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Abstract. We study a family of modal logics interpreted on tree-like
structures, and featuring local quantifiers ∃kp that bind the proposition p
to worlds that are accessible from the current one in at most k steps.
We consider a first-order and a second-order semantics for the quanti-
fiers, which enables us to relate several well-known formalisms, such as
hybrid logics, S5Q and graded modal logic. To better stress these con-
nections, we explore fragments of our logics, called herein round-bounded
fragments. Depending on whether first or second-order semantics is con-
sidered, these fragments populate the hierarchy 2NExp ⊂ 3NExp ⊂ · · ·
or the hierarchy 2AExppol ⊂ 3AExppol ⊂ · · ·, respectively. For formulae
up-to modal depth k, the complexity improves by one exponential.

1 Introduction

From a traditional perspective, modal logics [10] are formalisms to reason about
different modes of truth. However, another view consists of seeing these logics
as computationally well-behaved fragments of first-order logic and second-order
logic (see e.g., [1] for a discussion). Some examples of well-known modal log-
ics with a good balance between expressivity and computational complexity
are graded modal logic (GML) [5,28], whose satisfiability problem is PSpace-
complete; and the temporal logics LTL, CTL and CTL∗ whose satisfiability prob-
lems are complete for PSpace, Exp and 2Exp, respectively [31,19,25].

A family of logics that elude this nice computational picture is that made
of modal logics enriched with first-order or second-order propositional quanti-
fiers ∃p, which update the set of worlds of a Kripke structure that satisfy the
propositional symbol p. The literature of modal logics featuring quantification
over propositional symbols can be traced back to [12,26,18]. All these works
show that, in spite of the simplicity of the principle, propositional quantifica-
tion leads to undecidability very quickly. One of the few exceptions is the logic
S5Q, i.e. S5 enriched with second-order propositional quantifiers, which enjoys
an exponential-size small model property, and is thus decidable [22,18]. Here,
the success in finding a well-behaved framework for propositional quantification
is due to the fact that S5 has a very restricted class of models. In modern lit-
erature, the family of hybrid logics [2] is one of the most relevant approaches
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offering first-order propositional quantification. Most hybrid logics provide oper-
ators ↓i that binds the current world to the proposition i, and @i that allows
to jump to the world bound to i. This form of quantification is very expres-
sive, and leads to undecidability over standard Kripke structures [3]. To regain
decidability, one can restrict the logic to syntactical fragments that avoid the
quantification patters �↓ and ♦↓♦, or restrict the interpretation to models in
which each world has at most two successors [14]. Again, one can also simply
consider S5 models: the hybrid logic with ↓ and @ on S5 is known to admit an
NExp-complete satisfiability problem [30].

Recent works shed new lights on the role of propositional quantifiers. From
a model theoretical perspective, a revision about the different forms of propo-
sitional quantification has been put forward in [9]. Novel algebraic insights on
S5 with propositional quantification have been discovered in [17]. From a com-
putational perspective, [6] shows that second-order propositional quantification
is enough to obtain Tower-complete (hence, non-elementary decidable, [29])
logics on tree-like structures. This last result is of interest, as the second-order
logic QCTLtX considered in [6] subsumes several other modal logics with forms of
quantification “in disguise”, such as the aforementioned GML, as well as modal
separation logics [16], ambient logics [13] and team logics [21]. However, when
translated into QCTLtX, the good computational properties of these logics are
lost, and the Tower-hardness of QCTLtX prevents us to grasp the real capabil-
ities of their (often restricted) form of propositional quantifications.

Contributions. The overall message of [6] is that the computational power of
propositional quantification in the context of modal logic deserves to be better
understood. Driven by this message, we investigate from a unified perspective a
family of logics interpreted on tree-like models, featuring a very intuitive form
of propositional quantification: the local quantifier ∃kp , with k ≥ 1 integer,
that binds the propositional symbol p to world(s) occurring within distance k
from the current point of evaluation. More precisely, we look at two families
of modal logics: the family ML(∃1FO),ML(∃2FO), · · · , where ML(∃kFO) extends the
basic modal logic ML with the first-order local quantifier ∃kp binding p to ex-
actly one world occurring within distance k of the current world; and the fam-
ily ML(∃1SO),ML(∃2SO), · · · , where ML(∃kSO) extends ML with the second-order local
quantifier ∃kp binding p to a set of worlds occurring within distance k.

As previously mentioned, in introducing these logics our aim is to better
understand the similarities and differences between the various modal logics fea-
turing propositional quantification, especially when it comes to their complexity.
This analysis cannot be done using Tower-complete logics like QCTLtX, as finer
complexity classes are required. In this sense, it is worth to notice that our
framework features the logic ML(∃∞SO), whose quantifier ∃∞p binds p to arbitrary
worlds reachable from the current one. This is exactly the logic QCTLtX. Because
of this connection and of similarities with other frameworks, e.g. [7], we argue
that even if we restrict ourselves to quantifiers ∃k with small k, the complexity
does not improve. In fact, ML(∃2FO) is already Tower-complete, although we
defer this result to an extended version of the paper, due to the lack of space.
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Consequently, to pursue our goal of a fine-grained analysis of the computational
power of propositional quantification in modal logic, in this paper we focus on
a syntactical restriction for ML(∃kFO) and ML(∃kSO) where the local quantifiers
are round-bounded (Sec. 2). Roughly speaking, under the round-bounded con-
dition, ML(∃kFO) and ML(∃kSO) formulae can be split into parts having k nested
modalities. Quantifiers belonging to one part of the formula do not interact with
quantifiers from other parts of the formula. The following results are established.

Theorem 1. The sat. problem for round-bounded ML(∃kFO) is (k+1)NExp-com-
plete. It is kNExp-complete for formulae of ML(∃kFO) of modal depth k.

Theorem 2. The sat. problem for round-bounded ML(∃kSO) is (k+1)AExppol-
complete. It is kAExppol-complete for formulae of ML(∃kSO) of modal depth k.

Here and along the paper, given natural numbers k, n ≥ 1, we write t for the
tetration function inductively defined as t(0, n) def= n and t(k, n) = 2t(k−1,n).
Intuitively, t(k, n) defines a tower of exponentials of height k. Then, kNExp
is the class of all problems decidable by a non-deterministic Turing machine
running in time t(k, f(n)), for some polynomial f , on each input of length n;
whereas kAExppol is the class of all problems decidable with an alternating
Turing machine [15] in time t(k, f(n)) and performing at most g(n) alterna-
tions, for some polynomials f, g, on each input of length n. For all k ≥ 1,
kNExp ⊆ kAExppol ⊆ Tower, as we recall that Tower is the class of all
problems decidable with a Turing machine running in time t(g(n), f(n)) for
some polynomial f and elementary function g, on each input of length n [29].
The lower bounds of Thms. 1 and 2 are established by reduction from suitable
tiling problems (Sec. 3). The upper bounds are established by designing a quanti-
fier elimination procedure that yields a (k + 1)ExpSpace small-model property
for round-bounded ML(∃kSO), and a kExpSpace small-model property for the set
of formulae of ML(∃kSO) of modal depth k (Sec. 4). The round-bounded condition
does not change the set of formulae of ML(∃1FO) and ML(∃1SO), and thus, as a
corollary, we characterise the complexity of these logics:

Corollary 1. (I) The sat. problem for ML(∃1FO) is 2NExp-complete.
(II) The sat. problem for ML(∃1SO) is 2AExppol-complete.

As promised, our framework yields a refined analysis on the power of proposi-
tional quantification in modal logic, which we compare to previous known results
in Sec. 2. Quite surprisingly, we show that, on tree-like models, modal logic en-
riched with propositional quantifiers is as expressive as graded modal logic. More-
over, we establish that S5Q is AExppol-complete (refining the previous results
from [22,18]), and that hybrid logic with ↓ and @ on trees is Tower-complete.

2 Preliminaries

The symbol N (resp. N+) denotes the set of natural numbers including (resp.
excluding) zero, N denotes the set N ∪ {∞}, where n < ∞, ∞ + n = ∞ and
n mod ∞ = n for all n ∈ N, and N+

def= N \ {0}. We write |S| ∈ N for the size of
a set S. Finally, let AP = {p, q, r, . . . } be a countable set of atomic propositions.
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Kripke structures. A Kripke structure is a triple K = (W, R,V) where W is
a non-empty set of worlds, V : AP → 2W is a valuation, and R ⊆ W × W
is a binary accessibility relation. A Kripke-style forest is a Kripke structure
whose accessibility relation R is such that its inverse R−1 is functional and
acyclic. In particular, the graph described by K is a collection of disjoint trees,
where R encodes the child relation. We write R(w) for the set of children of w,
i.e. {w′ ∈ W : (w,w′) ∈ R}. For i ∈ N, Ri is the i-th composition of R: R0 is the
identity map onW, and Ri+1 def= {(w,w′) ∈ W×W : (w,w′′) ∈ Ri and (w′′, w′) ∈
R, for some w′′ ∈ W}. For n,m ∈ N, R[n,m] def=

⋃m
j=nR

j , and R∗ def= R[0,∞] is the
Kleene closure of R. For W ′ ⊆ W, V[p ← W ′] is the valuation obtained from
V by updating to W ′ the set assigned to p ∈ AP. A pointed forest (K, w) is a
Kripke-style finite forest K together with one of its worlds w.

Modal logic with local quantifiers. For k ∈ N+ written in unary, we introduce the
modal logic ML(∃k), whose formulae ϕ, ψ, χ, etc., are from the grammar below:

ϕ,ψ := > | p | ϕ ∧ ψ | ¬ϕ | ♦ϕ | ∃kpϕ, where p ∈ AP.

We call ∃kp a local (existential) quantifier. We are interested in two interpre-
tations for the logic ML(∃k), one where the local quantifier ∃kp performs a
first-order quantification, and one where it performs a second-order one. For
simplicity, ML(∃kFO) (resp. ML(∃kSO)) stands for ML(∃k) interpreted under first-
order (resp. second-order) semantics. The basic modal logic ML is obtained by
removing the constructor ∃kpϕ from the grammar.

Let (K, w) be a pointed forest, whereK = (W, R,V). For formulae of ML(∃kFO),
the satisfaction relation |= is defined as follows (Boolean cases are omitted):

K, w |= p ⇔ w ∈ V(p); K, w |= ♦ϕ ⇔ there is w′ ∈ R(w) s.t. K, w′ |= ϕ;

K, w |= ∃kpϕ⇔ there is w′ ∈ R[0,k](w) such that (W, R,V[p← {w′}]), w |= ϕ.

An atomic proposition p is said to be a nominal for (K, w) whenever |V(p)| = 1.
Additionally, p is i-local whenever V(p) ⊆ Ri(w). In particular, the first-order
quantification ∃kpϕ leads to ϕ being evaluated in a pointed forest where p is
an i-local nominal for some i ∈ [0, k]. Given a nominal p, we call w ∈ V(p) the
world corresponding to p, and often denote it by wp.

For formulae of the second-order logic ML(∃kSO), the interpretation of the ML
fragment remains as for ML(∃kFO), whereas we reinterpret the local quantifier as:

K, w |= ∃kpϕ⇔ there is a set W ′ ⊆ R[0,k](w) s.t. (W, R,V[p←W ′]), w |= ϕ.

The contradiction ⊥ and connectives ∨, ⇒ and ⇔ are defined as usual. Below,
let ϕ and ψ be two formulae of ML(∃k). The local universal quantifier ∀kpϕ
and the modality �ϕ are defined as ¬∃kp¬ϕ and ¬♦¬ϕ, respectively. We de-
fine ♦0ϕ def= ϕ, and given i ∈ N, ♦i+1ϕ def= ♦i♦ϕ. Similarly, �iϕ def= ¬♦i¬ϕ. We
write @i

pϕ for ♦i(p∧ϕ). If p is a nominal, the formula @i
pϕ states that p is i-local,

and that its corresponding world satisfies ϕ. We define |0ϕ def= ϕ and �0ϕ def= ϕ,
and given i ∈ N, |i+1 ϕ def= ϕ ∨ ♦|i ϕ and �i+1ϕ def= ϕ ∧ � �i ϕ. We use the
operator precedence {¬,♦,�,∃k,∀k,@i

p} < {∧,∨} < {⇒,⇔}, and sometimes
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write “:” after a local quantifier with the intuitive meaning that the formula
on the right of “:” should be enclosed in brackets, e.g. ∃2p : ϕ ∧ ψ abbreviates
∃2p (ϕ∧ψ). Given i ∈ N, we write ϕ[ψ ←i χ] for the formula obtained from ϕ by
simultaneously substituting with χ each occurrence of the formula ψ appearing
under the scope of exactly i nested modalities.

The length of ϕ, denoted with |ϕ|, is the number of symbols needed to repre-
sent ϕ. The modal depth md(ϕ) of ϕ is the maximal number of nested modalities
occurring in ϕ. We write bp(ϕ) for the set of bound propositions of ϕ, i.e. propo-
sitions p that occur in a quantifier ∃kp inside ϕ. We say that ϕ is well-quantified
whenever each subformula ∃kpψ of ϕ quantifies on a different p ∈ AP, and every
occurrence of p in ψ appears under the scope of at most k modalities. One can
translate every formula into a well-quantified one at no cost: atomic proposi-
tions can be renamed, and occurrences of a quantified atomic proposition that
are under the scope of more than k modalities can be replaced with ⊥.

We write ϕ ≡FO ψ (resp. ϕ ≡SO ψ) whenever ϕ and ψ are equivalent under
their first-order (resp. second-order) semantics, i.e. they are satisfied by the same
pointed forests. When clear from the context or true under both semantics, we
drop the subscripts and write ϕ ≡ ψ. Notice that ∃kpϕ ≡ ∃k+1p (ϕ ∧�k+1¬p),
and thus ML(∃k) is a syntactical fragment of ML(∃k+1), and it is able to express
all the local quantifiers ∃1p , . . . , ∃kp .

Round-bounded fragment. As discussed in Sec. 1, in this paper we focus on a
syntactical restriction for ML(∃k) where the local quantifiers are round-bounded.
The round-bounded formulae of ML(∃k) are those generated from the symbol ϕk0
of the grammar below (j ∈ N):

ϕkj , ψ
k
j := > | p | ϕkj ∧ψkj | ¬ϕkj | ♦ϕkj+1 | ∃k−(jmod k)pϕkj , where p ∈ AP.

In a round-bounded formula of ML(∃k), quantifiers appearing under the scope
of j modalities are restricted to ∃k−(j mod k), e.g. ∃3p♦∃2q ♦∃1r♦∃3pϕ is a
round-bounded formula of ML(∃3), provided that ϕ is also in this fragment,
whereas ∃3p♦∃3q ϕ is not round-bounded. The round-bounded condition does
not change the set of formulae of ML(∃1) and ML(∃∞). Besides, every formula of
ML(∃∞) of modal depth k is equivalent to a round-bounded formula of ML(∃k),
of similar size, since given a formula ϕ of ML(∃∞), we have ∃∞pϕ ≡ ∃md(ϕ)pϕ.

Our framework of local quantifiers enables us to derive connections with other
modal logics featuring some form of quantification, which we now briefly discuss.

Graded modal logic. A logic that has been shown related to different forms of
quantification is the graded modal logic GML [5], that extends ML with modalities
♦≥` (` ∈ N), with semantics: K, w |= ♦≥`ϕ ⇔ |{w′ ∈ R(w) | K, w′ |= ϕ}| ≥ `.
GML has a tree model property, i.e., each of its satisfiable formulae is satisfied
by a pointed forest. Then, by syntactically replacing each ♦≥`ϕ occurring in

a GML formula by ∃1x1, . . . , x` : (
∧`
i=0

∧`
j=i+1 @1

xi
¬xj) ∧�((

∨`
i=0 xi)⇒ ϕ), one

shows that GML embeds in ML(∃1FO). At this point, it is worth noting that,
for all k ∈ N+, ML(∃kFO) can be embedded into ML(∃kSO) by replacing, in a well-
quantified formula of ML(∃kFO), each occurrence of ∃kpϕ with the ML(∃kSO) formula
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∃kp : ϕ∧uniqk(p), where uniqk(p) def= |kp∧∀kq : |k(p∧ q)⇒ �k(p⇒ q) states
that there is at most one world satisfying p that is reachable from the current one
in at most k steps. Hence, ML(∃kSO) captures GML, and in fact the converse also
holds, as we discover when proving Thm. 2. The corollary below is established.

Corollary 2. For k ∈ N+, ML(∃kFO), ML(∃kSO) and GML are equally expressive.

This result is surprising, as it implies that QCTLtX from [6] is as expressive as
GML, and that in the context of modal logics, second-order propositional quan-
tifiers do not yield any additional expressive power compared to first-order ones.

Connections with S5Q. The sat. problem of S5Q [18,22] is equireducible to the
sat. problem for formulae of ML(∃1SO) of modal depth 1. Briefly, any satisfiable
formula of S5Q is satisfied by a Kripke structure (W, R,V) where R =W ×W,
and S5Q enriches ML with quantifiers ∃p which, by virtue of the relation R,
are essentially the quantifiers ∃1p from ML(∃1SO). We can simulate the models
of S5Q by using a pointed forest (K, w) with accessibility relation R′ such that
R′(w) = W. The current world of the S5Q model is simulated with a 1-local
nominal x for (K, w). Then, the translation τ from S5Q to ML(∃1SO) is simple:
τ(♦ϕ) = ∃1x : ♦x ∧ uniq1(x) ∧ τ(ϕ), binding the nominal x to a new world;
τ(p) = @1

xp, and otherwise τ is homomorphic. A similar translation can be given
from formulae of ML(∃1SO) with modal depth 1 to S5Q. Following Thm. 2, this
allows us to characterise the complexity of S5Q left open in [18].

Corollary 3. The sat. problem for S5Q is AExppol-complete.

Connections with hybrid logics. Hybrid logics [3] are among the most studied
modal logics featuring first-order propositional quantification. Given a set of
nominals NOM ⊆ AP, the hybrid logic HL(↓,@) extends ML with the binder ↓i
and the satisfaction operator @i (where i ∈ NOM), having the semantics below:

(W, R,V), w |= ↓i.ϕ ⇔ (W, R,V[i← {w}]), w |= ϕ;
(W, R,V), w |= @iϕ ⇔ (W, R,V), wi |= ϕ, where V(i) = {wi}.

ML(∃kFO) embeds in HL(↓,@) by replacing with ↓i.|k↓p.@iϕ each occurrence
of ∃kpϕ appearing in an ML(∃kFO) formula. This translation is (only) exponential
in k, and so by uniform reduction for all k ∈ N+, and by Rabin’s theorem [27]
for the upper bound, Thm. 1 implies the following result.

Corollary 4. The sat. problem for HL(↓,@) on forests is Tower-complete.

3 Lower bounds for ML(∃k
FO) and ML(∃k

SO)

In this section, we establish the lower bounds of Thms. 1 and 2, which follow by
reduction from the k-exp alternating multi-tiling problem. While we will intro-
duce this problem in due time, the main difficulty in establishing the reduction
is defining, for all k, n ∈ N+ given in unary, a formula type(k, n) that, whenever
satisfied by a pointed forest (K, w), forces w to have t(k, n) children, each of
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w

b

p2
p1
(3)

b

p2
¬p1
(2)

b

¬p2
p1
(1)

¬b

¬p2
¬p1
(0)

n2(w) = 14

(n1(.))

w′

. . . < <

b

(t(k, n)− 1)

b

(2)

¬b
(1)

b

(0)

. . . nk+1(w′) = (1 · · · 101)2

(nk(.))

type(k − 1, n) worlds

Fig. 1: Two worlds w and w′ satisfying type(1, 2) and type(k, n), respectively.

them encoding a different number in [0, t(k, n)− 1]. To establish Thms. 1 and 2,
it is essential that type(k, n) is of size polynomial in k and n, has modal depth
k, it is in ML(∃1FO) for k = 1, and is in round-bounded ML(∃k−1FO ) for all k ≥ 2.
The formula type(k, n) is inspired by the homonymous formula defined in [6] to
show that QCTLtX is Tower-hard, and later adapted in [7] to modal separation
logics. With respect to both these works, our definition of type(k, n) poses two
serious challenges. First, [6,7] rely on second-order quantification, whereas we
only use first-order. Second, in [6,7] the formula type(k, n) is of size exponential
in k, whereas our formula is of polynomial size. To achieve both improvements,
we rely on a novel gadget that simulates binary addition with carry.

Numeric encoding. First of all, let us define how numbers are encoded by worlds
of a pointed forest, following the presentation of [6]. Fix n + 1 distinct atomic
propositions p1, . . . , pn, b, and consider a Kripke-style forest K = (W, R,V).
Given j ∈ [1, k] and w ∈ W, we write nj(w) for the number in [0, t(j, n) − 1]
encoded by w. For j = 1, we represent n1(w) ∈ [0, 2n − 1] by using the truth
values of the propositions p1, . . . , pn, where the proposition pi is responsible
for the i-th least significant bit of the number. That is, n1(w) def=

∑
{2i−1 :

i ∈ [1, n] and w ∈ V(pi)}. For j > 1, the number nj(w) is represented by the
binary encoding of the truth values of the atomic proposition b on the children
of w, where a child w′ ∈ R(w) with nj−1(w′) = i from [0, t(j − 1, n) − 1] is
responsible for the (i + 1)-th least significant bit of the number encoded by w.
Formally, nj(w) def=

∑
{2i : nj−1(w′) = i and w′ ∈ V(b), for some w′ ∈ R(w)}.

With respect to this encoding of numbers, the forthcoming formula type(k, n)
shall satisfy the specification given by the lemma below, which guarantees that
in a pointed forest (K, w) satisfying type(k, n), the numbers encoded by the
children of w span all over [0, t(k, n)− 1]. This is illustrated in Fig. 1.

Lemma 1. A pointed forest (K, w), with K = (W, R,V), satisfies type(k, n) iff
1. for all i ∈ [0, t(k, n)−1] there is exactly one world w′ ∈ R(w) s.t. nk(w′) = i;
2. if k > 1, then for every w′ ∈ R(w), K, w′ |= type(k − 1, n).

Addition with carry. In defining type(k, n), the main challenge lies in how to
express the condition (1) of Lemma 1. In [6,7], this boils down to the defini-
tion of formulae that express (in)equalities between the numbers encoded by
distinct w1, w2 ∈ R(w), e.g. nk(w1) < nk(w2) or nk(w1) = nk(w2) + 1. Unfor-
tunately, these formulae are tree-recursive on k, meaning that multiple (possi-
bly negated) occurrences of the inequalities for the case k − 1 are required to
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Formula: Expected Semantics: Assumptions:

0j nj(w) = 0 The world w is the current world, which is assumed
to satisfy type(j, n). The world wp corresponds to
the i-local nominal p ∈ {x, y, z, c}, and is assumed
to satisfy type(k − i, n).

1j nj(w) = 1
Ej nj(w) = t(j, n)− 1

add i
k(x, y, z, c) +k−i+1(wx, wy, wz, wc)

Fig. 2: Auxiliary formulae used in the definition of type(k, n), where i = k = 1 or i < k.

define the inequalities for the case k. Overall, this induces an exponential blow-
up on |type(k, n)|. To avoid this blow-up, instead of relying on these inequali-
ties we consider a quaternary relation +k(w1, w2, w3, w4) that holds whenever
nk(w1)+nk(w2) = nk(w3) and nk(w4) represents the sequence of carries needed
to perform nk(w1)+nk(w2) in binary, on t(k−1, n) bits. For instance, for 4-bits
numbers n1(w1) = 3 = (0011)2, n1(w2) = 5 = (0101)2, n1(w3) = 8 = (1000)2
and n1(w4) = 14 = (1110)2, the tuple (w1, w2, w3, w4) is in +1, as

1 1 1 0
0 0 1 1 +
0 1 0 1
1 0 0 0

: w4 (sequence of carries of the sum)
: w1

: w2

: w3

corresponds to the table for the binary addition with carry of 3 + 5 = 8. By
looking at the elementary algorithm for addition, a direct characterisation of
+k is as follows. Let nk(w1) = (xm . . . x1)2, nk(w2) = (ym . . . y1)2, nk(w3) =
(zm . . . z1)2, nk(w4) = (cm . . . c1)2, where m = t(k − 1, n), and xi, yi, zi and ci
are the i-th least significant digits in the binary encoding of nk(w1), nk(w2),
nk(w3), nk(w4), respectively. Then, +k(w1, w2, w3, w4) holds if and only if

A. c1 = 0 and at most one among cm, xm and ym is 1,
B. for every i ∈ [2,m], ci = maj(xi−1, yi−1, ci−1),
C. for every i ∈ [1,m], zi = (xi ⊕ yi)⊕ ci,

(†)

where maj(ϕ,ψ, χ) def= (ϕ∧ψ)∨(ϕ∧χ)∨(ψ∧χ) and ϕ⊕ψ def= (ϕ∨ψ)∧¬(ϕ∧ψ) are
the standard Boolean functions majority and exclusive or, respectively. When it
comes to capturing +k with an ML(∃kFO) formula, the key property is that the
conditions (A), (B) and (C) can be checked with first-order quantification, by
going through the binary encodings of nk(w1),nk(w2),nk(w3) and nk(w4) bit by
bit, as one would do to check if an addition with carry was performed correctly.

A schema for type(k, n). We move to the definition of type(k, n). In view of
its specification given in Lemma 1, the formula is defined recursively on k. For
simplicity, we extend type(k, n) to k = 0, and define it as >. To express the
condition (1) of Lemma 1, we rely on the auxiliary formulae presented in Fig. 2,
which we later define. For k, n ∈ N+, we define type(k, n) as:

�type(k − 1, n) ∧ ♦0k ∧ ♦1k ∧ ♦Ek ∧
∀1x∀1y (♦y ∧@1

x¬y⇒ ∃1z∃1c : ♦c ∧@1
z¬0k ∧ (add1

k(x, z, y, c) ∨ add1
k(y, z, x, c))).

Whereas the first conjunct of type(k, n) clearly encodes the condition (2) of
Lemma 1, the remaining part of the formula forces the condition (1) by saying
that the current world w has three children encoding the numbers 0, 1 and
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t(k, n)− 1, respectively, and that for every two children wx, wy of w, if wx 6= wy

(subformula ♦y∧@1
x¬y) then there is a child wz of w such that nk(wz) 6= 0, and

nk(wx)+nk(wz) = nk(wy) or nk(wy)+nk(wz) = nk(wx). Hence, in combination
with ♦0k, ♦1k and ♦Ek, the last conjunct of type(k, n) not only states that
distinct children of w must encode different numbers, but also that every number
of [0, t(k, n)− 1] must be encoded by some child of w.

To effectively construct type(k, n), what is left is to define the formulae
in Fig. 2. Given how the numbers nk(.) are encoded, the definitions of 0k, 1k and
Ek are simple. For the case k = 1, we define 01

def=
∧n
j=1¬pj , 11

def= (p1 ∧
∧n
j=2¬pj)

and E1
def=
∧n
j=1pj . For k ≥ 2, we define instead: 0k

def= �¬b, 1k
def= �(b ⇒ 0k−1),

and Ek
def= �b. The main difficulty lies in how to define add ik, which requires a

recursive definition. Below, we consider three cases. First, we consider the base
case i = k = 1 and define add1

1 by only using the local quantifiers ∃1. After-
wards, we consider the case 1 ≤ i < k − 1 and define the formula add ik by using
local quantifiers ∃1, . . . ,∃k−1. This formula relies on the definition of add i+1

k ,
which we assume to be defined by inductive reasoning. Lastly, we consider the
only remaining case of i = k − 1, and define addk−1k by using quantifiers ∃k−1
and ∃1, and without relying on the definition of add1

1. This case is left for last
as it is somewhat more involved than the other two cases, and some ingenuity is
required to define addk−1k without relying on the local quantifiers ∃k. The ad-hoc
treatment of this case is however fundamental, as it leads to type(k, n) being a
round-bounded formula of the logic ML(∃k−1FO ), for every k ≥ 2.

Case: i = k = 1. Recall that the numbers n1(.) are encoded using the truth
values of p1, . . . , pn ∈ AP. Then, add1

1 simply follows the constraints (†) of +1:

add1
1(x, y, z, c) def= @1

c¬p1 ∧
∧

q∈{x,y,c}
(
@1

qpn ⇒
∧

r∈{x,y,c}\{q}@
1
r¬pn

)
(A)

∧
∧n

i=2

(
@1

cpi ⇔ maj(@1
xpi−1,@

1
ypi−1,@

1
cpi−1)

)
(B)

∧
∧n

i=1

(
@1

zpi ⇔
(
(@1

xpi ⊕@1
ypi)⊕@1

cpi
))

(C)

Case: 1 ≤ i < k − 1. To define add ik, we assume by inductive reasoning that
the formula add i+1

k is correctly defined, following its specification in Fig. 2. We
specialise add i+1

k to define the two auxiliary formulae below:

eq i+1
k (x, y) def= ∃i+1z, c : ♦i+1c ∧@i+1

z 0k−i ∧ add i+1
k (y, z, x, c);

succi+1
k (x, y) def= ∃i+1z, c : ♦i+1c ∧@i+1

z 1k−i ∧ add i+1
k (y, z, x, c).

Given x and y be two (i+1)-local nominals for (K, w), with corresponding worlds
wx and wy, if K, w′ |= type(k − i, n) for some w′ ∈ Ri(w), then:

– K, w |= eq i+1
k (x, y) if and only if nk−i(wx) = nk−i(wy);

– K, w |= succi+1
k (x, y) if and only if nk−i(wx) = nk−i(wy) + 1.

Notice that the semantics of succi+1
k and eq i+1

k is given under the hypothesis
that a world in Ri(w) satisfies type(k − i, n). This extra hypothesis ensures
that the local quantifiers ∃i+1z and ∃i+1c used to define succi+1

k and eq i+1
k

quantify over a set of worlds encoding all the numbers in [0, t(k−(i+1), n)−1],
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so that no possible addition with carry is missing. In defining add ik(x, y, z, c),
this hypothesis is clearly satisfied, as the worlds corresponding to the i-local
nominals x, y, z and c are assumed to satisfy type(k − i, n).

By relying on succi+1
k and eq i+1

k , we define add ik(x, y, z, c) again by following

the characterisation (†) of +k−i+1, as shown below (where X def= {x, y, c}):

∀i+1x, y, z, c, g : @i
x♦x ∧ @i

y♦y ∧ @i
z♦z ∧ @i

c(♦c ∧ ♦g) ⇒
(A): @i+1

c (0k−i ⇒ ¬b) ∧
(
(
∧
q∈X@i+1

q Ek−i)⇒
∧
q∈X

(
@i+1
q b⇒

∧
r∈X\{q}@

i+1
r ¬b

))
(B): ∧

(
eq i+1
k (x, y) ∧ eq i+1

k (y, c) ∧ succi+1
k (g, c)⇒

(
@i+1

g b⇔ maj(@i+1
x b,@i+1

y b,@i+1
c b)

))
(C): ∧

(
eq i+1
k (x, y) ∧ eq i+1

k (y, z) ∧ eq i+1
k (z, c)⇒

(
@i+1

z b⇔ ((@i+1
x b⊕@i+1

y b)⊕@i+1
c b)

))
.

The first line of add ik binds the propositions x, y, z, and c and g to children of x,
y, z and c, respectively. Afterwards, the formula follows closely the constraints
in (†). For instance, the last conjunct characterises the condition (C) by saying
that whenever we consider children wx, wy, wz and wc of wx, wy, wz and wc

respectively, if j = nk−i(wx) = nk−u(wy) = nk−i(wz) = nk−i(wc) for some
j ∈ N, then n2(wz)[j] = ((n2(wx)[j]⊕ n2(wy)[j])⊕ n2(wc)[j]), where n2(w)[j] is
the (j + 1)-th least significant digit of the number encoded by a world w.

Case: i = k − 1. To complete the definition of add ik, what is left is to define
addk−1k by only using quantifiers ∃k−1 and ∃1. Below, the worlds wx, wy, wz and
wc, corresponding to the (k−1)-local nominals x, y, z and c, satisfy type(1, n),
and so accordingly with n2(.) they encode a number by looking at the value of
the proposition b in their children, which themselves encode a number n1(.). To
properly define addk−1k (x, y, z, c), we rely on the fact that these children encode
n-bits numbers, with n given in unary. Then, instead of employing a quantifier
∃k to refer to one of these children, we can rely on n + 1 local quantifiers ∃k−1
to copy the values of p1, . . . , pn and b of a child directly on its parent. For
instance, to check if wx and wy have children encoding the same numbers and
equisatisfying b, one can follow the steps below, also sketched in Fig. 3:
1. using ∃k−1, we quantify over fresh propositional symbols rv1, . . . , r

v
n and qv,

with v ∈ {x, y}, to modify the truth of these symbols on wx and wy;
2. using @k−1

x , we move the evaluation point to wx. We check that the truth
of the propositions rx1, . . . , r

x
n, qx on wx is mirroring the truth of p1, . . . , pn, b

on a child of wx. For this, we rely on the formula copy((rx1, . . . , r
x
n), qx) that,

for an n-tuple of atomic propositions r = (r1, . . . , rn) and q ∈ AP, is defined
as: copy(r, q) def= ∃1u : ♦u ∧ (q ⇔ @1

ub) ∧
∧n
i=1(ri ⇔ @1

upi). This step is also
done (in parallel) for wy, by relying on copy((ry1, . . . , r

y
n), qy);

3. with respect to the initial point of evaluation w, we check that the truth of
the propositions rx1, . . . , r

x
n, qx on wx corresponds to the truth of ry1, . . . , r

y
n, qy

on wy, i.e. @k−1
x qx ⇔ @k−1

y qy and @k−1
x rxi ⇔ @k−1

y ryi , for all i ∈ [1, n].

This idea of copying information about children of wx, wy, wz and wc directly

in these four worlds is at the base of our definition of addk−1k , which we now

formalise. Similarly to n1(.), for an n-tuple of symbols r = (r1, . . . , rn), nr(w) def=∑
{2i−1 : i ∈ [1, n], w ∈ V(ri)} stands for the n-bits number encoded by the world

w by looking at the truth values of r1, . . . , rn. Given a second n-tuple of atomic
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w

x y

(1)

rx,qx ry,qy

x(2)

p,b:

rx,qx:

=

w

x y

(3)

rx,qx: ry,qy:

=

Fig. 3: Steps to check if two children of wx and wy encoding the same n1(.) equisatisfy b.

propositions s = (s1, . . . , sn), we introduce the formulae succ(r@x, s@y) def=∨n
i=1

(
@k−1

x ri∧@k−1
y ¬si∧

∧i−1
j=1(@k−1

x ¬rj∧@k−1
y sj)∧

∧n
j=i+1(@k−1

x rj ⇔ @k−1
y sj)

)
and eq(r@x, s@y) def=

∧n
i=1(@k−1

x ri ⇔ @k−1
y si), having the following semantics:

– K, w |= eq(r@x, s@y) if and only if nr(wx) = ns(wy); and

– K, w |= succ(r@x, s@y) if and only if nr(wx) = ns(wy)+1.

The correctness of succ(r@x, s@y) follows from standard arithmetical properties:
for two n-bits numbers a and b represented as binary bit vectors with most
significant digit first, a = b + 1 holds iff a = c10 and b = c01 hold for a prefix
c ∈ {0, 1}∗ and bit vectors of same length 0 ∈ {0}∗ and 1 ∈ {1}∗.

The definition of addk−1k (x, y, z, c) is given below, where X def= {x, y, c} and

for v ∈ {x, y, z, c, g}, rv def= (rv1, . . . , r
v
n) and ∀k−1rv is short for ∀k−1rv1 . . . ∀k−1rvn.

∀k−1rx, qx, ry, qy, rz, qz, rc, qc, rg, qg :
∧

v∈{x,y,z,c}@
k−1
v copy(rv, qv) ∧ @k−1

c copy(rg, qg) ⇒
(A): @k−1

c �(01 ⇒ ¬b) ∧
∧
q∈X@k−1

q

(
♦(E1 ∧ b)⇒

∧
r∈X\{q}@

k−1
r �(E1 ⇒ ¬b)

)
(B): ∧

(
eq(rx@x, ry@y) ∧ eq(ry@y, rc@c) ∧ succ(rg@c, rc@c)

⇒
(
@k−1

c qg ⇔ maj(@k−1
x qx,@

k−1
y qy,@

k−1
c qc)

))
(C): ∧

(
eq(rx@x, ry@y) ∧ eq(ry@y, rz@z) ∧ eq(rz@z, rc@c)

⇒
(
@k−1

z qz ⇔
(
(@k−1

x qx ⊕@k−1
y qy)⊕@k−1

c qc
)))

.

Notice that this formula first quantifies over fresh atomic propositions rv and
qv, with v ∈ {x, y, z, c, g}⊆AP, so that the worlds wx, wy, wz, wc copy the truth
of p1, . . . , pn and b of some of their children w.r.t. the fresh atomic propositions
(see subformula

∧
v∈{x,y,z,c}@k−1

v copy(rv, qv) ∧ @k−1
c copy(rg, qg)). Afterwards,

the formula follows very closely the constraints (†) of +2.
By induction on i, we show that add ik respects the specification from Fig. 2.

Lemma 2. Let (K, w) be a pointed forest, and x, y, z, c be four i-local nominals
for (K, w), with corresponding worlds wx, wy, wz and wc. If K, wp |= type(k−i, n)

for every p ∈ {x, y, z, c}, then K, w |= add ik(x, y, z, c) iff +k−i+1(wx, wy, wz, wc).

Making add ik polynomial. At this stage, add ik (i < k − 1) has size exponential
in k, as it is recursively defined using multiple occurrences of add i+1

k (appearing
inside eq i+1

k and succi+1
k ). However, all these occurrences have the same polarity,

i.e. they all appear positively in the antecedents of the implications for the
conditions (B) or (C). This property allows us to rely on a recursion trick by
Fisher and Rabin [20] to obtain a polynomial size formulation of add ik. In a
nutshell, given a first-order formula ϕ(x) free in the tuple of variables x, the
trick consists in rewriting ψ def= ϕ(y) ∧ ϕ(z) as ∀x : (x = y ∨ x = z) ⇒ ϕ(x), so



12 R. Fervari and A. Mansutti

that the size of ψ becomes only |ϕ(x)| plus a constant, instead of being roughly
twice |ϕ(x)|. In a similar way, one can treat arbitrary formulae, as long as all
occurrences of ϕ(x) have the same polarity, as it is the case of add i+1

k . The
(simple) manipulation of the formula add ik using this trick directly leads to a
definition of type(k, n) of size polynomial in k and n.

Multi-tiling. The definition of type(k, n) provides the key technical step required
to show the lower bounds of Thms. 1 and 2. Using this formula, both theorems
can be proved by suitable reductions from the k-exp alternating multi-tiling
problem (kAMTP), as we now briefly discuss.

A multi-tiling system P is a tuple (T , T0, Tacc,H,V,M, n) where T is a finite
set of tile types, T0, Tacc ⊆ T are sets of initial and accepting tiles, respectively,
n ∈ N+ (written in unary) is the dimension of the system, and H,V,M⊆ T ×T
are the horizontal, vertical and multi-tiling matching relations, respectively.

Fix k ∈ N+. We write Σ̂ for the set of words of length t(k, n) over an al-
phabet Σ. The initial row I (f) of a map f : [0, t(k, n) − 1]2 → T is the word

f(0, 0), f(0, 1), . . . , f(0, t(k, n)−1) from T̂ . A tiling for the grid [0, t(k, n)−1]2 is
a tuple (f1, f2, . . . , fn) such that, for all ` ∈ [1, n], the following conditions hold:

maps. f` : [0, t(k, n)− 1]2 → T assigns a tile type to each position of the grid;

init & acc. I (f`) ∈ T̂0, and fn(t(k, n)− 1, j) ∈ Tacc for some 0 ≤ j < t(k, n);
hori. (f`(i, j), f`(i+ 1, j)) ∈ H, for every i ∈ [0, t(k, n)− 2] and 0 ≤ j < t(k, n);
vert. (f`(i, j), f`(i, j + 1)) ∈ V, for every j ∈ [0, t(k, n)− 2] and 0 ≤ i < t(k, n);
multi. if ` < n then (f`(i, j), f`+1(i, j)) ∈M for every 0 ≤ i, j < t(k, n).

The kAMTP takes as input P and a quantifier prefix Q = (Q1, · · · , Qn) ∈ {∃,∀}n,

and accepts whenever the statement “Q1w1 ∈ T̂0 . . . Qnwn ∈ T̂0 : there is a tiling
(f1, . . . , fn) of [0, t(k, n)− 1]2 s.t. I (f`) = w` for all ` ∈ [1, n]” is true.

The AExppol-completeness of kAMTP for k = 1 can be traced back to [11].
The proof therein is independent from the size of the grid, and can be eas-
ily adapted to show kAExppol-completeness for arbitrary k (see [24] for a self-
contained presentation). The problem is kNExp-complete if we fix Q to only con-
tain existential quantifiers. For the lower bound of Thm. 1, we reduce kAMTP on
instances with Q ∈ {∃}n to the sat. problem of ML(∃kFO), so that the translation
produces a formula of ML(∃1FO) of modal depth 1 for the case k = 1, and otherwise
a round-bounded formula from ML(∃k−1SO ) of modal depth k. For Thm. 2 we get
a similar reduction, from instances of the kAMTP with arbitrary Q to ML(∃kSO).

The first step is to define an ML(∃kFO) formula grid(k, n) that, when satisfied
by a pointed forest (K, w), forces the children of w to encode every position in
the grid [0, t(k, n)− 1]2, together with a formula tiling(k,P) that characterises
the various tiling conditions. Fortunately, both these formulae can be defined as
in [7], modulo very minor changes. Briefly, each child w′ of w shall encode a dif-
ferent pair of numbers (nHk (w′),nVk (w′)) representing a position in the grid. The
number of bits required to represent nHk (w′) and nVk (w′) is the same as nk(.),
which allows us to define grid(k, n) by slightly updating type(k, n). In particular,
nHk (w′) and nVk (w′) can be encoded requiring w′ to satisfy type(k − 1, n), and by
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using fresh symbols pH1 , . . . , p
H
n , b

H and pV1 , . . . , p
V
n , b
V to encode (nHk (w′),nVk (w′)).

For k = 1, the horizontal position is nH1 (w′) def= {2i−1 : i ∈ [1, n] and w′ ∈ V(pHi )}.
For k ≥ 2, nHk (w′) def=

∑
{2i : ∃w′′ ∈ R(w′) s.t. nk−1(w′′) = i and w′′ ∈ V(bH)}.

The vertical position nVk (w′) is defined in a similar way. Notice that, in the case
of k ≥ 2, nHk (w′) and nVk (w′) are defined in terms of nk−1(w′′), and thus using
the t(k − 1, n) children of w′. For tiling(k,P), we see each tile type t ∈ T as
an atomic proposition, and consider n distinct copies t(1), . . . , t(n) ∈ AP of it,
so that the maps f1, . . . , fn can be encoded using just the set of worlds forced
by grid(k, n). In particular, for every i ∈ [1, n], each child w′ shall satisfy exactly
one proposition in {t(i) : t ∈ T }, encoding the fact that fi(n

H
k (w′),nVk (w′)) = t.

Following the above specification, the toolkit of formulae in Fig. 2 can be eas-
ily adapted to express properties of the horizontal and vertical positions encoded
by a world, leading to the definition of grid(k, n) and tiling(k,P). For instance,
given G ∈ {H,V} and ϕ ∈ {0k, 1k,Ek} we define the formula ϕG as follows: for
k = 1 we set ϕG def= ϕ[pi ←0 p

G
i : i ∈ [1, n]], and for k ≥ 2 we set ϕG def= ϕ[b←1 b

G].
Then, w′ satisfies the formula 1Hk ∧ 0Vk whenever (nHk (w′),nVk (w′)) = (1, 0).

Lemma 3. The ML(∃kFO) formula grid(k, n) ∧ tiling(k,P) is satisfiable if and
only if kAMTP accepts on input (P,Q), with Q ∈ {∃}n.

For the lower bound of Thm. 2, it remains to show how to capture in ML(∃kSO)
the arbitrary prefixes of quantification Q = (Q1, . . . , Qn) of kAMTP. Compared
to [6,7], novel machinery is required to perform this step. As ML(∃kSO) captures
ML(∃kFO), we now see grid(k, n) and tiling(k,P) as formulae of ML(∃kSO). For each
tile type t ∈ T , we consider an additional set of copies t(n+1), . . . , t(2n) ∈ AP. We

also define t(i) def= (t
(i)
1 , . . . , t

(i)
r ), where T = {t1, . . . , tr}. We use the propositions

in t(n+i) to simulate the quantifier Qi, which we recall quantifies over the possible
initial rows I (fi) ∈ T̂0 of the map fi. If Qi = ∃, we simulate this form of
quantification with the following shortcut, parametric on ϕ:

Ei(ϕ) def= ∃1t(n+i) : ϕ ∧�(0Hk ⇒
∨
t∈T0(t(n+i) ∧

∧
s∈T \{t} ¬s(n+i))).

Here, the last conjunct states that each world encoding a position (0, j) of the
grid, for some j ∈ [0, t(k, n) − 1], satisfies exactly one proposition t(n+i) with
t ∈ T0. For Qi = ∀, we just define Ai(ϕ) def= ¬Ei(¬ϕ). Then, the prefix of
quantification Q is captured by Q(ϕ) def= Q1(Q2(. . . Qn(ϕ))), where Qi(ϕ) def=
Ei(ϕ) if Qi = ∃, else Qi(ϕ) def= Ai(ϕ). In deciding whether K, w |= Q(ϕ) holds for
a pointed forest (K, w) satisfying grid(k, n), the satisfaction of ϕ is checked w.r.t.
a model where each world encoding a position (0, j) of the grid satisfies exactly
one t(n+i) with t ∈ T0, for all i ∈ [1, n]. In terms of tilings, this corresponds

to having set the initial row I (fi) ∈ T̂0 of each of the maps fi. We now want
to tile the remaining part of the grid by finding a suitable instantiation for ϕ.
To do so, we quantify over all t(1), . . . t(n), searching for an arrangement of
these propositions that satisfies tiling(k,P) and such that, on worlds encoding
a position (0, j) of the grid, the satisfaction of propositions in t(i) mirrors the
satisfaction of the corresponding propositions in t(n+i). In formula:

tiling(k,P) def= ∃1t(1), . . . , t(n) : tiling(k,P)∧�(0Hk ⇒
∧n
i=1

∨
t∈T (t(i) ⇔ t(n+i))).
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Lemma 4. The ML(∃kSO) formula grid(k, n)∧Q(tiling(k,P)) is satisfiable if and
only if kAMTP accepts on input (P,Q).

Round-boundedness. In defining type(k, n), we made sure to respect the fol-
lowing round-boundedness condition: type(1, n) has modal depth 1 and belongs
to ML(∃1FO), whereas for every k ≥ 2, type(k, n) is a round-bounded formula
of ML(∃k−1FO ) of modal depth k. The same holds for grid(k, n), tiling(k,P) and
Q(tiling(k,P)). Then, Lemmas 3 and 4 imply the lower bounds of Thms. 1 and 2.

4 Upper bounds via a small-model property for ML(∃k
SO)

In this section, we establish the following small model property.

Proposition 1. Each satisfiable round-bounded formula ϕ in ML(∃kSO) is satis-
fied by a pointed forest with t(k+1,O(|ϕ|)) worlds. Each satisfiable ϕ in ML(∃kSO)
with md(ϕ) ≤ k is satisfied by a pointed forest with t(k,O(|ϕ|3)) worlds.

As the logic ML(∃kSO) captures ML(∃kFO), Prop. 1 transfers to the latter logic.
With this result at hand, the upper bounds of Thm. 1 and Thm. 2 easily follow.
Consider a round-bounded formula ϕ of either ML(∃kSO) of ML(∃kFO) (the argu-
ments for a formula of modal depth k are similar). First, we guess a pointed
forest (K, w) with bounds as in Prop. 1. This can be done in (k+1)NExp. Then,
we check whether (K, w) satisfies ϕ. For ML(∃kSO), by seeing this logic as a frag-
ment of monadic second-order logic, this can be done in polynomial time in the
sizes of (K, w) and ϕ by using an alternating Turing machine that performs |ϕ|
many alternations. As (K, w) has (k+1)-exponential size with respect to |ϕ|, the
whole algorithm runs in (k+1)AExppol. For ML(∃kFO), we rely on the fact that
there is a deterministic algorithm for the model checking problem of first-order
logic that runs in time O(|ϕ| ·M |ϕ|) where M is the size of the model. From the
bounds on (K, w) we conclude that the procedure for ML(∃kFO) is in (k+1)NExp.

Prop. 1 is shown through a quantifier elimination (QE) procedure that trans-
lates every formula of ML(∃kSO) into an equivalent formula from GML, establish-
ing Cor. 2 as a by-product. Without loss of generality, in this section we extend
ML(∃kSO) with graded modalities ♦≥jϕ, with j ∈ N given in unary, and see the
modality ♦ as a shortcut for ♦≥1. Recall that a GML formula ♦≥jϕ can be
represented with an ML(∃kSO) formula of size O(j + |ϕ|) (Sec. 2).

Parameters of a formula. Fig. 4 introduces a set of parameters for a ML(∃kSO)
formula ϕ, which we rely on to establish Prop. 1. For instance, for ϕ = (p∨♦≥3r)∧
(q∨♦≥5♦≥2q) we have ap(1, ϕ) = {r}, gsf(0, ϕ) = {♦≥3r,♦≥5♦≥2q}, msf(1, ϕ) =
{r,♦≥2q}, gsf(1, ϕ) = {♦≥2q}, gr(0, ϕ) = 5 and bd(0, ϕ) = 8. Note that every
GML formula ϕ is a Boolean combination of formulae from ap(0, ϕ) ∪ gsf(0, ϕ),
and for every d ∈ N, bd(d, ϕ) ≤ gr(d, ϕ) · |msf(d+ 1, ϕ)|.

For a set of formulae Φ = {ϕ1, . . . , ϕn}, we define C(Φ) to be the set of
all complete conjunctions of possibly negated formulae of Φ. Formally, C(Φ) def=
{γ1 ∧ · · · ∧ γn : for all i ∈ [1, n], γi ∈ {ϕi,¬ϕi}}, and we fix C(∅) = {>}. Given
P ⊆fin AP we refer to the formulae in C(P) as ρ1,ρ2, · · · .



Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy 15

ap(d, ϕ) : set of atomic propositions of ϕ in the scope of exactly d graded modalities.
gsf(d, ϕ) : set of subformulae ♦≥jψ of ϕ, in the scope of exactly d graded modalities.
msf(d, ϕ) : set of maximal subformulae of ϕ in the scope of d graded modalities:

msf(0, ϕ) = {ϕ}, and ψ ∈ msf(d+ 1, ϕ) iff ♦≥jψ ∈ gsf(d, ϕ) for some j ∈ N.
gr(d, ϕ) : largest j ∈ N such that either j = 0 or ♦≥jψ ∈ gsf(d, ϕ), for some ψ.

bd(d, ϕ) : for d = 0 and let gsf(0, ϕ) = {♦≥j1ψ1, . . . ,♦≥jnψn}, bd(0, ϕ) def= j1 + · · ·+jn.

For d ≥ 1, bd(d, ϕ) def= max {bd(d− 1, ψ) : ψ ∈ msf(1, ϕ)}.

Fig. 4: Parameters of an ML(∃k) formula ϕ (d ∈ N).

Normal forms. We introduce a set of normal forms that are used by our QE
procedure. An ML(∃kSO) formula ϕ is in prenex normal form if it is of the form
Q1p1Q2p2 . . . Qnpnψ where Qi ∈ {∃k,∀k} and ψ is in GML. If ψ is instead in
ML(∃kSO) but all quantifiers are under the scope of at least k modalities, we
say that ϕ is in prenex normal form up to k. An ML(∃kSO) formula ϕ is in prenex
round-bounded (p.r.b.) form if ϕ is round-bounded and, for all i ∈ N, all formulae
in msf(i · k, ϕ) are in prenex normal form up to k. E.g., given a p.r.b. formula
ψ in ML(∃2SO), ∃2p ∃2q ♦♦∃2r ψ is in p.r.b. form, while ∃2p♦∃1q ♦∃2r ψ is not.
Thanks to the equivalences below one can translate each round-bounded formula
ϕ of ML(∃kSO) into an equivalent well-quantified p.r.b. formula of size O(|ϕ|):

♦∃k−1pϕ ≡ ∃kp♦ϕ, �∃k−1pϕ ≡SO ∃kp�ϕ, for k ≥ 2. (‡)
Similarly, every ϕ in ML(∃kSO) of modal depth at most k can be translated into
a well-quantified prenex formula of ML(∃kSO) having size O(|ϕ|). Notice that the
second equivalence in (‡) only holds on pointed forests and for the logic ML(∃kSO).
It does not hold for arbitrary Kripke structures, nor for ML(∃kFO).

Our QE procedure translates each formula of ML(∃kSO) into a GML formula
in disjoint normal form (called good formulae in [23, Def. 8.5]) for which it is easy
to estimate bounds on the size of the smallest satisfying pointed forest, if any. We
say that a set {ϕ1, . . ., ϕn} of formulae in GML is a disjoint set over P ⊆fin AP
whenever for all i, j ∈ [1, n], we have ϕi = ρi ∧ γi and ϕj = ρj ∧ γj , where
ρi,ρj ∈ C(P), ap(0, γi)∩P = ap(0, γj)∩P = ∅, and either γi ≡ γj or (γi∧γj) ≡⊥.
By taking ρi and ρj up-to commutativity and associativity of ∧, a disjoint set
over P is also a disjoint set over any P′ ⊂ P. We say that ϕ is in disjoint normal
form (DisjNF) if for every d ∈ [0,md(ϕ)], msf(d, ϕ) is a disjoint set over ∅.

Proposition 2 ([23], Lemma 8.7). Each satisfiable GML formula ϕ in DisjNF
is satisfied by a pointed forest with at most (maxd∈N(bd(d, ϕ)) + 1)md(ϕ) worlds.

To translate a well-quantified p.r.b. formula ϕ from ML(∃kSO) into a GML
formula in DisjNF, we consider the largest i ∈ N for which msf(i · k, ϕ) is non-
empty, and inductively translate, for each j = i, i − 1, · · · , 0, all formulae in
msf(j · k, ϕ) into equivalent ones in GML. At each of these i + 1 rounds, the
following two steps are applied at most k times:
1. Let ` = min{r ∈ N+ : all formulae of msf(j · k, ϕ) are in ML(∃rSO)}. We up-

date all ψ ∈ msf(j · k, ϕ) so that msf(`, ψ) becomes a disjoint set over bp(ψ).
2. By manipulating all quantified propositions of the formulae in msf(`, ψ), we

translate ψ into a formula of either GML (if ` = 1) or ML(∃`−1SO ) (if ` ≥ 2).
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At the end of the round, msf(j · k, ϕ) solely contains GML formulae in DisjNF,
and the next round considers the set msf((j−1)·k, ϕ), that now contains ML(∃kSO)
formulae in prenex normal form. The QE procedure has thus three key steps,
which we now formalise: (I) manipulating a formula ϕ so that msf(j, ϕ) becomes
a disjoint set, (II) eliminating the quantifier ∃1 obtaining a formula from GML,
and (III) reducing the elimination of ∃` to the elimination of ∃`−1 (for ` ≥ 2).

Step (I): making a single set disjoint. Let j ∈ N+ and P ⊆fin AP. We show how
to transform a GML formula ϕ into an equivalent formula ψ such that msf(j, ψ)
is a disjoint set over P. Two strategies are possible, which will be combined and
carefully chosen in order to obtain the bounds required by Prop. 1.

The first strategy considers the set S def= C(P ∪ ap(j, ϕ) ∪ gsf(j, ϕ)), which is
disjoint over P (and so over ∅), and rewrites ϕ into an equivalent formula ψ with
msf(j, ψ) ⊆ S. Consider γ ∈ msf(j, ϕ). By definition of C(.),

∨
χ∈S χ is a tautol-

ogy, and since γ is a Boolean combination of formulae in ap(j, ϕ) ∪ gsf(j, ϕ), for
all χ ∈ S the formula γ ∧χ is equivalent to either ⊥ or χ. Then, γ ≡

∨
χ∈T χ for

some T ⊆ S. Notice that γ ∈ msf(j, ϕ) holds if and only if ♦≥iγ ∈ gsf(j − 1, ϕ),
for some i ∈ N. By relying on the equivalence of GML

♦≥i(χ1 ∨ χ2) ≡
∨
i=i1+i2

(♦≥i1χ1 ∧ ♦≥i2χ2), whenever χ1 ∧ χ2 ≡⊥,
we rewrite ♦≥iγ into a Boolean combination of formulae ♦≥i′χ with i′ ≤ i and
χ ∈ T ⊆ S. These steps are applied to all the formulae in msf(j, ϕ).

The second strategy is as follows: for each γ ∈ msf(j, ϕ) and ρ ∈ C(P), let
γρ

def= γ[p←0 v : v ∈ {>,⊥}, p ∈ P, and v = > iff p occurs positively in ρ ]. No-
tice that ap(0, γρ) ∩ P = ∅. As ρ gives a polarity to all propositions in P,

we have ρ ∧ γ ≡ ρ ∧ γρ. Set T def= C({γρ : γ ∈ msf(j, ϕ),ρ ∈ C(P)}). Consider

S ′ def= C(P ∪ T ), which is a disjoint set over P, and replay the arguments used for S
in the first strategy to rewrite ϕ into an equivalent formula ψ with msf(j, ψ) ⊆ S ′.

While both strategies keep most of the parameters of Fig. 4 unchanged (one
exception being ap(j, ψ) ⊆ ap(j, ϕ)∪P), they yield profoundly different bounds
on the size of msf(j, ψ). Because of the definition of S, from the first strategy
we obtain |msf(j, ψ)| ≤ 2|P|+|ap(j,ϕ)|+|gsf(j,ϕ)|, where we highlight the exponential
dependence on |gsf(j, ϕ)|, and thus on the number of outermost graded modal-
ities appearing in formulae of msf(j, ϕ). From the definition of S ′, the second

strategy yields |msf(j, ψ)| ≤ 2|P|+2|P|·|msf(j,ϕ)|. Here, |msf(j, ψ)| does not depend
on gsf(j, ϕ), but it is doubly exponential in |P|. Remarkably, in both strategies
gsf(j, ψ) ⊆ gsf(j, ϕ), thus if msf(j+1, ϕ) is a disjoint set over ∅, so is msf(j+1, ψ).
This property is essential, as it allows us to bring the full formula in DisjNF.

Step (II): eliminating ∃1. Given a well-quantified formula ϕ = ∃1pϕ′, where ϕ′

is in GML and msf(1, ϕ) is a disjoint set over P, and p ∈ P, it is quite easy to
eliminate the quantifier ∃1p and produce a formula ψ in GML equivalent to ϕ
and such that msf(1, ψ) is a disjoint set over P \ {p}. We sketch here the main
points. First, from standard axioms of propositional calculus and by distributing
∃1p over ∨, we obtain a representation of ϕ as a disjunction of formulae of the
form ∃1p (ρ ∧ γ) with ρ ∈ C(ap(0, ϕ)) and γ ∈ C(gsf(0, ϕ)). We eliminate the
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quantifier ∃1 from every such disjunct ∃1p (ρ ∧ γ). Below, let χ be an arbitrary
formula with p 6∈ ap(0, χ). First, using the equivalences ∃1p (p∧χ) ≡SO ∃1pχ and
∃1p (¬p∧χ) ≡SO ∃1pχ, we get rid of the occurrences of p in ρ, obtaining a formula
ρ′ ∈ C(ap(0, ϕ) \ {p}). Next, we remove p from γ thanks to the equivalences:

∃1p : ♦≥i(p ∧ χ) ∧ ♦≥j(¬p ∧ χ) ≡SO ♦≥i+jχ;
∃1p : ¬♦≥i(p ∧ χ) ∧ ¬♦≥j(¬p ∧ χ) ≡SO ¬♦≥i+j−1χ.

We obtain a GML formula γ′ such that ∃1p (ρ∧γ) ≡SO ρ
′∧γ′. Size-wise, Step (II)

preserves all the parameters of Fig. 4 except gr(0, ψ) ≤ 2 · gr(0, ϕ).

Step (III): from ∃k+1 to ∃k. Consider a well-quantified ML(∃kSO) formula ϕ′ hav-
ing all quantifiers appearing outside the scope of graded modalities, and with the
set msf(k+1, ϕ′) disjoint over P. Given p ∈ P, we translate ϕ def= ∃k+1pϕ′ into an
equivalent well-quantified ML(∃kSO) formula ψ having all quantifiers outside the
scope of graded modalities, and with the set msf(k + 1, ψ) disjoint over P \ {p}.
This is done by replacing ∃k+1p with multiple ∃k. The first step is to single
out the occurrences of p under the scope of k+1 modalities by replacing them
with a fresh symbol p̃ and splitting ∃k+1p into ∃kp and ∃k+1p̃ . We get ϕ ≡SO

∃kp ∃k+1p̃ ϕ′′ where ϕ′′ = ϕ′[p←k+1 p̃]. Let gsf(k, ϕ′′) = {♦≥k1χ1, . . . ,♦≥knχn}.
From the properties of ϕ′, no proposition from bp(ϕ′′) appears in the GML for-
mulae χ1, . . . , χn. Using fresh propositions q1, . . . , qn, we rewrite ϕ as

∃kp ∃k+1p̃ ∃kq1, . . . , qn : ϕ′′[♦≥kiχi ←k qi : 1 ≤ i ≤ n] ∧�k
∧n
i=1(qi ⇔ ♦≥kiχi).

Essentially, the subformula �k
∧n
i=1(qi ⇔ ♦≥kiχi) constraints each qi to be

true in exactly those worlds satisfying ♦≥kiχi. This allows us to replace with
qi all occurrences of ♦≥kiχi appearing in ϕ′′ under the scope of k modalities
(first conjunct of the formula above), without changing the semantics of ϕ. By
definition, ϕ′′[♦≥kiχi ←k qi : 1 ≤ i ≤ n] has modal depth at most k, and thus
the proposition p̃ does not occur in it. We reorder the existential prefix of the
formula and, by distributing ∃k+1p̃ , conclude that ϕ is equivalent to:

∃kp, q1, . . . , qn : ϕ′′[♦≥kiχi ←k qi : 1 ≤ i ≤ n] ∧ ∃k+1p̃�k
∧n
i=1(qi ⇔ ♦≥kiχi).

Lastly, we eliminate ∃k+1p̃ , obtaining the aforementioned ML(∃kSO) formula ψ.
Using the second equivalence in (‡), we rewrite ∃k+1p̃�k

∧n
i=1(qi ⇔ ♦≥kiχi) into

�k∃1p̃
∧n
i=1(qi ⇔ ♦≥kiχi). Since {χ1, . . . , χn} is a set of formulae form GML that

is disjoint over (P \ {p}) ∪ {p̃}, by applying Step (II) one computes a formula
ψ′ in GML equivalent to ∃1p̃

∧n
i=1(qi ⇔ ♦≥kiχi) and such that msf(1, ψ′) is a

disjoint set over P \ {p}. Then, the (output) formula ψ is defined as follows:

ψ def= ∃kp, q1, . . . , qn : ϕ′′[♦≥kiχi ←k qi : 1 ≤ i ≤ n] ∧�kψ′.

Down to GML, inductively. The manipulation we just described yield the cru-
cial inductive argument that allows us to translate any well-quantified prenex
formula of ML(∃kSO) into a formula of GML. Inductively on k, consider a well-
quantified formula ϕ = Q1p1 . . . Qnpnϕ

′ where each Qi ∈ {∃k,∀k}, the for-
mula ϕ′ is in GML and msf(k, ϕ) is a disjoint set over {p1, . . . , pn}. If k = 1,
we repeatedly apply Step (II) to translate ϕ into a GML formula. If k ≥ 2,
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starting from pn down to p1, we apply Step (III) to translate ϕ into a well-
quantified prenex formula χ from ML(∃k−1SO ). Afterwards, we rely on the first
strategy of Step (I) to make the set msf(k − 1, χ) disjoint over bp(χ), and in-
ductively obtain a GML formula ψ equivalent to ϕ. For a sake of conciseness, let
|ϕ|k

def= max(k, |
⋃
i∈[0,k] ap(i, ϕ)|, maxi<k gr(i, ϕ)). Fundamentally, the formula ψ

has the same modal depth as ϕ, and for every i ∈ [0, k − 1] it satisfies:

gr(i, ψ) ≤ t(k − 1, 28·|ϕ|k · |msf(k, ϕ)|); msf(i, ψ) ≤ t(k − 1, 28·|ϕ|k · |msf(k, ϕ)|).
With these bounds at hand, Prop. 1 follows from Steps (I)–(III) and Prop. 2.

First, consider the case of a well-quantified prenex formula ϕ in ML(∃k) of
modal depth k. Using the first strategy from Step (I), we translate ϕ into
an equivalent formula ψ such that the set msf(k, ψ) is disjoint over bp(ϕ) and
has size exponential in |ϕ|. We apply the inductive argument discussed above,
and translate ψ into a GML formula χ in DisjNF with md(χ) ≤ md(ϕ) and

bd(d, χ) ≤ gr(d, χ) · |msf(d+ 1, χ)|) ≤ t(k,O(|ϕ|2)) for all d ∈ N. By Prop. 2,

whenever satisfiable, ϕ is satisfied by a pointed forest with at most t(k,O(|ϕ|3))
worlds. The case of general p.r.b. formulae of ML(∃kSO) is similar, but we need
to appeal to the second strategy of Step (I) to stop the chain of exponential
blow-ups. For simplicity, let us consider the case of ϕ being a well-quantified
p.r.b. formula of modal depth at most 2k. The arguments used for this case can
be adapted for formulae of arbitrary modal depth. First, we look at the formulae
of msf(k, ϕ), whose modal depth is at most k, and eliminate all local quantifiers
from each of these formulae, as described above. In doing so, |gsf(k, ϕ)| witnesses
a k-exponential blow-up, but the size of msf(k, ϕ) is unchanged. We consider the
quantification prefix of ϕ, and eliminate all its quantifiers over P to produce an
equivalent formula from GML. The first step is to make the set msf(k, ϕ) a disjoint
set over P. Because of the k-exponential blow-up on gsf(k, ϕ), the first strategy
of Step (I) is of no use. We appeal to the second one, which modifies msf(k, ϕ)
into a disjoint set of size only doubly-exponential in the size of the original for-
mula ϕ. By relying on the inductive reasoning discussed above, we produce the
equivalent GML formula in DisjNF. Because of the doubly-exponential bound
on msf(k, ϕ), this elimination is exponentially worse than the one done for for-
mulae of modal depth at most k. Then, appealing to Prop. 2 yields Prop. 1.

5 Further connections

In introducing ML(∃kFO) and ML(∃kSO), one of our goals is to provide a common
framework to relate several modal logics featuring propositional quantification
in disguise. Apart from the relations stated in Sec. 2, in an extended version of
this work we aim at establishing connections between ML(∃1SO) and propositional
team logics [21], propositional logic of dependence [32] and ambient logics [13];
as well as connections bwteen ML(∃∞FO) and sabotage logics [8,4].
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