0) A Khi([(0,0)]¢, 0" A[(0,07)]4)
REy From F ¢ <> 1 derive F [(0,0")]p + [(0,0")]y

Table 3: Reduction axioms Layy, with U = (01,01),...,(0n,0},).
2

Definition 13. Let M = (W, R,S, V) be an LTSY, and U = (01,0}),...,(0,,0.)
be such that 0;,0, are AULkp,-formulas, for all 0 < i < n. We define My =
(W, Ry, S, V), where for every a € Act,

(Rv)a = {(w,v) € Ra(w) | w € [AIL; 0:]™, Ra(w) S [ALL; 0]}
Note that if w € [A]_, 6;,]™ and Rq(w) C [A—; 0/]™, then R, (w) = Rq(w).

=1 "1
Moreover, R, (w) # 0 iff w € [A]_; 0:], Ra(w) C [Al, 0/]™ and R, (w) # 0.
Once again, the update here differs from the original one in e.g., [17], in that
given a state satisfying the precondition, it takes in consideration all the states
that are reachable from it. Thus, the satisfaction of the postcondition at all those

states defines whether the arrows are preserved or not.

Definition 14. We extend the satisfaction relation |= from Def. 6 with the case:

As in the PAL case, AUL performs ontic updates rather than epistemic up-
dates over LTSV-based knowing how.

Proposition 3. AULky, is more expressive than Lkn, over arbitrary LTSYs.

Proof. By using the models from Prop. 2, we have that M, w & [(r,7)]Kh;(p, q)
and M, w' = [(r,r)]Kh;(p, q).

Again, the reduction axioms from Table 3 are valid in the class of models
M!, and we can use them to eliminate all the occurrences of the [U] modality.

Theorem 4. Lk, together with the reduction axioms for [U] in Table 3 are a
sound and strongly complete aziomatization for AULkp, w.r.t. M.

3.3 Epistemic Updates, Preliminary Thoughts

In this section we present some preliminary results on different ways in which
interesting epistemic updates can be introduced in the context of a knowing how
operator. No complete axiomatization is available yet. Instead, we will discuss
a number of proposals for update operators and show that they can be used to
express some relevant properties.

Removing uncertainty between two plans. One of the advantages of LTSYs
is that they allow a natural representation of actions that affect the abilities of an
agent, but also her epistemic state. In an LTSY, the crucial epistemic component
is the set S;, defining not only the plans agent i is ‘aware of’, but also the level
at which she can discern among them. Thus we can represent changes in the
epistemic state of an agent by means of operations that modify S;.
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Ezample 2. Let M be the LTSY from Ex. 1. Recall that M (¥ Kh;(h,g). The
conflicting plan is ebmfsp, which does not lead to a good cake. Thus, if agent
Jj is able to tell apart ebmfsp from ebfmsp (which is the good plan), she would
be able to know how to get a good cake, provided she has the ingredients. If
agent j learns that the order of the actions matters (so ebmfsp is distinct from
ebfmsp), the set 7w = {ebfmsp, ebmfsp} is split into two singleton sets. After such
a splitting, she knows how to achieve g given h.

We introduce an operation that eliminates uncertainty between specific plans.
In an LTSY, there might be different ways of making distinguishable two previ-
ously indistinguishable plans: the different ways one can split a set containing
both. First, some notation.

Definition 15. Let 71,7y, m5 € 22 and S C 227 . We write 1 = 1 & 1o iff
T =7 U7 andﬂlﬂng :®

Forme S and m=m Wy, define S?Hl s} C 28" a5 the result of refining Tt

through {my, Mo }: ST -y o= (S\ {m}) U {mm, e}

Definition 16. Let S,S" C 2A%) - and let 01,09 € Act® be such that o1 # 0.
We write S ~31 S" if and only if either

— S" =S and there is no m € S satisfying {01,002} C 7, or
-8 = STy oy Jor some € S satisfying {o1,00} C 7, with 7,7y € 2A
such that m=m; W7y and o1 € 1, 09 € Ty.

Notice that the relation ~»7! is serial. Moreover, if S is the set of sets of
plans for a given agent i in some LTSY (i.e., S = S;) and S’ is a set satisfying
S ~»71 5, then the structure resulting from replacing S by S’ is an LTSY.

Definition 17. Let M = (W,R,S,V) be an LTSY, and let S' = {S}}icage with
S, C 2A) | Let 01,09 € Act*. We write S ~ol S" iff for eachi € Agt, S; ~ol S..
We denote by Mg, the LTSY obtained by replacing S by S'.

The definition above guarantees there is a one-to-one correspondence be-
tween the sets in S and those in S’. With these tools at hand, we introduce the
new modality (o1 7 02), semantically interpreted as an action through which all
agents learn that plans o1 and o9 are different. We use Lgres (Ref for “refinement”)
to denote the extension of Lkn, with (o £ 02).

Definition 18. Let M = (W, R,S,V) be an LTSY and w € W. For o1 # 02,
M,w = (o1 £ o) iff,, thereis S’ s.it. S~21S" and Mg, w = .
As usual, we define [01 7 o2]p := {071 £ o2) .

Formulas of the form (o7 £ 03)¢ can be read as follows: “after it is stated
that plans 01 and oo are distinguishable, p holds”. For instance, taking Ex. 2,
(ebmfsp # ebfmsp)Kh;(h, g), establishes that “after it is stated that ebmfsp and
ebfmsp are distinguishable plans, agent j knows how to produce a good cake,
provided she has the ingredientes”.

The proposed modality has some natural properties: it is normal and serial.
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Proposition 4. It follows from the semantics (Def. 18) that:

1. oA oo)(p = ¥) = ([o1 A o2]p = [o1 £ 02]t)).
2. If E o, then = (o1 % o2)e.
3. oA ooe = (o1 £ o2)e.

This dynamic modality both preserves knowledge and can generate new one.

Proposition 5. Let o, be propositional formulas. Then,

1. | Khi(p,¥) = [o1 # 02]Khi(p, ¥).
2. =Kh;(p,¥) A [o1 # 02]Kh;(p, ) is satisfiable.

Proof. For Item 1, suppose M, w = Kh;(¢,%). Then there is 7w € S; s.t. [p] ™ C
SE(7) and R ([]™) C [¢]M. Let o1, 02 € Act*. If 01 & mor o9 & 7, then 7 does
not change and is still the witness for Kh; (¢, ¥). If, however, o1, 0o € 7, there will
be a partition of 7t, {1, 72} s.t. S; ~71 Sifr, r,3- But this does not cause any
problem since [¢]™ C SE(m) € SE(m,) and R, ([p]) € Re([]) € [¥]™,
for k € {1,2}. Here agent i knew how to go from p-states to i-states via 7.
Weakening such 7t by making a partition still holds the property, allowing the
agent to choose between 711 or 7> as her next witness. Since all the cases for o
and oy are covered, M, w = [o1 # 02]Kh; (g, 1). For Item 2, see Ex. 2.

The new modality adds expressivity, as it can talk explicitly about plans:
Proposition 6. Lges s more expressive than Lkn, -

Proof. We need to display two Lgp,-bisimilar LTSYs that can be distinguished
by an Lges-formula. Let M and M’ be the single agent models depicted below,
with S; := {{a}} and S; := {{a, b}}, respectively:

a_(9) a_»(1)
M w (P) w' (P) M
a>) b >0

The models are Lgp,-bisimilar, thus they satisfy the same formulas in Lgp,
(in particular =Kh;(p, ¢)). But, M, w ¥ (a7 b)Kh;(p, ¢) since S; ~¢ S;, whereas
M w' | (a#b)Kh;i(p, q), since there is S} = {{a}, {b}} s.t. S; ~¢ S

Arbitrary refinement over plans. As mentioned, the operation (o1 ¢ g3) can
be seen as a particular form of (publicly) removing uncertainty: one indicates
precisely the plans that can be distinguished now, and then quantifies over the
different ways of doing so. The operation defined below is a more abstract one:
in the spirit of other proposals that quantify over epistemic actions (e.g., the
arbitrary announcements of [6], the arbitrary arrow updates of [29], the group
announcements of [1] and the coalition announcements of [3]), it quantifies over
all the different ways in which the agent’s indistinguishability can be refined.

Definition 19. Let M be an LTSY and w € Doq. Then,
M,w = (L) iff,, there are 01,09 € Act™ s.t. M, w = (01 # 02)¢.

As usual [£]o = ~(£)—p. We denote Lares (for “arbitrary refinement”) as the
extension of Lkn, with the modality ().
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The resulting modality is normal and serial, satisfies natural properties of
Monotonicity and Weakening, but fails for dynamic versions of axioms 4 and 5.

Proposition 7. It follows from the semantics (Def. 19) that:

- E e =) = ([#le = [#]).

- f = o, then = [#]p.

= [Ale = (#)e.

E () = () (e V) and = ] — [#](@ V) (Monotonicity).
E (A (e AY) = (e and | [#](w A) = [£]p (Weakening).

= [#le = [#l[#4e (aziom 4).

= —[£lp = [#]-[¢)e (aziom 5).

By definition, | (o1 % o2)p — (#)¢, but characterizing the exact expres-
sivity relation between the two resulting logics requires further developments.
In particular, given the mismatch between the two languages (Lger is able to
talk about specific plans whereas Lagef is not), it does not seem trivial to give
a translation from one logic to the other. However, by using the same argument
as in Prop. 6, it is easy to show the following:

NS

NS G Lo

Proposition 8. Lares s more expressive than Lgp,.

Goal directed learning how. One might notice that knowing how operators
are goal-directed: the agent looks for a suitable course of action that makes her
achieve a certain state. It is possible to define an operator that, when possible,
guarantees that the agent learns how to achieve a goal. This action can be
understood as a goal-directed learning how: it looks for a way to split some
existing set of plans 7t in such a way that the agent knows how to achieve ¢
given .
Let Lip (for “learning how”) be Lkp, extended with the dynamic modality
(¥, 0)ix == () (Khi(¢, ©) A X),
(and its ‘dual’ [, |ix := — (¥, ©);—x). Moreover, we define L;(v, ¢) := (¥, ©); T
an abbreviation for “the agent i can learn how to make ¢ true in the presence
of 1”. Notice that Ly, is a syntactic fragment of Lages.

The new dynamic modality is a ternary modality expressing that the agent
is able to learn how to achieve ¢ given 1, and that after this learning operation
takes place, x holds. The modality L; is a test of what is learnable by the agent .
The next proposition states some interesting properties of these modalities.

Proposition 9. It follows from the semantics that:

1. % I—i((p,'(/J),'
2. Li(p,¥) A Li(p, ) is satisfiable.

Proof. Ttem 1 shows that not everything is learnable by an agent. The (un)avail-
ability of certain actions in an LTSV restricts what can be learnt. Consider the
following single-agent LTSY M, with the set S; shown on the right.

M @@ ED 5= o) (o)
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Note that M, w = Kh;(p,r). The set {ab,a} is not executable at every p-state,
it is only executable at w. On the other hand, {e} is executable everywhere, but
does not lead always to r-states. Moreover, M, w = L;(p,r). The set {e} cannot
be refined, and no refinement of {ab, a} does the work. Therefore, agent ¢ cannot
learn how to make r true when p holds.

For Item 2 consider the model M’ in Prop. 6. As said, M’,w" & Kh;(p, q).
However, there is a way to learn how to achieve ¢ given p: it is possible to split
the set {a,b} into {a} and {b}; hence, M’ w' = L;(p, q) (witness {a}) but also
M W' Li(p, —q) (witness {b}).

Item 1 shows how, in certain scenarios, there is no room for learning. For
instance, there might be no way to learn how to cure a disease, if there is no
doctor available. Item 2 shows how the agent might be able to learn not only
how to make a formula true under a given condition, but, at the same time, how
to make the same formula false under the same condition.

Once more, [x, 1] (seen as a unary modality) is a normal modality:

Proposition 10. The modality [x, ] is normal:

L E D6yl0 = @) = ([x,¥10 — [x, ¥]e).
2. If & ¢, then =[x, ¥]e.

We finish the section by stating some expressivity connections between the
dynamic modalities we just discussed.

Proposition 11. The following propositions are true:

1. Ly is more expressive than Lkp, .
2. Lpn is mot more expressive than Lges.

Proof. Ttem 1 is proved as Prop. 6: the formula L;(p, ¢) distinghuishes the two
LTSYs. For Item 2 consider the two LTSVs below:

a Q c @
M w 0 M
@ a >0

For each model, consider respective sets S; = {{a,b}} and S, = {{c,d}}. Since
L cannot explicitely talk about plans, M,w and M’,w’ are indistinguishable
for it. In Lgef, M, w = (ab)Kh;(r,p) and M’ w’ & (ab)Kh;(r,p).

4 Conclusions

Taking the uncertainty-based semantics from [5] as our starting point, we in-
vestigated dynamic modalities in the context of knowing how logics. In this
regard, we studied two forms of updates: ontic updates, via annoucement-like
and arrow-update-like modalities; and epistemic updates, refining the perception
of an agent regarding her own abilities. For the operators encompassed in the
former family, we provided axiomatizations over a particular class of models, via
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reductions axioms; for the latter family, we discussed some preliminary thoughts
and semantic properties of each operator.

We consider this to be the first step towards a more general theory of dynamic
epistemic logics for knowing how. Moreover, our work opens the path to study
other dynamic operators in this context. For instance, it is known that dynamic
operators do not satisfy uniform substitution in general (see, e.g., [4]). It would
be interesting to explore alternative techniques for obtaining proof systems with-
out a general rule of substitution. Another approach could be playing with the
operators’ expressivity (e.g., by expressing other properties about the abilities),
in order to find fragments that are axiomatizable via reduction axioms.

Acknowledgments. Our work is supported by ANPCyT-PICT-2020-3780, CO-
NICET project PIP 11220200100812CO, and by the LTA SINFIN.
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