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Abstract

Default Logics are a family of non-monotonic formalisms having so-
called defaults and extensions as their common foundation. Traditionally,
default logics have been defined and dealt with via syntactic notions of
consequence in propositional or first-order logic. Here, we build default
logics on modal logics. First, we present these default logics syntacti-
cally. Then, we elaborate on an algebraic counterpart. More precisely, we
extend the notion of a modal algebra to accommodate for defaults and
extensions. Our algebraic view of default logics concludes with an alge-
braic completeness result and a way of comparing default logics borrowing
ideas from the concept of bisimulation in modal logic. To our knowledge,
this take on default logics approach is novel. Interestingly, it also lays the
groundwork for studying default logics from a dynamic logic perspective.

1 Introduction

Default Logic refers to a family of non-monotonic formalisms with two main
capabilities: reasoning with incomplete knowledge, and dealing with contra-
dictory information. On the one hand, reasoning with incomplete information
is handled by so-called defaults. Defaults are non-admissible rules of inference
whose conclusions are subject to annulment. Intuitively, defaults handle reason-
ing with incomplete knowledge by drawing conclusions which complete what is
unknown. On the other hand, dealing with contradictory information is handled
by so-called extensions. Extensions can be understood as sets of formulas closed
under the application of defaults. Intuitively, extensions handle reasoning in the
presence of contradictory information by exploring consistent alternatives.

The history of Default Logic traces back to Reiter’s seminal work [27]. Since
then, many variants of Reiter’s original ideas have been proposed. Each variant
gives rise to what nowawadays can be called a distinct default logic (see [4] for a
comprehensive summary). For the most part, these variants have focused their
attention on what is meant by an extension. In particular, the emphasis has
been on how different interactions between defaults, and the rules of inference
of the underlying proof calculus, give rise to different notions of an extension



satisfying one or more properties of interest. In this treatment of extensions, the
definition and analysis of a default logic is usually syntactic or proof-theoretic.
This leaves the semantic side of the coin mostly unexplored. Such a situa-
tion calls for revision. Semantic explorations (model theoretic and algebraic
alike) yield interesting results: completeness theorems, interpolation proper-
ties, model-equivalence relations, algebraic or model invariance properties, etc.
Setting them aside on default logics can only be seen as a shortcoming.

Our work. We follow the tradition in Default Logic and start with a syntacti-
cal formulation of a default logic. We work with default logics defined over modal
logics. The definition is carried out resorting to deducibility (i.e., syntactical
consequence in a proof calculus). We rely on the notion of global deducibility
for modal logics [15]. Our formulation of a default logic is parametric, and can
be instantiated with any normal modal system from K to S5 extended with the
universal modality [6]. We will see that the use of the universal modality is
not arbitrary, but a necessary tool which simplifies the treatment of defaults
and extensions in an algebraic setting. For each of our default logics, we make
explicit how defaults interact with the rules of inference of the underlying proof
calculus. This is done by integrating the use of the former into the notion of
deducibility of the latter.

In addition, we explore our construction of a default logic from an alge-
braic perspective. We do this by extending modal algebras to accommodate for
defaults and extensions. Modal algebras are Boolean algebras with additional
operators for modalities. They make up the algebraic counterpart of modal
systems [35, 17]. We incorporate defaults and extensions into this setting tak-
ing Lindenbaum-Tarski constructions as a starting point. Lindenbaum-Tarski
constructions act as algebraic canonical models for sets of permisses. We add
to these constructions an operator to deal with defaults. This operator can be
thought of as “updating” the Lindenbaum-Tarski algebra w.r.t. the application
of a default. The result of an update is the algebraic counterpart of an exten-
sion. Our algebraic treatment of default logics sets the context to obtain an
algebraic completeness result. Moreover, it gives us a way of comparing default
logics borrowing ideas from the concept of bisimulation in modal logic.

Related work. Our algebraic treatment of defaults and extensions enables us
to think of default logics as “model changing” logics. We use the term “model
changing” in the sense of, e.g., public announcement logic [26]. In our case,
a model change, or update, corresponds to the application of a default (akin
to an announcement). The idea of updating a model dynamically to represent
syntactic steps while reasoning, can be found in several places in the literature
on dynamic logics. For instance, the problem of logical omniscience in epis-
temic logic (see, e.g., [33]) has been thought of as a property to be achieved
after the application of a dynamic operation. In [12, 2, 22, 28], omniscience is
achieved by updating models containing sets of formulas. In [32, 20] the up-
dates are performed over awareness relational models. Dynamics of evidence
are presented in [31, 34] over neighbourhood models. Finally, dynamic modal-
ities allowing to achieve introspective states over Kripke models are introduced
in [13, 14]. Closer to our work is the algebraic treatment of public announce-
ments introduced in [24, 25]. Therein, the algebraic submodel relation induced



by the announcement of a formula 1) is represented by taking the quotient alge-
bra modulo an equivalence relation given by 1. We show that the application
of a default § can be thought of in a similar way, i.e., by taking the quotient
algebra modulo the equivalence relation given by the new knowledge added by §.
We elaborate on this idea in Sec. 4.

Motivation. We build default logics over modal logics. Modal logics provide a
wide spectrum of formalisms which are both more expressive than propositional
logic, and with better computational properties than first-order logic. Modal
logics also have a well-developed algebraic theory in terms of modal algebras.
In our constructions, we exploit the combination of these two features. It turns
out that the effect of applying defaults is better modeled by means of a global
consequence relation. We use the universal modality to internalize global con-
sequence into the language. While we do not pursue it here, default logics built
on modal logics is interesting from the perspective of applying the developed
formalism to particular scenarios. For example, in the setting of description
logics, it is possible to think of defaults as a way of capturing exceptions to a
taxonomy of concepts modeled in a knowledge base (see [5]).

Main contributions. We offer a syntactic and an algebraic treatment of de-
fault logics built over modal logics and study their properties. Syntactically, the
construction of a default logic over a modal logic results in what we refer to as
default modal system. These default systems are parametric on, i.e., determined
by, a modal system and a set of defaults. We show how defaults interact with
the rules of inference of the underlying modal system by providing a suitable
notion of deduction by default. Algebraically, we recast defaults and extensions
in the setting of modal algebras. This enables us to obtain a completeness result
for default modal systems using standard algebraic tools. Dealing with defaults
and extensions in the setting of modal algebras opens the door to study met-
alogical properties of default modal systems from a algebraic perspective, and
can be seen as a first step towards an algebraization of default logics. These
contributions extend the ideas and results introduced in [10]. We include exam-
ples to illustrate and clarify some important concepts and definitions. We also
provide detailed proofs of results. These had been ommitted from [10] due to
reasons of space.

As a completely novel result, we present a notion of bisimulation for default
modal systems. This notion is inspired by the notion of a bisimulation in Modal
Logic and enables us to characterize the relative expressivity of a default modal
system. We consider this result to be a substantial contribution. Our notion
of bisimulation builds on the notion of bisimulation of the underlying modal
system. Bisimulations are the de-facto way of proving semantic equivalences in
Modal Logic. Herein, we show that bisimulations can also be used to compare
default modal systems. Moreover, we elaborate on an application of these results
to the problem of equivalence of default theories. Our notion of bisimulation for
default modal systems gains in interest since, as it is usual with bisimulations,
we only need to inspect properties that are local, i.e., relative to particular
points. This is in contrast to other procedures used to compare default theories
which are not local but based on complete constructions (see e.g., [30, 21]).

We conclude by discussing how recasting defaults and extensions in the set-



ting of modal algebras lays the groundwork to study default systems from a
dynamic logic perspective.

Structure of the article. In Sec. 2 we cover some of the background material
— Boolean algebras, modal systems, and the algebraization of modal systems.
Sec. 3 contains our main results and expands the material in [10] with exam-
ples and detailed proofs. More precisely, in Sec. 3.1 we introduce default modal
systems. In Sec. 3.2 we present default deducibility. In Sec. 3.3 we provide
an algebraic characterization of defaults and extensions. This ultimately yields
a completeness theorem. Sec. 3.4 discusses the limitations of our framework.
Moreover, we detail what are the challenges and possible directions in gen-
eralizing the algebraic treament of default modal systems. Sec. 3.5 contains
novel ideas and results. In particular, in Sec. 3.5, we study some properties of
default systems using bisimulations, and discuss an application for comparing
so-called default theories. Sec. 4 discusses default modal systems from a dy-
namic logic perspective. In this section, we relate our algebraic treatment of
default modal systems with the algebraic treatment of public announcements
introduced in [24, 25]. Sec. 5 offers some final remarks.

2 Background

2.1 Boolean Algebra in a Nutshell
We briefly introduce the basics of Boolean algebras (see, e.g., [18] for details).

Definition 2.1. A Boolean Algebra (BA) is a structure A = (A, *, —, 1) of type
2—1-0 satisfying a well-known set of equations. The set A is also denoted as
|A|. We consider operations + and 0 defined as a + b = —(—ax—b), and 0 = —1.

Definition 2.2. Every BA A is equipped with a partial order < defined as
x <A y iff x = x xy (sometimes we omit the subindex A and write just =<).
We write X = {y | there is z € X s.t. x <y }. A filter is a non-empty subset
F CJA|st.: F=1F and for all z,y € F, (x xy) € F. A filter is principal if it
is of the form 1{a} for a € |A|. A filter F' is proper if 0 ¢ F.

2.2 Modal Systems

We begin by making precise the set Form of well formed formulas we work with.

Definition 2.3. Let Prop = {p; | i € N} be a denumerable set of proposition
symbols; the set Form of well formed formulas (wffs, or simply formulas) is
determined by the grammar

ppu=pi| Top oAy | Op | De.
We use the usual abbreviations: L, o V¢, ¢ = 9, p <> 1, O and .
The set Form can be seen as an enrichment of the basic modal language with

the universal modality @. We use the universal modality as a technical tool to
internalize a global consequence relation. Def. 2.4 introduces modal systems.



Definition 2.4. A modal system is determined by a set of wifs called axioms,
and the inference rules of modus ponens (mp) and universal generalization (u):
p gy %
7 (mp) [T (u).
The most basic modal system we consider, indicated by K®, has as axioms all
instances of propositional tautologies and all instances of the schemas:

1. O(p = ¥) — (Op — OY); 3. @p — ; 5. @p — @@Ey;
2. @W(p — 1Y) = (@p — @y); 4. p — @WOp; 6. @p — .

The rest of the modal systems we consider are obtained from K® by adding
as additional axioms all instances of any subset of the schemas in Fig. 1. The
modal systems under consideration are summarized in Fig. 2.

name | schema

D Op — <
T Op — @
B p — 00y
4 Op — O0O¢
) Cp — OCp
Figure 1: Extensions of K2, Figure 2: Modal Cube.

For each modal system, we define a deducibility, i.e., syntactic consequence,
relation between sets of formulas and formulas. This relation is given in Def. 2.5.

Definition 2.5. Let M¥ be a modal system; an M®-deduction of ¢ from ® is
a finite sequence 1 ..., of formulas such that ¢,, = ¢, and for each k < n at
least one of the following conditions hold:

1. ¢y is an axiom of M®¥;

2. 1Yy is a premiss, i.e., ¥, € P;

3. 1y is obtained using mp, i.e., there are i,j < k s.t. ¥; = 1); — Yy;
4. 9y, is obtained using u, i.e., there is j < k s.t. 1y, = @Y.

We write ® by @ iff there is an M®-deduction of ¢ from ®. The relation Fye
is commonly referred to as global.

We end this section by taking note of the following properties of Fyo.
Proposition 2.1. The following properties hold:
1. If Fpe o, then, Fpye Op.

2. If ®U{p} Fys ¥, then, ® Fya @e — 1.



The first item in Prop. 2.1 refers to the necessitation property in modal
logics, whereas the second item refers to a version of the deduction theorem.

We finish this section with a consideration on the the modal systems chosen
to work with. Our goal in restricting ourselves to these modal systems was to
delimit a well-known class of modal systems on which to build on what we refer
to as default modal systems. We take these systems to be a good starting point
for implementing our ideas on default reasoning and illustrating their reach with
a sufficient degree of generality. It remains an open issue to explore whether our
ideas apply to other modal systems, or what is the minimal set of properties of
a modal system that we necessarily need.

2.3 Algebraizing Modal Systems

In this section we present the semantics of a modal system from an algebraic
perspective. To this end, we associate with each modal system a class of algebras
in a way such that the properties of the modal system are in correspondence
to the properties of the class of algebras. The algebraic treatment of modal
systems is instrumental to perform default reasoning from a semantic point of
view, and to viewing default reasoning as a logic of updates. We elaborate on
these ideas later on. For now, we focus on introducing some basic concepts
and results of the classes of algebras we will work with. To this end, we follow
closely [35], and borrow ideas and results from [17, 19].

Definition 2.6. The formula algebra associated to the set Form of formulas
is the structure F = (Form,A,—, T, 0, @) where: —, O, @ are seen as unary
operations, and A is seen as a binary operation. These operations are defined
in the ovbious way, i.e.: — applied to ¢ € Form returns —¢ € Form; O applied
to ¢ € Form returns Oy € Form; @ applied to ¢ € Form returns @y € Form;
and A applied to ¢, € Form returns ¢ A ¢ € Form.

The standard algebraic treatment of Classical Propositional Logic uses Bool-
ean algebras (as interpretation structures) and filters (as the semantic counter-
part of deducibility). The analogous concepts for the case of modal systems are
so-called m-modal algebras, and open filters, respectively.

Definition 2.7. A @-modal algebra is a structure M = (B,*,—, 1, fO, f¥)
where: (B,#,—,1) is a Boolean algebra; and f® and f® are unary operations
satisfying the following set of equations

) =1 f2(b1) < b
fP(01 *+bg) = f7(b1) * [7(b2) fE(01) = fO(=1"(=Db1))
1) =1 fo(b1) < fOr(by)
FO(b1 *ba) = f2(b) * f¥(D2) fEb1) < 2 ().

An open filter in M is a subset F C B such that: F is a filter in (B, x*, —, 1),
and for all b € F, f9(b) € F.

Definition 2.8. An interpretation of the formula algebra F on a @w-modal alge-
bra M = (B, *,—, 1, f9, f¥), a.k.a. an interpretation on M, is a homomorphism
v : F — M such that:

o(T) =1 v(=p) = —v(p) v(3p) = f2(v(¥))
v(p ANY) = v(p) oY) v(@p) = f2(v(p)).



Proposition 2.2. Every interpretation v on M is uniquely determined by an
assignment vy : Prop — |[M].

Definition 2.9. Let M be a w-modal algebra; we define:

1. an equation as a pair (¢, ) of formulas; written as ¢ ~ ;
2. an equation ¢ ~ 1 is valid under an interpretation v on M iff v(p) = v(¥);
3. an equation is wvalid in M iff it is valid under all interpretations on M.

We write M, v F ¢ = 1 iff the equation ¢ ~ 1 is valid under v; and M F ¢ ~ 1
if the equation ¢ ~ 9 is valid in M.

We are now in a position to connect @-modal algebras and modal systems.

Proposition 2.3. Let M® be a modal system, and ® U {, 9} a set of formulas;
define ¢ = ¥ iff ® Fye ¢ <> 1. The relation =4 is a congruence on F.

Definition 2.10. Let M® be a modal system, and ® be a set of formulas;
the M®-Lindenbaum-Tarski algebra, or M®-LT algebra, of ® is the structure
Lys = <Form/§’qv|>m PRad el 1’53@; , fgﬁm , f§3m> where:

15@ - [T] o~

a a 2 ) = [plae foo ([Plae,) = [O¢]xs

[Pl =5 [Y]ace, = [‘P/\ME$ f'i;([ﬂg@ ) = [@p]xe, .
The canonical interpretation v on L, is defined as v(p) = [(p]gz

Proposition 2.4. Every M®-Lindenbaum-Tarski algebra is a @m-modal algebra.
Theorem 2.1. For every modal system M®, @ yo ¢ iff Ls F o~ T.

The algebraic completeness of a modal system M® w.r.t. a corresponding
subclass of @m-modal algebras is obtained as a corollary of Thm. 2.1 by showing
that the M®-LT m-modal algebra belongs to the subclass. In this way, M®-LT
w-modal algebras act as “algebraic canonical models” for sets of formulas, i.e.,
they provide witnesses for ® /e . We make full use of, and benefit from,
ME_LT m-modal algebras in Sec. 3.3.

3 Default Modal Logic

In this section we integrate the main elements of Default Logic, defaults and
extensions, into modal systems. This integration yields what we call a default
modal system. For each default modal system, we introduce an associated no-
tion of deduction by default, which shows how defaults interact with the notion
of deduction for the underlying modal system. Moreover, we present how a
default modal system can be viewed from an algebraic perspective, and prove a
completeness result using algebraic tools. We also show how the algebraic set-
ting for default modal systems offers a natural way of comparing default logics
borrowing ideas from the concept of bisimulation in modal logic. As some final
remarks, we discuss how the algebraic treatment of default modal systems can
be seen as an update operation on algebraic structures. This opens up the door
to thinking about default systems from a dynamic logic perspective (akin to
public announcements).

Remark 1. To avoid cluttering the notation with subscripts, in what follows, we
assume that M® is an arbitrary but fixed modal system and use - for Fye.



3.1 Default Modal Systems

We start by introducing defaults and extensions in Defs. 3.1 and 3.2, respectively.
These definitions are adapted from [27].

Definition 3.1. A default is a triple (7, p, x) of formulas written as 7: p / x-
The formulas 7, p, and x, are called prerequisite, justification, and consequent.

Definition 3.2. Let ® be a set of formulas and A a set of defaults; define
a function DY s.t. for all sets of formulas ¥, DX (¥) is the C-smallest set of
formulas which satisfies:

(a) ® C DX(V);
(b) DX(¥) = { ¢ [ DX(¥) Fms ¢ };
(c) forall m:p/x € A, if 7 € DR(V) and —p ¢ U, then, y € DR (V).

A set E of formulas is an extension of ® under A iff it is a fixed point of D%,
i.e., E=DX(E). We use EX to indicate the set of all extensions of ® under A.

In the literature on Default Logic defaults are intuitively understood as de-
feasible rules of inference, i.e., rules of inference whose conclusions are subject to
annulment, or rules which allow us to “jump” to conclusions. In turn, extensions
can be thought of akin to theories generated by a set of formulas. In this light,
an extension is a set of formulas containing ®, closed under -, and saturated
under the application of the defaults in A. The next two examples illustrate
two properties of extensions: multiplicity and absence of extensions.

Ezample 1. In the context of the modal system K®, consider sets ® = {Op}
and A = {Op: O=p / O—-p,Op: Op / Op}; the set EX of extensions of ® under
A consists of exactly two extensions: (1) the set E; = { ¢ | {Op, O—p} bku ¢ };
and (2) the set E; = { ¢ | {Op, Op} ke ¢ }.

Each of the extensions in Ex. 1 corresponds to the application of each default
in A. Once one default has been applied, the application of the other one is
blocked. This example illustrates how to handle contradictory information in
Default Logic, i.e., via consistent alternatives.

Ezample 2. In the context of the modal system K9, consider sets ® = {Op}
and A = {Op : Oq / O—q}; the set ER of extensions of ® under A is empty, i.e.,
EX =0, i.e., there are no extensions of ® under A.

Ex. 2 highlights a subtletly in thinking of extensions as being constructed by
the successive application of defaults: applying a default may result in its own
annulment. To make this point clear, w.l.o.g., notice that plausible candidates
for extensions are: the set E; = {¢ | {Op} Fxo ¢} (i-e., not applying the
default); or the set Ea = {¢ | {Op,0-¢} Fko ¢} (i.e., applying the default).
It can easily be verified that neither of these sets is a fixed point of D%. More
precisely, D% (E;) = Ez and D (E2) = E;. This results in EX = 0.

The definition of a default modal system arises as a natural construction
over a modal system by incorporating defaults and extensions.

Definition 3.3. A default modal system is a tuple AM® = (M¥ A E) where:
M®¥ is a modal system, A is a set of defaults, and E is a function s.t. for all sets
® of formulas returns Ei.



In analogy with the case in modal systems, we associate with each default
modal system a relation bt between sets of formulas and formulas. This relation
is based on the relation - and it can be understood as its default version. This
is made clear in Def. 3.4.

Definition 3.4. Let AM® be a default modal system; define

® bame ¢ iff @ € E for some E € EX.

We drop the subscript AM® when it can be understood from the context. We
use b ¢ as a shorthand for @ b .

The relation r is called credulous in the literature on Default Logic. The
name is due to the fact that the existence of just one extension is enough to grant
the inference (see [4]). It can easily be verified that, in general, monotonicity
fails for . In other words: it may occur that ® b ¢ and @ U ¥ I ¢.

Since that b is built on -, we may wonder which properties of |- are preserved
by k. There is no obvious answer — notice that, e.g., monotonicity is already
not preserved. We introduce Def. 3.5 as a basis on which to start properly frame
this question.

Definition 3.5. The relation b interprets b iff if & - ¢ then & b~ .

Interpretability seems to be a natural, and perhaps the most basic, require-
ment on . Yet, the example in Ex. 2 (which shows that sometimes extensions
do not exist) establishes that this property fails to hold in general. To overcome
this problem we can go down two possible paths: (i) modify Def. 3.2 to guaran-
tee the existence of extensions; or (ii) single out defaults for which extensions
are guaranteed to exist. For option (i), among the most popular modifications
of Def. 3.2 which guarantee the existence of extensions we have: justified ex-
tensions (see [23]); and constrained extensions (see [11]). For option (ii), we
have the set of well-behaved' defaults as a very large and natural set which
guarantees the existence of extensions (see [27]). Going down path (i) overbur-
dens the definition of an extension with additional machinery — and takes us
away from the purposes of our work here. Instead, we choose to go down path
(ii) and restrict ourselves to the case of well-behaved defaults. Interestingly
enough, extensions, justified extensions, and constrained extensions, coincide
for well-behaved defaults (see [16, 9]).

Definition 3.6. A default 7:p/ x is well-behaved iff p = y. We use 7/x as
notation for well-behaved defaults. A set of defaults A is well-behaved iff all
defaults in A are well-behaved. A default modal system is well-behaved iff its
set of defaults is well-behaved.

Proposition 3.1. In every well-behaved default modal system, b interprets .

Proof. Notice that ® C E for all E € EX. The result follows immediately from
this and the fact that extensions are guaranteed to exist.

We conclude this section by drawing attention to an interesting point regard-
ing necessitation in default modal systems in Prop. 3.2 (cf. item 1 in Prop. 2.1).

Proposition 3.2. In any default modal system, if b~ ¢, then ~ Q.

n the literature on Default Logic well-behaved defaults are called normal. We avoid using
this terminology here to avoid any confusion with normality in Modal Logic.



Proof. Suppose that I ¢; by definition, there is an E € ES s.t. E - ¢. It follows
that E - O¢. Thus, b Op.

Prop. 3.2 shows that necessitation is preserved by . In turn, we may wonder
whether it is possible to obtain the form of the deduction theorem in Prop. 2.1
for b; i.e., whether if ® U {¢} I 4, then, ®  mep — ¢. Unfortunately, as the
next example shows, this property fails to hold for an arbitrary default modal
systems (even in the presense of m).

Ezample 3. In the context of the modal system K®, consider sets ® = {p} and

A = {p/q}; then, EX = {{¢ | {p.q} F ¢}} and EX = {{¢ | F ¢}}. Clearly,
{p,q} Fko ¢ and t/ks @p — ¢. This means that {p} ~ake ¢ and also that

Vake @p — q.

It is worth pointing out that failure of this version of the deduction theorem
in a default modal system is caused by the behavior of the use of defaults, and
not by the choice of the particular modal system. In other words, the argument
used in Ex. 3 replicates itself in all modal systems in the modal cube in Fig. 2.

3.2 Deducibility in Default Modal Systems

We formulate a notion of deduction by default, or default deduction, for an
arbitrary but fixed well-behaved default modal system. The notion of deduction
by default extends that of deduction by incorporating defaults in a natural way.

Definition 3.7. A deduction by default, or a default deduction, of ¢ from ® is
a finite sequence 1 ..., of formulas s.t. ¢, = ¢, and for each k£ < n at least
one of the following conditions hold:

1. ¢y is a theorem of |, i.e., - 1y;

2. 1 is a premiss, i.e., Y € P;

3. 1y is obtained using mp, i.e., there are i,j < k s.t. ¥; = 1); — y;

4. 1y, is obtained using u, i.e., there is j < k s.t. ¢ = @Y;;

5. ¥y, is obtained using A-detachment, i.e., there is j < k s.t. ¢; /¢ € A.

A default deduction is credulous whenever:
(PU{y;|1<i<n})kFL iff ®F L. (1)
We write ® ~* ¢ iff there is a credulous default deduction of ¢ from ®.

The notion of a credulous default deduction extends the notion of deduction
in the underlying modal system with a rule of default detachment and the condi-
tion of being credulous. The rule of default detachment enables us to introduce
defaults in the reasoning task and shows us how defaults interact with the rules
of the underlying proof system. The condition of being credulous in Eq. (1)
captures the fact that defaults cannot be a source of inconsistency. Intuitively,
a credulous default deduction of ¢ from @ internalizes the construction of (part
of) an extension containing ¢ together with the deduction which witnesses this
containment. The connection between r and r* is made precise below.

Theorem 3.1. For any set of formulas ® U {¢}, ® b ¢ iff ® b .

10



Proof. W.l.o.g. we prove the result for ® I/ 1. To simplify the proof, we use an
alternative characterization of extensions in terms of closed generating sequences
(which adapts a definition of a closed process in [3]).

By a A-sequence we mean a (potentially infinite) sequence & = 612053 . ..
of defaults of A. The following notation is useful: (a) &|,, = d1...d,; (b)
§; =i /xi; and (¢) X5 = {x; | m/xi € }. A A-sequence ¢ is called generating
iff for all indices i of &: (d) ® UX (Gl ™ and (e) (@ UX(gh)) ¥l A
generating A-sequence is closed iff it is not a strict initial segment of any other
generating A-sequence. Extensions and generating A-sequences are related as
follows: E € EX iff exists a generating A-sequence 6 s.t. E = {e | (PUX;) ¢ }.
The proof of this fact can be obtained by adapting the one presented in [3].

Turning to the proof of Thm. 3.1, we first prove that if ® ~ ¢, then ® ~* .
Suppose that for a generating A-sequence §, ® U Xj - ¢. From compactness for
I, we obtain that for some index n of §, ® U X5,y F - We convert a deduction
of ¢ from ® U X5 into a default deduction of ¢ from @ in the following way.
For each x; € X5, there is §; = 7;/x; € 0|,; and so, there is a deduction ¢r,
of m; from ®UX5,_, ). Construct a sequence V() = Yry -+ Um,- Let ¢ be a
deduction of ¢ from ® UXj y; the sequence Y = 1/7)(5‘01/7} is a finite sequence
of formulas which is, by construction, a default deduction of ¢ from ®. It can
easily be seen that ¢ is also credulous. Thus, if ® b ¢, then ® ~* .

To prove that if ® ~* ¢, then & b ¢, we assume that v is a credulous
default deduction of ¢ from ®. Let § be the A-sequence of defaults used in ),
i.e., those collected via default detachment; d is, by construction, a generating
A-sequence. It can be proven that § can be extended to a generating A-sequence
& that is closed (see [4]). From this fact, the set E = {e | (P UXj/) Fme €} is
an extension. Immediately, ¢ € E; and so ® b~ . Thus, if ® b ¢, then & b .

In light of Thm. 3.1, we use bt and r* interchangeably.

3.3 Default Modal Systems Through an Algebraic Lens

We now turn our attention to viewing defaults and extensions in the setting
of @-modal algebras. We focus on Lindenbaum-Tarski @-modal algebras and
show how they enable us to think of default modal systems as systems with the
ability of performing dynamic updates over a structure.

Remark 2. For the rest of this section, we assume AM® = (M® A E) is an
arbitary but fixed well-behaved default modal system. To simplify notation, we
drop AM® and M¥ as sub-scripts. Moreover, we write ®, ¢ instead of ® U {¢}.

Def. 3.8 is the cornerstone piece on which we build the rest of this section.
Definition 3.8. Let ¥ = {L? | ® C Form }; for every default § = 7/x € A;
define a function 6 : & — £ s.t.:

sy = J1 i [rle = 1o and 0p & H{[@xo} (2a)
L? otherwise. (2b)

The function § in Def. 3.8 captures the effect of applying a default from

an algebraic perspective. More precisely, applying a default 6 = 7/x w.r.t. a

set @ of formulas yields the set @, x of formulas. The default is applicable iff:
(a) ® - m; and (b) ®,x I/ L. In algebraic terms, we capture the application
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Figure 3: Effect of § at the level of Boolean algebras.

of a default as a transformation between LT m-modal algebras. Now, consider
the LT m-modal algebra for a set ® of formulas L®. The condition (a) of
applicability of § = m/x w.r.t. L® is captured in (2a) as [r]s = lg; and the
condition (b) of applicability is captured in (2a) as 0g ¢ t{[@mx]s}. In other
words, the equivalence class of 14 captures the deducibility of 7 from ®. In
turn, the condition of being proper on the (open) filter generated by [@Wy]e
captures the consistency of y w.r.t. ®. Notice that if the default is applicable,
the return value of 5, i.e., L®X amounts to incorporating x to ®. In contrast,
i.e., if § is not applicable, & has no effect on L®. When seen in this light,
the function § performs an update reflecting the application of § on its input.
The situation here is similar to the case in logics of updates such as Public
Announcement Logic [26] (in particular, in relation to the approach proposed
in [24]). We retake this discussion in Sec. 4.

Proposition 3.3. Each function ¢ induces a function § : |L| — |5(L)| defined
as: 0([¢le) = [¢]o,y if Eq. (2a) holds; or §([¢]s) = [¢]e if Eq. (2b) holds. The
function & is a homomorphism from L to 6(L).

Proof. That § is a function is trivial. The proof that ¢ is a homomorphism is by
cases. If Eq. (2b) holds, then, the result is obtained immediately. Otherwise:

3(f§ ([ele)) = 0([0vle) = [Ovlex = f& x ([Lle.x) =[5, (0([¢]e))-
The remaining cases are similar.

In Fig. 3 we explain the effect of applying the function 4 to a LT @-modal
algebra via §. To simplify the drawing, and keep the explanation short and
clear, we restrict our attention to what ocurrs at the level of Boolean algebras.
Without further ado, let § = T /p, and L? and L{?} be the LT @w-modal algebras
of § and {p}, respectively. The graph on the left represents the Boolean algebra
of LY restricted to language whose proposition symbols include only p and g.
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In turn, the graph on the right represents the Boolean algebra of LiP} also
restricted to the same propositional symbols. The labels on the nodes of these
graphs correspond to equivalence classes whose representatives are the formulas
acting as labels. The edges of these graphs correspond to the preorder relation
implicit in any Boolean algebra. The area shaded by vertical lines in the graph
on the left indicates the elements in the filter generated by [p]g. The function §
maps all the elements in this filter to the top element of the Boolean algebra on
the right. This mapping is captured by the dotted arrows. A similar situation
occurrs with the remaining nodes. The nodes enclosed in each particularly
shaded area are mapped by & to a corresponding node on the graph on the
right. This picture aims to illustrate the kind of “update” that is brought about
by a default, i.e., the merging of equivalence clases in the LT m-modal algebra.
The following property is immediate.

Definition 3.9. Let L, L, € .Z; we write Ly < Ly iff there is a homomorphism
h: Ly — Lo; and Ly < L, iff Ly < Ly and Ly, Ly are not isomorphic.

Proposition 3.4. Every § is extensive and idempotent, i.e., it satisfies L < §(L)
and 0(L) = 6(4(L)), respectively. An arbitrary ¢ needs not satisfy monotonicity,
i.e., there are = 7/x s.t. L1 < Ly and 0(L;) £ 6(L2).

Proof. Extensivity follows from Prop. 3.3. Idempotence is proven by cases. If
Eq. (2b) holds, then, the result is obtained immediately. Otherwise, Eq. (2a)
holds. In this case, §(L®) = L®X. Trivially, §(L®X) = L®X. For a counter-
example to monotonicity, consider LT m-modal algebras L&m and L,{<p }and a
default 6 = T /O—p. Obviously, Lﬂ < L&p}. However, there is no homomor-
phism from §(L%s) to S(L&p}).

Having looked at the effect of defaults from an algebraic perspective, we turn
our attention to constructing extensions. For well-behaved defaults, extensions
can be seen as being constructed in a step-wise fashion applying defaults one at
a time. From a syntactic perspective, this construction of an extension starts
with a deductively closed set ®, and applies the defaults § € A one by one until
we obtain a deductively closed set E O & that is saturated under the application
of defaults. From the perspective of LT m-modal algebras we obtain that any set
A of well-behaved defaults leads naturally to a set {4 | § € A}. Each § in this
set can be seen as “taking a step” in the construction of the algebraic counterpart
of an extension. To carry out this construction in its entirety, we would need to
compose such steps. Having to compose steps takes us to Def. 3.10.

Definition 3.10. Let D be the monoid freely generated by {6 | § € A}, ie.,
D = (D, —;—,id) where:

1. D is the C-smallest set s.t.:

(a) {0: %= ZL|6eA}CD;
(b) id : & — Z € D; and
() if{dy : & = L,dy: £ — £} CD, then (dy;da) : £ — £ € D;

2. id and —;— satisfy: id(L) = L; and (d1;d2)(L) = da2(d1(L)).

We refer to D as the default monoid (associated to the Default Modal System).
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Proposition 3.5. Every d € |D| is either: the identity, i.e., d = id; or a

composition of the form d = (31; ...;0n), where §; € A.

Definition 3.11. Let D be a default monoid, L be a LT w-modal algebra, and
v be an assignment on L; for every equation ¢ = 1, define:

Lok o~y iff d(L),(vd) F ¢~ for some d € |D|.
where id([¢]e) = [ple; and (01;...50n) = (81;...:0n). We write L k o~ 1)
iff L,v k @& for all assignments v on L. Moreover, we write k ¢ ~ 1 iff
L k¢ =1 for all LT @-modal algebras L.

Intuitively, the LT @-modal algebra d(L) in Def. 3.11 is the algebraic version
of the concept of an extension. This point is made clear in Thm. 3.2.

Theorem 3.2. For all sets of formulas ®, ¢, we have ® b o iff L® k ¢ = T.

Proof. The interesting part is the right-to-left implication: if L® & ¢ ~ T, then,
® ~ . We prove the contrapositive: if ® ¥ ¢, then, L® ¥ o ~ T. Let ® If ¢,
the proof is concluded if for all d € |D|, d(L*) ¥ o~ T. We continue by
induction on d.

Base case: let d = id; we must have id(L®) ¥ ¢
obtain ® F ¢ (from Thm. 2.1); and so that & t
assumption).

~ T; otherwise we would
¢ (which contradicts our
Base case: let d = 6 for § = 7/x € A; either Eq. (2b) holds or Eq. (2a) holds.
If Eq. (2b) holds,  behaves like id (and we are back to the previous case).
If Bq. (2a) holds, §(L®) = L®X. Assuming (i) L®X £ o~ T leads to a
contradiction. More precisely, if Eq. (2a) holds, from Thm. 2.1, we obtain
O+ 7 and &, x I/ L. From (i) and Thm. 2.1, we obtain ®,x - . If we

place the deduction of 7 from & in front of the deduction of ¢ from &, x, we
obtain a default deduction of ¢ from ®. This yields a contradiction.

Inductive case: let d = (51; . ;Sn;g(n+1))- If (51; . ;5n)(Lq>) = L%, us-
ing the inductive hypothesis, we get LY F o=~ T. If we assume that
dn+1)(L*) F ¢ =9, we get a contradiction using the argument in (i).

3.4 Limitations and Generalization of the Framework

It is natural to bring up the question of whether it is possible to free Defs. 3.8,
3.10 and 3.11 from the constraints of LT m-modal algebras and to generalize
them to arbitrary m-modal algebras. We elaborate on some reasons which show
that such a generalization is not as immediate as it appears at a first glance.
Moreover, we suggest a rather different approach; the details of which are left
as further work.

To lay out some context for discussion, we bring attention to the fact that
Defs. 3.10 and 3.11 hinge heavily on Def. 3.8. Properly handling the generaliza-
tion of the function é in this last definition to the setting of arbitary m-modal
algebras is then the crucial step to take. In what follows we take a closer look
at the generalization of this function.
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To begin with, a possible way to directly rework the function § in Def. 3.8
to encompass the entire class of m-modal algebras of a modal system, and not
just the class of LT m-modal algebras, would be to define it as a function

oM — M,

where . is the class of @-modal algebras of the modal system. At this point,
we encounter an obstacle which overburdens the definition of §. Notice that the
canonical interpretation of a formula in a LT @-modal algebra is hardcoded in
the function & of Def. 3.8 for each one of its possible inputs. Taking the same
standpoint for the general case implies having, not a single function, but a set
of functions ¢ indexed by sets V of interpretations. More precisely, it implies
having a function 0y for each set V s.t.: for every M € . there is one and only
one v € V that is an interpretation on M. This situation is not satisfactory. It
creates a scenario in which we now have to deal with interpretations of formulas
in the @m-modal algebra and “interpretations” of defaults into functions dy-. It is
not difficult to see that going down this path creates a problem with composition
in Def. 3.10 and with the quantification of interpretations down the line in
Def. 3.11.

Yet, it is clear that we cannot do it without interpretations in the definition
of 4. They are, at a minimum, necessary to check the side condition of the
function that is being defined. Namely, let 6 = 7/x, an interpretation v on
M is needed to determine the result of §(M); since such a result depends on
whether v(7) equals the top element of M, and whether the bottom element of
M belongs to the open filter generated by v(). Of course, we could argue that
this problem is originated because ¢ needs to deal with the formulas 7 and y
and a @-modal algebra M. What if we separate ourselves from the formulas 7
and x and consider them to be abstract elements? This is no strange situation
in algebraic logic, after all, the elements in a m-modal algebra can be seen as
abstract counterpart of formulas. Suppose then that we define not a function ¢
but a function

fapoy : M — M,

for abstract elements a and b. Intuitively, we would understand a and b as the
abstract counterpart of formulas 7 and x in a default 6 = 7/x, respectively.
The problem with this standpoint is: What shall we take as a and b? Observe
that to determine the result of f ., (M), we need to know, e.g., if a equals the
top element of M. This would mean that a should be in the universe of M.
At the same time, for different M’, to determine the result of f. ., (M), we
need to know whether a equals the top element of M’. This would mean that
a should be in the universe of M’. But M and M’ are potentially defined over
different universes. Thus, we are forced to consider a class of @W-modal algebras
all defined over the same universe; or to consider some notion of correspondence
between the universes of the @-modal algebras in .#. This standpoint carries
with it another problem which further complicates the problem at hand: We
need to consider a way of linking 7 to a, and x to b, and this linking should
be done in a way such that is coherent with the behavior of M. Perhaps more
importantly, and the last straw, even if we were capable of solving the problems
presented by a and b, we would still be left with properly characterizing the
return value of fi.,u) (IM). Overcoming this last hurdle is even more challenging.
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The preceeding discussion paints a picture which shows that the generaliza-
tion of the algebraic framework for dealing with default modal systems is not a
straightforward excercise. In a sense, this picture portrays a limitation of the
current framework. But not all is lost. The problem originates from the fact
that we need to deal with classes of mw-modal algebras. The situation would
be much easier if we were capable of dealing with a single @-modal algebra
at a time. This suggests that defaults should be internalized in the algebraic
language. We conclude this section by taking some steps in this direction. In
particular, we show how some of the constructions used in Def. 3.8 could be
extended to a more abstract setting via suitable congruences.

Definition 3.12. Let L® be a Lindenbaum-Tarski @-modal algebra and y a
formula; define [p1]e =y [p2]o iff [p1]e *o [@X]e = [@2]e *o [@X]e-

Def. 3.12 is a step towards treating the application of default as a device
for obtaining a @-modal algebra M updated by the element [y]e in L®. The
updated m@-modal algebra M is meant to be obtained as a quotient algebra
modulo the congruence =,.. Prop. 3.6 shows that =, indeed is a congruence.

Proposition 3.6. The relation =, is a congruence on L%,

Proof. That =, is an equivalence relation is immediate. To improve notation we
drop the subscript . We need to show that: if [¢1] =, [p2] and [ps] =, [¢4],
then, [p1]*[ps] = [wo] * [wal; —[p1] = —[p2]; T ([p1]) = [2([2]); and
f2(lp1]) =5 f2([p2]). The proof continues by cases (we only show the cases f~
and f®, the rest are routine):

[P ([p1]) * [@x] F2(lpa]) * [@mx]

> f2([pa] * [@x]) * [@x] = f([p1]) * [@mx]

= [Z([p2] * [@x]) * [@x] = f%([ea]) * f2([@x])

= [P([p2]) * (f°([mx]) * [@x]) = f2([¢1] * [@x])

> fO([p2]) * [mx] = [2([p2] * [@x])
= f([p2]) * f®([@mx])
= f%([2]) * [wmX]
= [¥([ip2]) * [@x]

Proposition 3.7. The quotient algebra L®/— is isomorphic to L®X.

Proof. Observe that @, (o1 ¢ ¢2) iff D F (p1 A @Y < w2 A@y). The iso-
morphism between L®/— and L®X is given by mappings ¢; and ¢ defined as:
u(llelel=,) = [plo.x; and w2([¢ley) = [[¢lal=, -

The isomorphism in Prop. 3.7 shows that the relation =, yields the “correct”
congruence if the application of a default is to be seen as updating a m-modal
algebra. Moreover, it is possible to define a function € : L*/= — L® defined
by e([[¢lo]=,) = [¢lo *o [X]o. The image of € is also isomorphic to L*X. This
alternative take on the effect of “applying a default” from an algebraic perspec-
tive opens a pathway on how to lift the constructions in Defs. 3.8 and 3.10 to
the setting of arbitrary m-modal algebras and to connect default modal systems
with logics of updates. Evidently, this is a task that needs to be fully worked
out. Nonetheless, we consider that dealing with congruences is a more adequate
way of exploring the meta-logical properties of default modal systems from an
algebraic perspective.
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3.5 An Application of the Algebraic Framework

The results in Sec. 3.3 shows us how to deal with default modal systems using
algebraic tools. Interestingly, this enables us to formulate and obtain a com-
pleteness result using LT m-modal algebras. The algebraic machinery in Sec. 3.3
also opens a pathway to investigate other properties of default modal systems.
In this section, we show how the notion of bisimulation for modal logics can be
adapted and extended to enable us to compare default modal systems.

We begin by recalling the standard definition of Kripke models, and the
semantics of modal formulas.

Definition 3.13. A frame is a tuple § = (W, R) where: W is a set of elements
(called worlds); and R C W? is the accessibility relation. A Kripke model is
a pair M = (F,V) where: § is a frame, and V : Prop — 2% is the valuation
function. For w € W, the pair 9, w is called a pointed model.

Definition 3.14. Let M = (W, R, V') be a Kripke model, w € W, and ¢ € Form;
the satisfiability relation 9, w |- ¢ is defined according to the following rules:

M, w - p; it weV(p)

M, w Ik~ iff Mwlye

Mwlkevey iff Mwl-por Mwlk Y

M, w - Op iff  for all w' € W, wRw' implies 9%, w’ I ¢

M, w I @ iff  forall w’ € W, M, w' I .
A Kripke model 9 = (W, R, V) satisfies a formula ¢ at a world w € W iff
M, w - ¢; and it validates ¢, written M I+, iff M, w IF ¢, for all w € W. The
model M satisfies a set of formulas ® at w, notation M, w Ik @, if M, w I+ ¢ for
all p € ®. And it validates ®, notation M I+ @, if M, w I+ @ for all w € W.

The following proposition links Kripke models and the algebraic structures
introduced in Sec. 2.3 (the full details can be found, e.g., in [35]).

Definition 3.15. Let M = (B, *,—, 1, f&, f¥) be a m-modal algebra; its dual,
written M®, is a frame (Uf(M), R) where: Uf(M) is the set of all ultrafilters
in M and R is defined by u; Rug iff —f%(—a) € uy for all a € us. The dual
of an interpretation v : F — M is a function v® : Prop — 2Uf™) defined as:
v*(p) = {u e Uf(M) | v(p) € u}. We define (M,v)* = (M*®,v*).

Proposition 3.8. Let M be a @w-modal algebra and v : F — M, be an inter-
pretation on M; for all equations ¢ = .
M, v E o= iff (M,0)° IF @ ).

Let us recall the standard notion of bisimulation for Kripke models [7].
Definition 3.16. For i € {1,2}, let 9, = (W;, R; C W2, V; : Prop — 2"%) be a
Kripke model; a (non-empty) relation Z C Wi x Ws is a bisimulation between
M1 and My iff wi Z wo implies
(atom) wy € Vi(p) iff we € Va(p), for all p € Prop;

(forth) if wy Ry ws, there is wy € Ws s.t. we Ry wy and w3 Z wy;

(back) if wg Ry wy, there is wg € Wy s.t. wy Ry ws and ws Z wy.
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The bisimulation Z is total iff: for all w; € W7, exists wo € Wo s.t. wy Z wo;
and for all wy € Wh, exists wy € W1 s.t. w1 Zwy. We write 9Ty £ My iff there is
a total bisimulation Z between 9t; and Mo; and Ny, wy € Mo, wo iff wy Z ws.

Prop. 3.9 states a well-known result regarding bisimulations.
Proposition 3.9. If My < My, then, Ny - p iff W - .
Prop. 3.9 has an analogous proposition in terms of m-modal algebras.

Definition 3.17. Let M; and M5 be two @m-modal algebras and v; and vy be
interpretations on M and My, respectively; we write (My,v1) € (Ma,vs) iff
(My,01)* & (Mg, v2)°.

Proposition 3.10. Let M; and M5 be two w-modal algebras and v; and vs
be interpretations on M; and My, respectively; if (Mj,v1) € (Mg, v2), then,
Ml,'l}l ':QQ%"LZ) iﬂMg,'Ug ':QQ%"LZ)

We are now in a position to show how to extend and adapt the concept of
bisimulation to the algebraic treatment of defaults and extensions.

Definition 3.18. Let D; and Dy be the default monoids associated to two
default modal systems built on the same underlying modal system; a (non-
empty) relation Z C € x £ is a default bisimulation iff Ly Z Ly implies:

(atom) (Li,v1) € (Ly,vs) where v; : F — L; is the canonical interpretation;
(forth) for all dy € |Dq], there is da € |Da| s.t. d1(L1) Z da(La);
(back) for all dy € |Dg|, there is d; € |Dq] s.t. d1(L1) Z d2(La).

We write Dy € Ds iff there is a default bisimulation Z between D; and Do;
and Dl,Ll E= DQ,LQ iff L, Z L.

The definition of a default bisimulation in Def. 3.18 enables us to compare
when two default monoids are indistinguishable; or, what is the same, it enables
us to compare when two default modal systems are indistinguishable. This fact
is stated in Prop. 3.11.

Proposition 3.11. If D;,L; 2 Do, Ly, then L; k; p = ¢ iff Ly Ry ¢ = 1
where F; is the relation in Def. 3.11 formulated w.r.t. D;.

Proof. Let Z be a default bisimulation between D; and D5, and L; Z L,. We
prove the left-to-right direction, i.e., if Ly k1 ¢ &~ 1, then, Ly ko @ & 9p. As-
sume Lg k; p &~ ). There is dy € |Dq| s.t. di(L1) F ¢ =. In particular,
di(L1),v1 Ep a1 for vy : F — f(L7) the canonical interpretation on L;. From
(forth), there is dy € |Da| s.t. di(L1) Z da(La). Then, from (atom), we obtain
(d1(Ly),v1) € (da(Lg),v2) for vy : F — fo(Lg) the canonical interpretation
on L. Using Prop. 3.10, it follows that da(Ls),ve E ¢ ~ . Since canoni-
cal interpretations are closed under substitution, fo(Ls) E ¢ & 1. Therefore,
Lo Fs ¢ =~ 1. The right-to-left direction follows the same argument using (back)
instead of (forth).

We conclude this section with a comment on an application of the concept
of bisimulation between default monoids to the problem of equivalence of so-
called default theories. In the area of Default Logic, a default theory is a pair
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(®,A) where @ is a set of formulas and A is a set of defaults. The problem
of equivalence of default theories pertains to the following question: in which
sense two default theories (®1,A;) and (P2, Ay) can be regarded as equivalent?
Adequate answers to this question have a bearing in the setting of transforma-
tion of logical programs, e.g., to improve their efficiency — it is well-known that
default theories may be seen as the logical counterpart of logical programs. It
is common to address equivalence of default theories from a syntactic point of
view by focusing on what is the case w.r.t. extensions (see, e.g., [30, 21]). Under
such a point of view, a default theory (®;,A;) is deemed equivalent to a de-
fault theory (@2, As) whenever E‘I)1 = EX, and they are deemed to be strongly
equivalent whenever (&, U @3, A1 U As) and ($3 U ®3, Ay U A3) are equivalent
for all default theories (®3, As). By way of example, ({O0p}, 0) and (@, {T/Op})
are equivalent, but they are not strongly equivalent (as ({<O—p}, 0) distinguishes
them). The concept of bisimulation between default monoids enables us to look
at the problem of equivalence of default theories in a new light, i.e., from a
semantic perspective. For a fixed underlying modal system, we could say that
(®1,A1) and (5, As) are equivalent whenever Dy, L1 & Dy, L*®? (where D4
and Dy are the default monoids associated to the default modal systems con-
structed relative to Ay and As, respectively). The notion of strong equivalence
is defined in a similar way. To be noted, our definition of equivalence is given in
semantic terms building on the notion of bisimulation for the underlying modal
system. To be noted also, our definition of equivalence pays closer attention
to the different elements of a default theory (i.e., its set of formulas and its
set of defaults). For instance, notice that under our definition, ({Op}, ) and
(B, {T/op}) are not equivalent, as L{OP} vy & LP v, for v; and vy the canonical
interpretations on the corresponding LT m-modal algebras. Looking at prob-
lems of equivalence from a semantic perspective has a long standing tradition
in the field of Modal Logic. In this respect, bisimulations have proven to be a
useful tool. The concept of bisimulation between default monoids is a step in
this direction.

It is worth noting that a practical advantage of bisimulations over other
techniques for proving semantic equivalence is given by checking properties rel-
ative to given points. In our case, this boils down to prove properties of the
Lindenbaum-Tarski algebras. This has a “local” flavor that is in contrast to the
usual methods for proving equivalence between default theories. They are, in
some sense, “global” in nature, as they need to look into the entire collection
of extensions. Furthermore, it is worth noting that bisimulations can be alge-
braized via coalgebras. In this respect, our work seems a natural step towards
the definition of an algebraic toolset for reasoning about default modal systems
in a mathematical setting.

As further work also, it remains to generalize the concept of bisimulation
between default monoids along two main lines: default operators defined rela-
tive to arbitrary defaults, and arbitrary m-modal algebras. This generalization
seems an ideal tool for discussing the deductive aspects of default theories in-
dependently of their particular syntactical constructs.
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4 On Defaults as Model Updates

In this section, we begin to explore a connection between our algebraic approach
for default modal systems and (single agent) Public Announcement Logic (PAL).
This connection is inspired by the results presented in [24, 25].

To set up context for discussion, we briefly introduce some basic notions of
PAL (see, e.g., [26] for details). As a modal logic, PAL extends the modal logic
S5 (seen as the logic of knowledge) with a new modality [!1]¢ of announcement.
Given a Kripke model 9, with w one of its worlds, this modality is defined as:

M, w k- [l iff 9N, w Ik o) implies My, w IF o, (3)

where 9|, is the restriction of 9 to those worlds in which ¢ holds. Intuitively,
a formula [l]p states that ¢ holds whenever 1 is announced truthfully. Model
theoretically, the interpretation of announcing v relativizes the model in which
1) is announced to the submodel in which v holds everywhere. The formula ¢
is then evaluated on the relativized model. To better explain our ideas, without
loss of generality, we choose to look at the “knowledge” modality of PAL as the
“universal” modality @m. Moreover, we consider the “existential” modality ©¢
defined as an abbreviation of ~@— and understood as: ¢ holds somewhere in
the model.

There are some interesting similarities between announcements in PAL and
defaults. For instance, in [24, 25], an announcement is presented as a homomor-
phism between the modal algebra in which the announcement occurs, and the
modal algebra corresponding to the submodel in which the announced formula
holds. The algebraic machinery introduced in Sec. 3.3 for defaults sets the ba-
sis for thinking about the application of defaults as a logic of updates. More
precisely, we may construe the algebraic semantics of a default 6 = 7/x as an
update from the LT @-modal algebra in which the default is considered, say L?,
to the LT @-modal algebra updated with the consequent of the default, L®X, if
the default is applicable. It is possible to prove that there are homomorphisms
from L®X to L? and from L® to L®X. This allows us to look at L®X as the
algebraic counterpart of the update caused by §. Clearly, a “default” update
takes place only if the prerequisite of the default is provable and its consequent
does not yield an inconsistency. But this situation is not far apart from the
case of announcements; where the update takes place only if the formula be-
ing announced is true (see Eq. (3)). In both cases, that of an announcement
and that of the algebraic application of a default, the update is captured by a
homomorphism from the original modal algebra to an updated modal algebra
obtained as a quotient construction. The quotient construction for the default
case is explored by the end of Sec. 3.4.

The similarities between announcements in PAL and defaults are even more
apparent when contrasted with the way in which announcements are dealt with
in [24]. Getting into some level of detail, the approach in [24] exploits the duality
between models and modal algebras. A formula % is interpreted as an element
b in an S5 modal algebra M = (B, x, —, f2). The result of announcing this
formula is a modal algebra constructed as a quotient modulo a congruence =,
defined as:

blEbbz iff bl*bzbg*b

This congruence bears a close resemblance to the one we explore by the end of
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Sec. 3.4. The main difference between this congruence and ours rests on the fact
that the former is presented in the setting of S5, whereas ours is presented in a
setting where global modal consequence is taken as the basis on which to build
default modal systems. This said, the approach in [24] is more abstract than
ours; since it considers arbitrary modal algebras and not just those obtained via
Lindenbaum-Tarski constructions.

It turns out that, looking in detail what occurs with defaults and announce-
ments in a very simple setting spearheads an interesting and promising research
direction. More precisely, suppose that we admit and work on a default modal
system built on Classical Propositional Logic (CPL). Further, suppose that the
(credulous) default consequence relation is defined as a relation between pairs
of formulas; i.e., ¢ b 9 indicates that 1 is a credulous default consequence of .
Even further, suppose that there is only a single default § = 7/x. It is possible
to establish the following result:

by it CIF[lply v [lel(m A Ox A [IX]Y),

where € = {w | w C Prop } (i.e., € is a Kripke model whose worlds are in one-to-
one correspondence with all possible propositional valuations). To see why the
results holds, notice that ¢ I ¢ iff p — 1 is a tautology in CPL, or p Ax — ¢ is
a tautology in CPL; i.e., either we can find a proof of ¢ from ¢, or we can find
a proof of ¥ from ¢ using x as an additional assumption. The first case corre-
sponds to not using the default in the proof. The second case corresponds to us-
ing the default in the proof. On the other hand, € I [lp]y V [lp](m A ©x A [Ix]9)
iff for all w € €, we have €, w IF [lp]y or €, w Ik [lp](m A ©x A ['x]p). The
case €, w IF [lp]y corresponds to ¢ — ¥ being a tautology in CPL. The case
C,w Ik [lo](m A ©x A [Ix]®) corresponds to being able to use the default and
@A x — ¥ being a tautology in CPL. The interesting part here is how the appli-
cation of a default is captured in the object language of PAL. The provability of
m is captured by checking what is the case in every possible p-world of € (which
is, in fact, an assignment in CPL in which ¢ holds); and the non-provability of x
is captured by checking that there is in fact a ¢-world in which x holds (which
is tantamount to checking consistency in CPL relative to ¢). Finally, what is
the case after applying an applicable default is captured as an announcement.
Notice that in this case working in € is necessary (the result would not hold if
we take a strict subset of €). It is worth noting also that in this case default
consequence becomes a model checking problem. These are some preliminary
ideas that need to be worked out in detail. In particular, it is necessary to look
at how to deal not only with a single formula ¢ but with sets of formulas ®; and
how to deal not only with a single default 6 but with a set of defaults A. The
latter also involve dealing with possible combinations in the application of de-
faults; potentially involving blow up in the size of the formula. Also important
is to learn how to apply these ideas beyond CPL for modal systems. It can easily
be seen that is not an straightforward excercise — for a start, announcements
are not closed under certain classes of models (e.g., in those that are serial).
The discussion above offers only some first steps in understanding the rela-
tionship between defaults and updates: both in terms of a full algebraization
of default modal systems, and in terms of establishing a tight connection with
logics of updates. In working towards a full algebraization of default modal sys-
tems, we would like to interpret the application of a default over arbitrary modal
algebras, and not only as an update over LT m-modal algebras. Internalizing
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the application of the default and its effect in the algebraic language (perhaps
as a new operator) seems to be a path to explore. Along this line, it is neces-
sary also to work out how to capture the application of a sequence of defaults
needed to build an extension. Moreover, it would also be interesting to know
whether it is possible to develop a class of algebraic structures for default modal
systems parallel to the class of modal algebras for modal systems. In turn, in
what refers to establishing a tight connection with logics of updates, it would
be interesting to be able to prove a reduction result between a default modal
system and a logic of announcements (or establishing a difference in expressive
power between one and the other). The challenge is deciding on an adequate
logic of announcements and in finding whether it is possible to faithfully trans-
late the application of a default as a form of update in this logic. Finally, upon
defining the semantics of defaults as updates, we would like to study defaults as
dynamic epistemic operators. In particular, we would like to explore whether
defaults can be used to represent some novel form of communication between
agents in a multi-agent setting.

5 Final Remarks

We presented a family of default logics built on modal logics ranging from K
to S5, and studied some of their properties. We approached this presenta-
tion syntactically via what we called a default modal system. For each default
modal system we formulated a notion of default deducibility to make explicit
how defaults interact with deducibility in the underlying modal system. Then,
we offered an algebraic treatment of defaults and extensions, via transforma-
tions on LT m-modal algebras and default monoids, respectively. This algebraic
treatment enabled us to obtain an algebraic completeness result. Interestingly
enough, this approach also enabled us to think of a way of comparing default
logics by borrowing ideas from the concept of a bisimulation in modal logic. To
our knowledge, this is the first work addressing default logic algebraically.
There are several interesting lines for future work. We do notice that our
work is not an algebraization of a logic. Instead, we have taken advantage of
algebraic tools to study default modal systems from a semantic perspective. In
this respect, our work is a first step towards an algebraization of default modal
systems. There is still a need to identify a class of algebras for default modal
systems that would play a role akin to @W-modal algebras in modal systems. We
also wish to generalize our constructions and results to arbitrary @-modal alge-
bras and not just LT @w-modal algebras. We consider that the trail of coalgebras
(see [36]) may provide an adequate abstract framework in which to generalize
and further investigate our ideas. Bisimulations can be algebraized via coalge-
bras (see e.g., [1, 29]). In this respect, our work on bisimulations between default
monoids is a natural step towards the definition an algebraic toolset for reason-
ing about default modal systems in a mathematical setting. More precisely,
coalgebras provide an abstract way of formalizing bisimulation in the realm of
Category Theory. Roughly speaking, cospans provide an abstract version of
relations. In such a setting, bisimulations can coalgebraically be captured as ar-
rows R — F(R), where F is an appropriate endofunctor providing the structure
needed for capturing behavior. In our case, we have used monoids to capture
the closure under the application of defaults (with the aim of “building” exten-
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sions). We would like to see these monoids as relations and their bisimulations
as coalgebras. One of the main difficulties in using the ideas of coalgebras in our
framework is how to capture the closure under the application of defaults as an
endofunctor. This line of research is part of our further work efforts. Further-
more, we wish to exploit our algebraic treatment of default modal systems to
study semantic properties such as: invariance and Hennessy-Milner theorems,
interpolation, Beth definability, etc.

Lastly, our characterization of defaults as transformations on m-modal al-
gebras works as a sort of “update”. It would be interesting to find connections
with algebraic approaches to logics with update operators, in the sense of e.g.
Public Announcement Logic. The work reported in [24, 25] seems to shed some
light in this direction.
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