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ABSTRACT

We introduce a logic for representing the deontic notion of know-
ingly complying –associated to an agent’s conciousness of taking a
normative course of action for achieving a certain goal. Our logic
features an operator for describing normative courses of actions,
and another operator for describing what each agent knowingly
complies with. We provide a sound and complete axiom system
for our logic, and study the computational complexity of its satis-
fiability problem. Finally, we extend our logic with an additional
operator for capturing the general abilities of the agents. This op-
erator enables us to distinguish ‘what agents can do’ and ‘what
agents do according to norms’. For this extension, we also provide
a sound and complete axiom system.
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1 INTRODUCTION

Normative systems are ubiquitous in many disciplines –e.g., legal
reasoning, computer science, knowledge representation, philoso-
phy, etc. To be able to reason rigurously, and so logically, in and
about normative systems is an imperative. One of the most promi-
nent logical approaches to normative reasoning corresponds to
Deontic Logics [4, 23, 30]. In brief, deontic logics are formalisms tai-
lored to describing and reasoning about scenarios involving norms
and related concepts [15, 16]. In this respect, they can be used, e.g.,
to determine if such normative scenarios are free of contradictions
or, so-called, paradoxes.

Typically, deontic logics propose operators to speak about the
obligations, permissions, and prohibitions, of some actors –generally
called agents– involved in a certain scenario. It has been argued,
e.g., in [30, 31], that these operators should range over the actions
executed by the agents, rather than over propositions or states of
affairs. Deontic logics with this characteristic are commonly known
as ought-to-do deontic logics [1]. To a large extent, ought-to-do de-
ontic logics focus their attention on the normative status of actions
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at some specific moment –i.e., in a particular static situation. This
view ignores for instance, the circumstances that lead an agent to
reach a certain state, and overlooks the course of action that an agent
may take to achieve a goal. To deal with these situations, ought-
to-do deontic logics incorporate ideas coming from the world of
strategic reasoning; see, e.g., [13, 22]. In a strategic ought-to-do
deontic logic, the description of a normative situation considers
not only the status of a given set of norms, but also provides a view
on the behaviour of the agents with respect to their background.

In ought-to-do deontic logics, strategic reasoning is often a-
chieved by incorporating ways of describing sequences of actions
(or plans) over a temporal dimension. This temporal dimension
is then used to model and study (a part of) a particular norma-
tive system. Many existing frameworks of this kind extend STIT
logic [5] with temporal operators. This approach can be found,
e.g., in [10, 11]. Therein, temporal operators for ‘historical neces-
sity’, together with a standard epistemic operator of ‘knowing that’,
are incorporated into a STIT logic. The resulting logical system is
shown to accommodate for the notion of knowingly doing –whose
goal is to characterize different modes of responsibility for an agent
who breaks a norm (a concept known as ‘guilty mind’ or ‘mens rea’).
The work in [12] takes a similar approach but incorporates also an
operator of ‘intention’ to represent different levels of culpability.
Finally, [25] investigates the so-called T-STIT logic. T-STIT logic
extends STIT logic with future and past tense operators, and with
a group agency operator for coalitions involving all agents. The
obtained logic is used to model normative concepts such as achieve-
ment obligation and commitment (see [22, Ch. 7], for details).

The logical frameworks mentioned above are highly expressive.
This should not come as surprise, as these logics combine the ex-
pressivity of several operators of very different nature. In spite of
this fact, the formalization of a particular deontic concept uses just
a small fragment of these logics featuring a high expressive power,
while such an expressivity impacts negatively on the overall com-
putational behaviour of the logic. For instance, the work reported
in [3, 20] studies fragments of STIT logic whose satisfiability prob-
lem is undecidable. The work from [27, 28] identifies fragments
with complexities in ExpTime and NExpTime. Interestingly, in the
last work it is also proven that very restricted fragments of STIT
logics (i.e., those obtained by removing the temporal dimension or
by limiting nested negations) are decidable in NP.

In this article, we take a different approach. We chose a specific,
important deontic concept involving strategic reasoning: the notion
of knowingly complying, and define a specialized formalism to work
with it. This enables us to obtain a very natural representation while
maintaining an excellent computational behaviour. Arguably, the



resulting logic is also very simple (and elegant) and leads itself well
to a detailed study using already known techniques from modal
logic [7, 9]. Our proposal takes inspiration from formalisms recently
introduced in the epistemic study of the notion of knowing how
(see, e.g., [2, 19, 32, 33]).

Contributions. We focus on representing the notion of knowingly
complying in a deontic setting. We say that “an agent knowingly
complies with a certain goal 𝜑 , given a certain initial condition 𝜓”,
whenever the agent has a normative course of action that leads from
every situation in which𝜓 holds, only to situations where 𝜑 holds.
Moreover, the agent tells apart such courses of actions from others
that are not between the limits of the law. In doing so, we detect
three main ingredients to consider (the terminology used here is
inspired by [6]). First, we have the agents’ abilities, i.e., an account of
what the agents are able to do (all the possible strategies or courses
of action that an agent may take for achieving a goal). Second, we
consider a set of norms, fixing what the agents must do. Norms are
expressed as a set of legal courses of actions. Third, we take into
account the responsibilities of the agents, given by each agent’s own
judgement. This enables us to determine each agent’s awareness
when complying with a norm or not. Remarkably, our framework
does not rely on putting together separate existing features, and
then coming up with a clever formalization. Instead, we will provide
a semantics inwhich the above-mentioned concepts are internalized
in the logic, and where each component interacts with the others to
obtain the intended behaviour. This makes our framework different
from existing approaches, instead of an alternative to them.

From a semantic perspective, we borrow and adapt ideas from
the epistemic knowing how logic presented in [2]. Therein, an agent’s
‘know how’ is interpreted over labelled transitions sytems (LTS), ex-
tended with a notion of ‘epistemic indistinguishability’ at the level
of plans (understood as finite sequences of basic actions). The rela-
tional part of the LTS provides the ontic information, i.e., the factual
information that is common for all agents. The indistinguishability
relation between plans provides instead the epistemic information
for each agent, via their own perception about the real world. This
approach is in line with standard epistemic logics [14, 21]. Here,
we generalize this semantics, taking the LTS as the component rep-
resenting the abilities available for all agents; a set of plans which
establishes the set of normed courses of actions; and finally, an in-
distinguishability relation between plans that captures each agent’s
own perception about the actions she can take. Then, we introduce
corresponding modalities that enable us to express deontic proper-
ties over this kind of models: the deontic modality N(𝜓,𝜑) stating
that “in any situation in which𝜓 holds, it is possible to achieve the
goal 𝜑 according to the norms” ; and the modality Kc𝑖 (𝜓,𝜑), for each
agent 𝑖 , that states that “in any situation in which𝜓 holds, agent 𝑖
knowingly complies with 𝜑”. We investigate the logical properties
of this deontic logic, in particular we provide a sound and strongly
complete axiom system and show that its satisfiability problem is
NP-complete. Then, we extend the language with a modality S that
enables us to express properties about the general abilities for the
agents, and its interactions with the previously introduced modali-
ties. Capturing abilities in the language enables us to distinguish
between what agents can do vs. what agents do according to norms.
For this extension we also provide an axiomatization.

Emergency Procedure

− Fire keep calm

Pull Fire Alarm,
from a safe location

Call 999 (Fire Brigade)
− Smoke

− Explosion

When Alarm Rings SHUT OFF GAS and POWER
Evacuate: close doors behind, use only stairs or ramps.
If unsafe to evacuate: shut door, block cracks, stay low near window.
If room door hot: keep door closed, stay put, stay low near window.

Figure 1: Fire Emergency Evacuation Plan

Outline. In Sec. 2 we introduce an example that illustrates the
choice of the logical components of our work. In Sec. 3 we define
the syntax and semantics of the logic of knowingly complying. We
accompany our definitions with the formal counterpart of the exam-
ple from Sec. 2. In Sec. 4 we introduce a sound and complete axiom
system, whereas in Sec. 5 we provide a characterization of the com-
plexity of deciding satisfiability. In Sec. 6 we extend the logic in
Sec. 3 with a new modality for capturing abilities in the language,
and provide and axiomatization for this logic. Lastly, in Sec. 7 we
provide some final remarks.

2 A MOTIVATING EXAMPLE

We motivate the logical components of our work using a fire emer-
gency evacuation plan (FEEP) as a running example. A FEEP is a
written document detailing the actions to be taken in the event of
a fire, and the arrangements for calling the fire brigade. Fig. 1 illus-
trates a typical FEEP.1 In spite of its simplicity, this FEEP contains
some important norms to be complied with. For example, in the
event of a fire/smoke/explosion, it is the duty of every person to
take the following course of action: sound the nearest fire alarm,
move to a safe location, and call the Fire Brigade. Moreover, every
person should arrange for evacuating the premises in the light of
some basic risk assessment and other emergency precautions, e.g.,
closing doors behind, or staying put and blocking doors if they are
hot. The FEEP assumes awareness of the layout of the premises,
capacity of identifying key escape routes via exit signs, and the
possibility of vacating the premises using only stairs and/or ramps
(elevators are excluded due to potential electrical failure and/or
power outage). Finally, the procedure establishes that every person
must remain calm in any possible situation, even if they have taken
a wrong course of action (e.g., take an elevator in case of a fire).

In order to formalize how certain agents would act in a case of a
fire, we detect the following basic components:

abilities: account for what the agents are ‘able to do’ to achieve
a goal. In the FEEP, for instance, agents are able to take the
stairs to bring themselves from an unsafe to a safe place.
Certain combinations should also be possible, e.g., the FEEP
establishes that in a case of fire, the agents need to “pull
the alarm, take stairs/ramps to evacuate, and finally call
999”. These sequences, commonly called plans, is what we
understand as a course of action. In our setting, these abilities
will be characterized via Labelled Transition Systems (LTSs).

1In fact, Fig. 1 takes inspiration from the FEEP obtainable from the Ocupational Safety
section on McMaster University’s website.



norms: account for ‘legal’ courses of actions. They reflect the
fact that some courses of action in some situations are reg-
ulated by norms. In our FEEP example, the plan “pull the
alarm, take the stairs (or the ramp) and call 999” is prescribed
in the case of a fire, whereas “use the elevator” is preempted.

responsibilities: captures each agent’s own judgement for
complying with a norm. From the perspective of a particular
agent, there might be certain courses of action that are indis-
tinguishable from others (equivalent among themselves with
respect to the current scenario). E.g., agent 𝑖 may consider
that exiting the building using stairs or ramps is fine, while
evacuating the premises using elevators should be avoided
(as indicated by the FEEP). While agent 𝑗 , that ignores the
FEEP, may take that exiting the premises, no matter how, is
what matters. In our formal setting, we will want to express
that agent 𝑖 knowingly complies with the norms, whereas
𝑗 does not. Moreover, some agents might even be unaware
of certain courses of action being possible; e.g., the location
of a particular exit point. To do so, we will define a suitable
notion of “being indistinguishable” between plans.

Notice that each component, uses and refines the previous ones.
This will become clearer in the next section. In the rest of the paper
we develop the formal machinery behind the provided intuitions.

3 DEONTIC LOGIC OF KNOWINGLY

COMPLYING

In this section, we introduce the language and the semantics of
our Deontic Logic of Knowingly Complying (DLKc). We assume
denumerable sets Prop for proposition symbols, and Act for basic
action names, and that Agt is a non-empty finite set of agent names.
Moreover, we assume all these sets are pairwise disjoint.

Definition 3.1. The language of DLKc, i.e., its set of formulas, is
determined by the following grammar:

𝜑,𝜓 F 𝑝 | ¬𝜑 | 𝜑 ∨𝜓 | N(𝜓,𝜑) | Kc𝑖 (𝜓,𝜑),
where: 𝑝 ∈ Prop and 𝑖 ∈ Agt. We use⊥,⊤, 𝜑∧𝜓 , 𝜑 → 𝜓 , and 𝜑 ↔ 𝜓

as abbreviations defined as usual. Intuitively, a formula N(𝜓,𝜑) is
read as: “there is a normative course of action that brings about
𝜑 given𝜓”; and a formula Kc𝑖 (𝜓,𝜑) is read as: “agent 𝑖 knowingly
complies with 𝜑 given𝜓 ”. We also write A𝜑 and read it as: “𝜑 holds
anywhere”; and E𝜑 read it as: “𝜑 holds somewhere”. The connectives
A and E are the universal and existential modalities [17]. As shown
in Prop. 3.1, they are definable in terms of other connectives.

Example 3.1. Tab. 1 illustrates how to use formulas of DLKc to
express some properties in the context of the example in Sec. 2.

We introduce the structures on which to interpret the formulas
of DLKc in a step by step fashion.

Definition 3.2 (Plans). We denote Act∗ the set of all (possibly-
empty) finite sequences over Act. The elements of Act∗ are called
plans. We use 𝜖 to denote the empty sequence in Act∗ (the empty
plan). For 𝜋 ∈ Act∗, |𝜋 | is the length of 𝜋 . For 0 ≤ 𝑘 ≤ |𝜋 |, 𝜋𝑘 is the
initial segment of 𝜋 of length 𝑘 and 𝜋 [𝑘] is the 𝑘𝑡ℎ element of 𝜋 .

Intuitively, the elements in Act can be understood in correspon-
dence to basic actions, and those in Act∗ in correspondence to
courses of action.

Table 1: Formulas and their Intuitive Readings.

Formula Intuitive reading

A(𝑠 → ¬𝑓 ) In any safe location (𝑠), there is no fire (𝑓 ).

E𝑓 There is the possibility of a fire.

N(𝑓 ∧ 𝑐, 𝑠) There exists a normative course of action that
brings any agent to a safe location in case of a
fire, whenever there is the capacity (𝑐) to do so.

Kc𝑖 (𝑓 ∧ 𝑐, 𝑠) Agent 𝑖 knowingly complies with the norms reg-
ulating reaching a safe location in the event of a
fire (a.k.a., knows how to conform to the FEEP),
provided also that there is a capacity (𝑐) to do so.

𝑓 , 𝑐

𝑠1

𝑓

𝑠2

𝑠

𝑠3

pull.alarm

use.elevator

use.ramp

use.stairs

use.elevator

keep.calm

keep.calm call.999

keep.calm

Figure 2: An LTS for the FEEP.

Example 3.2. For the FEEP in Sec. 2, we may have basic action
names such as:

keep.calm, pull.alarm, call.999,
use.stairs, use.ramp, use.elevator, . . .

These basic actions names represent the actions of: remaining calm,
pulling the fire alarm; calling the Fire Brigade; and using the stairs, a
ramp, and an elevator to exit the building, resp. In turn, the plan

𝜋1 = pull.alarm; use.stairs; call.999

indicates the course of action of pulling the fire alarm, evacuating the
building using the stairs, and calling the Fire Brigade; while

𝜋2 = use.elevator

would indicate the plan of using an elevator to exit the building.

In general, we will not be interested in all plans, but only on
those that are somewhat delimited (i.e., we would like to rule out
arbitrary arrangements of basic actions). Moreover, we may wish
for certain plans to take place only in particular contexts, and with
the purpose of bringing about some goal. These ideas are made
precise in Def. 3.3.

Definition 3.3 (LTS). A labelled transition system (LTS) is a tu-
ple 𝔏 = ⟨S, R,V⟩ where: S is a non-empty set of states; for some
𝐴 ⊆ Act, R is an 𝐴-indexed family of binary relations on S, i.e.,
R = {R𝑎 ⊆ S2 | 𝑎 ∈ 𝐴}; and V : S → 2Prop is an assignment function.

Simply put, 𝔏 is a graph whose nodes are labelled with proposi-
tion symbols and whose edges are labelled with action names. In
this way, V indicates the proposition symbols that hold on each
state; whereas R represents –following the terminology in [32]– an
ability map, i.e., the possible courses of action for all agents.



Table 2: Intuitive Interpretation of the states in Fig. 2.

state represents a situation in which:

𝑠1 A fire occurs, and there is the capacity to follow the evacu-
ation protocol.

𝑠2 A fire occurs, but there is no capacity to follow the evacua-
tion protocol (e.g., trapped in elevator).

𝑠3 A safe location has been reached, thus there is no fire.

Example 3.3. In Fig. 2 we present an LTS modelling a part of the
FEEP in Sec. 2. The intuive interpretation of the states in this LTS is
summarized in Tab. 2.

Notice how the LTS adds contexts/goals (pre/post conditions)
to basic actions, and thus to plans. We summarize what these con-
texts/goals look like for the plans in Ex. 3.2 in the table below.

plan pre post plan pre post
𝜋1 𝑓 ∧ 𝑐 𝑠 𝜋2 𝑓 ∧ 𝑐 (𝑓 ∧ ¬𝑐) ∨ (𝑠 ∧ ¬𝑓 )

Intuitively, the plan 𝜋1 has as a context the occurrence of a fire
and the capacity to follow the evacuation protocol, i.e., it is a fact
that such a capacity exists; its goal is that of taking the agent to a
safe place (and thus one in which there is no fire). In turn, plan 𝜋2
takes the agent to a situation in which there is still a fire, and in
which it has lost the capacity to follow the evacuation protocol and
has not reached a safe location (state 𝑠2); or to a state in which it has
reached as a safe location (𝑠3). This non-determinism in 𝜋2 captures
the potential failure of the elevator as a mean for evacuation.

Defs. 3.4 and 3.5 make precise the possible plans in an LTS.

Definition 3.4. Let 𝑅 and 𝑅′ be binary relations on a set 𝑆 . For
𝑆 ′ ⊆ 𝑆 ; 𝑅(𝑆 ′) = {𝑠 ∈ 𝑆 | 𝑠′ ∈ 𝑆 ′ and (𝑠′, 𝑠) ∈ 𝑅}; we write 𝑅(𝑠)
instead of 𝑅({𝑠}). The (sequential) composition of 𝑅 and 𝑅′ is defined
as 𝑅𝑅′ = {(𝑠1, 𝑠2) | exists 𝑠 ∈ 𝑆 s.t. (𝑠1, 𝑠) ∈ 𝑅 and (𝑠, 𝑠2) ∈ 𝑅′}. In
turn, let 𝔏 = ⟨S, R,V⟩ be an LTS (with R defined over 𝐴 ⊆ Act), and
let 𝜋 ∈ Act∗ be such that |𝜋 | = 𝑛;

R𝜋 =


{(𝑠, 𝑠) | 𝑠 ∈ S} if 𝜋 = 𝜖

∅ if exists 0 < 𝑘 ≤ 𝑛 s.t. 𝜋 [𝑘] ∉ 𝐴

R𝜋 [1] . . . R𝜋 [𝑛] otherwise.

For Π ⊆ Act∗; RΠ =
⋃{R𝜋 | 𝜋 ∈ Π}.

Definition 3.5 (Strong Executability). Let 𝔏 = ⟨S, R,V⟩ be
an LTS, 𝑠 ∈ S, and 𝜋 ∈ Act∗; we say that 𝜋 is strongly executable (SE)
at 𝑠 iff for all 0 ≤ 𝑘 ≤ |𝜋 | − 1 and all 𝑠′ ∈ R𝜋𝑘 (𝑠), R𝜋 [𝑘+1] (𝑠′) ≠ ∅.
The set of all states in which 𝜋 is SE is SE(𝜋) = {𝑠 ∈ S | 𝜋 is SE at 𝑠}.
Π ⊆ Act∗ is strongly executable at 𝑠 iff for every 𝜋 ∈ Π, 𝑠 ∈ SE(𝜋).
The set of all states in which Π is SE is SE(Π) = ⋂{SE(𝜋) | 𝜋 ∈ Π}.

The notion of strong executability in Def. 3.5 states that a plan is
fail proof, i.e., each time a plan commences at some state, it carries
through. This technical requirement is inspired by conformant
planning [29], and justified at a conceptual level in [32–34].

Example 3.4. Let 𝔏 be the LTS in Fig. 2; the plans 𝜋1 and 𝜋2 in
Ex. 3.2 are SE at 𝑠1. The plan 𝜋3 = keep.calm is SE everywhere. It is
easy to see that the plan

𝜋4 = pull.alarm; use.elevator; call.999

is not SE at 𝑠1: if we take pull.alarm and then use.elevator, we may
land in state 𝑠2, where it is not possible to take call.999.

Thus far the picture is fairly standard. We do, however, enrich
our models with a normative component.

Definition 3.6 (Normative LTS). A normative LTS (NLTS) is a
tuple 𝔑 = ⟨S, R,V,N⟩ where: 𝔏 = ⟨S, R,V⟩ is an LTS, and N ⊆ Act∗

is a set of plans such that there is 𝜋 ∈ N satisfying the condition
SE(𝜋) = S. We refer to N as the set of normative plans of 𝔑.

The set N in an NLTS is intuitively understood as a set of nor-
mative plans. The requirement on N having at least one strongly
executable plan can be understood as “there are norms that can
always be complied with”. This takes inspiration from the deontic
property “ought” implies “can” (or seriality in modal logic).

Example 3.5. Continuing with the FEEP example in Sec. 2, it would
be reasonable to have: N = {𝜋1, 𝜋3, 𝜋5}, where 𝜋1 and 𝜋3 are as in
Exs. 3.2 and 3.4, respectively, and 𝜋5 = pull.alarm; use.ramp; call.999.
The set N captures the normative aspects of the FEEP which dictate
that in case of a fire an agent shall evacuate the building using only
stairs or ramps. Notice the occurrence of 𝜋3 = keep.calm in N. This
is an indication that in the case of an emergency we should always
remain calm. The plan 𝜋3 also guarantees the model is a normative
LTS, as it is SE everywhere in the model (Def. 3.6).

Our final igrendient is the perception each agent has of a given
scenario. The main point to be made is that agents have their own
awareness of the courses of action they can take, with some being
indistinguishable. This incorporates ideas from [2].

Definition 3.7 (U-NLTS). An uncertainty-based normative LTSs
(U-NLTS) is a tuple 𝔐 = ⟨S, R,V,U,N⟩ where: 𝔑 = ⟨S, R,V,N⟩
is an NLTS; and U : Agt → 22

Act∗
satisfies: ∅ ∈ U(𝑖), and for all

{Π,Π′} ⊆ U(𝑖), Π ≠ Π′ implies Π ∩ Π′ = ∅. If 𝑠 ∈ S, the pair (𝔐, 𝑠)
is a pointed U-NLTS (parentheses usually dropped).

Intuitively, the function U in an U-NLTS indicates courses of
actions that are indistinguishable from the perspective of an agent.
More precisely, each Π ∈ U(𝑖) captures the courses of actions that
are, from the perspective of agent 𝑖 , as good as any other in this set.
The condition ∅ ∈ U(𝑖) indicates that the ‘abort’ plan (i.e., a plan
that always fails) is possible, and that agents can tell it apart from
the rest of plans. Note that Π𝑖 =

⋃{Π | Π ∈ U(𝑖)} assigns a set of
plans to an agent 𝑖 . The set Π𝑖 captures a sense of awareness for
agent 𝑖 , i.e., it tells what courses of action this agent may engage
on. In this way, U gives rise to an equivalence relation over each Π𝑖 ,
similar to the standard Epistemic Logic, but at the level of plans.

Example 3.6. Adding to the example in Sec. 2, let us suppose that
we have agents 𝑖 and 𝑗 , and that 𝑖 has taken an occupational safety
course, but 𝑗 has not. Then, 𝑖 should know the difference between
using stairs/ramps and using the elevator to evacuate the building in
case of a fire. On the other hand, for 𝑗 all possible ways of exiting the
building might be equally good. In this setting,

U(𝑖) = {{𝜋1, 𝜋5}, {𝜋4}} U( 𝑗) = {{𝜋1, 𝜋4, 𝜋5}},
where 𝜋1, 𝜋4 and 𝜋5 are as in Exs. 3.2, 3.4 and 3.5, respectively.

At this point we have all the ingredients that are necessary to
introduce the formal semantics of our logic.



Definition 3.8 (Semantics). Let 𝔐 = ⟨S, R,V,U,N⟩ be a U-
NLTS, 𝑠 ∈ S, and 𝜑 be a formula;𝔐, 𝑠 ⊩ 𝜑 is defined as:

𝔐, 𝑠 ⊩ 𝑝 iff 𝑝 ∈ V(𝑠),
𝔐, 𝑠 ⊩ ¬𝜑 iff 𝔐, 𝑠 ̸⊩ 𝜑 ,
𝔐, 𝑠 ⊩ 𝜑 ∨𝜓 iff 𝔐, 𝑠 ⊩ 𝜑 or 𝔐, 𝑠 ⊩ 𝜓 ,
𝔐, 𝑠 ⊩ N(𝜓,𝜑) iff exists 𝜋 ∈ N such that

(i) J𝜓K𝔐 ⊆ SE(𝜋) and
(ii) R𝜋 (J𝜓K𝔐) ⊆ J𝜑K𝔐 ,

𝔐, 𝑠 ⊩ Kc𝑖 (𝜓,𝜑) iff exists Π ∈ U(𝑖) such that
(i) Π ⊆ N,
(ii) J𝜓K𝔐 ⊆ SE(Π), and
(iii) RΠ (J𝜓K𝔐) ⊆ J𝜑K𝔐 ,

where J𝜒K𝔐 = {𝑠 ∈ S | 𝔐, 𝑠 ⊩ 𝜒}.

Intuitively, N(𝜓,𝜑) states that there is a normative plan to bring
about 𝜑 given𝜓 (i.e., a plan that is supported by the norms in N).
In turn, Kc𝑖 (𝜓,𝜑) states that there is a set of normative plans, all
indistinguishable from the perspective of agent 𝑖 , each of which
brings about 𝜑 given𝜓 . The normative reading of the Kc𝑖 operator
is that, the agent knows how to achieve 𝜑 given𝜓 within the limits
of some norms. Thus, we refer to Kc𝑖 as knowingly complying.

Let us now turn our attention onto how to define the universal
and existential modalities. Let A𝜑 = N(¬𝜑,⊥) and E𝜑 = ¬A¬𝜑 .
Prop. 3.1 shows that these definitions indeed capture the usual
reading of these modalities. The proof of this proposition relies on
the fact that the set N is never empty and contains some 𝜋 such
that SE(𝜋) = S, following closely the argument for the knowing
how operator Kh in [32].

Proposition 3.1. Let 𝔐 = ⟨S, R,V,U,N⟩ be a U-NLTS, 𝑠 ∈ S,
and 𝜑 be a formula;𝔐, 𝑠 ⊩ A𝜑 iff J𝜑K𝔐 = S.

Prop. 3.2 tells us that the modalities being considered are global,
i.e., they hold anywhere or nowhere in the model.

Proposition 3.2. It holds that𝔐, 𝑠 ⊩ N(𝜓,𝜑) iff𝔐, 𝑠 ⊩ AN(𝜓,𝜑);
and 𝔐, 𝑠 ⊩ Kc𝑖 (𝜓,𝜑) iff𝔐, 𝑠 ⊩ AKc𝑖 (𝜓,𝜑).

We conclude this section by summarizing our running example.

Example 3.7. Let𝔐 be the U-NLTS composed of the parts detailed
in Exs. 3.3, 3.5 and 3.6; it is easy to show that:

(1) 𝔐, 𝑠1 ⊩ A(𝑠 → ¬𝑓 ) (3) 𝔐, 𝑠1 ⊩ N(𝑓 ∧ 𝑐, 𝑠)
(2) 𝔐, 𝑠1 ⊩ E𝑓 (4) 𝔐, 𝑠1 ⊩ Kc𝑖 (𝑓 ∧ 𝑐, 𝑠)

(5) 𝔐, 𝑠1 ̸⊩ Kc𝑗 (𝑓 ∧ 𝑐, 𝑠)
(1) and (2) are immediate. As a witness for (3) we can take, e.g, the plan
𝜋1 in Ex. 3.2. As a witness for (4) we can take, e.g, the set {𝜋1, 𝜋5} ∈
U(𝑖). Failure of (5) obtains from the fact that {𝜋1, 𝜋4, 𝜋5} ∈ U( 𝑗) and
that {𝜋1, 𝜋4, 𝜋5} ⊈ N.

4 AXIOM SYSTEM

In this section, we present a sound and complete axiom system
(see Tab. 3) for DLKc. It comes to light immediately that the univer-
sal and the existential modalities A and E (definable in DLKc) are
instrumental in these results.

The soundness of the axiom system DLK𝑐 in Tab. 3 is direct.
Before establishing its completeness (Thm. 1), we offer some com-
ments. We start with the first block of axioms. The axiomatization

Table 3: Axiom system DLK𝑐 for DLKc over U-NLTSs.

Axioms:

Taut ⊢ 𝜑 for 𝜑 a propositional tautology
DistA ⊢ A(𝜓 → 𝜑 ) → (A𝜓 → A𝜑 )
TA ⊢ A𝜑 → 𝜑

4KcA ⊢ Kc𝑖 (𝜓,𝜑 ) → AKc𝑖 (𝜓,𝜑 )
5KcA ⊢ ¬Kc𝑖 (𝜓,𝜑 ) → A¬Kc𝑖 (𝜓,𝜑 )
4NA ⊢ N(𝜓,𝜑 ) → AN(𝜓,𝜑 )
5NA ⊢ ¬N(𝜓,𝜑 ) → A¬N(𝜓,𝜑 )
KcN ⊢ Kc𝑖 (𝜓,𝜑 ) → N(𝜓,𝜑 )
DN ⊢ N(𝜑,⊤)
KcA ⊢ (A(𝜓 → 𝜒 ) ∧ Kc𝑖 (𝜒, 𝜌 ) ∧ A(𝜌 → 𝜑 ) ) → Kc𝑖 (𝜓,𝜑 )
NA ⊢ (A(𝜓 → 𝜒 ) ∧ N(𝜒, 𝜌 ) ∧ A(𝜌 → 𝜑 ) ) → N(𝜓,𝜑 )
Kc⊥ ⊢ Kc𝑖 (⊥,⊥)
Rules:

⊢ 𝜓 ⊢ (𝜓 → 𝜑 )
⊢ 𝜑 (MP)

⊢ 𝜑
⊢ A𝜑 (Nec)

of the universal modality A needs only normality (given by axiom
DistA and the rule Nec) and reflexivity (TA). As shown in [32],
symmetry and transitivity for A are theorems of the system, since
they can be derived from particular instances of axioms 4NA and
5NA (discussed below). The second block of axioms, 4KcA to 5NA,
captures the fact that the two modalities of the language are global
(see Prop. 3.2). Lastly, we turn our attention to the third block of
axioms. Here, we point out that axiom KcN fixes the interaction
between the two modalities, whereas DN establishes a form of seri-
ality for the deontic modality N. Intuitively, DN states that, from
any situation, there is always a legal way to achieve an universally
valid goal (⊤). Of the remaining axioms, KcA and NA, state that Kc𝑖
and N, respectively, are closed under global entailment; whereas
Kc⊥ tells us how agents behave in impossible situations.

Proposition 4.1. The following formulas are derivable using the
axioms and rules in Tab. 3:
KcE (E𝜓 ∧ Kc𝑖 (𝜓,𝜑)) → E𝜑 ; NE (E𝜓 ∧ N(𝜓,𝜑)) → E𝜑

At this point, we turn our attention to completeness. We begin
with some preliminary definitions.

Definition 4.1. Let 𝚽 be the set of all maximally consistent sets
(MCS) of formulas (w.r.t. DLK𝑐); for any Γ ∈ 𝚽, define:

Γ |N = {N(𝜓,𝜑) | N(𝜓,𝜑) ∈ Γ} Γ |A = {A𝜑 | A𝜑 ∈ Γ}
Γ |Kc𝑖 = {Kc𝑖 (𝜓,𝜑) | Kc𝑖 (𝜓,𝜑) ∈ Γ} Γ |Kc =

⋃{Γ |Kc𝑖 | 𝑖 ∈ Agt}.

For Γ ∈ 𝚽; define ActΓ = {⟨𝜓,𝜑⟩ | N(𝜓,𝜑) ∈ Γ}.

Remark 4.1. Note that ActΓ is denumerable, thus it is an adequate
set of actions for building a model. Note also that ActΓ fixes a new
signature. This causes no problem since the operators of the language
cannot see the names of the actions; i.e., we can define a mapping
from ActΓ to any particular Act and preserve the original signature.

Let us take the first step towards an adequate notion of canonical
model 𝔐Γ for an MCS Γ ∈ 𝚽. Using standard ideas from modal
logic [7], we would take the set S of states of 𝔐Γ to be 𝚽. In doing
this, however, we run into a problem. We may have, Kc𝑖 (𝜓,𝜑) ∈ 𝑠

and ¬Kc𝑖 (𝜓,𝜑) ∈ 𝑠′, for some {𝑠, 𝑠′} ⊆ S (since S = 𝚽 contains all
MCSs w.r.t. DLK𝑐). This causes the Truth-Lemma to fail: it should
happen that𝔐Γ, 𝑠 ⊩ Kc𝑖 (𝜓,𝜑) iff for all 𝑠′′ ∈ S,𝔐Γ, 𝑠′′ ⊩ Kc𝑖 (𝜓,𝜑)
(see Prop. 3.2). Yet, we have 𝑠′ such that𝔐Γ, 𝑠′ ⊩ ¬Kc𝑖 (𝜓,𝜑), and so



𝔐Γ, 𝑠′ ̸⊩ Kc𝑖 (𝜓,𝜑), a contradiction. Moreover, a similar argument
can be puth forth for N.

The scenario described above tells us that we need to do some ex-
tra work in building our canonical model, similar to what happens
in e.g., [17] and in [18] for the universal modality and Propositional
Dynamic Logic (PDL), respectively. In those cases, the correspond-
ing structure needs to satisfy some additional constraint. In the
former, the situation is similar than ours, as the canonical model is
generated by the modality A. For the latter, the canonical model is
filtrated in order to characterize the transitive closure of a relation.

Simply put, we need to select the appropriate set of MCS in
order to fulfill the ‘globality’ requirement for our modal formulas,
established in the block of axioms 4KcA to 5NA. This extra work is
made precise in Def. 4.2.

Definition 4.2. The canonical model of an MCS of formulas
Γ ∈ 𝚽 is a tuple 𝔐Γ

𝑐 = ⟨SΓ, RΓ,VΓ,UΓ,NΓ⟩ where:
SΓ = {Δ ∈ 𝚽 | Δ|A = Γ |A}

RΓ⟨𝜓,𝜑 ⟩ = {(Δ1,Δ2) ∈ SΓ × SΓ | N(𝜓,𝜑) ∈ Γ,𝜓 ∈ Δ1, 𝜑 ∈ Δ2}

RΓ = {RΓ⟨𝜓,𝜑 ⟩ | N(𝜓,𝜑) ∈ Γ}

VΓ (Δ) = {𝑝 ∈ Prop | 𝑝 ∈ Δ}

UΓ (𝑖) = {{⟨𝜓,𝜑⟩} | Kc𝑖 (𝜓,𝜑) ∈ Γ} ∪ {∅}

NΓ = {⟨𝜓,𝜑⟩ | N(𝜓,𝜑) ∈ Γ}.

Notice that𝔐Γ
𝑐 is generated by formulas of the form A𝜑 ; i.e., the

(global) formulas that occur in Γ.

Proposition 4.2. The following are immediate for𝔐Γ
𝑐 :

(1) {⟨𝜓,𝜑⟩} ∈ UΓ (𝑖) implies ⟨𝜓,𝜑⟩ ∈ NΓ ;
(2) ⟨𝜓,𝜑⟩ ∈ NΓ iff ⟨𝜓,𝜑⟩ ∈ ActΓ ;
(3) RΓ⟨𝜓,𝜑 ⟩ ≠ ∅ implies N(𝜓,𝜑) ∈ Γ.

Items (1) of Prop. 4.2 follows by axiom KcN. Items (2) and (3)
follow by definition of 𝔐Γ

𝑐 . Now, we need to show that 𝔐Γ
𝑐 is a

proper U-NLTS.

Proposition 4.3. 𝔐Γ
𝑐 =⟨SΓ, RΓ,VΓ,UΓ,NΓ⟩ is a U-NLTS.

Proof. It is clear that ⟨SΓ, RΓ,VΓ⟩ is an LTS (e.g., SΓ ≠ ∅, as
Γ ∈ SΓ). Then, we need to show that there exists 𝜋 ∈ NΓ s.t.
SE(𝜋) = SΓ , as per Def. 3.6. Notice that N(𝜑,⊤) ∈ Γ for every
𝜑 ∈ DLKc (by DN). In particular, N(⊤,⊤) ∈ Γ. Hence, ⟨⊤,⊤⟩ ∈ NΓ ,
and SE(⟨⊤,⊤⟩) = SΓ .

It remains to show that UΓ satisfies the conditions of Def. 3.7.
By definition, ∅ ∈ UΓ (𝑖). Let Π1,Π2 ∈ UΓ

𝑖
−{∅} be s.t. Π1 =

{⟨𝜓1, 𝜑1⟩} ≠ {⟨𝜓2, 𝜑2⟩} = Π2 (recall that Π1,Π2 are singletons).
Then, Π1 ∩ Π2=∅. □

Below we state some properties of 𝔐Γ
𝑐 , that will be useful in

what follows. We start with a property about the global relatios
between the states of 𝔐Γ

𝑐 , whose proof relies on the axioms of the
block 4KcA to 5NA.

Proposition 4.4. Let {Δ1,Δ2} ⊆ SΓ and X ∈ {Kc𝑖 ,N}; we have
Δ1 |X = Δ2 |X = Γ |X.

Next, we establish some properties about the structure of 𝔐Γ
𝑐

(see [2, 34] for details).

Proposition 4.5. If RΓ⟨𝜓,𝜑 ⟩ (Δ) ≠ ∅, then, for all Δ′ ∈ SΓ , 𝜑 ∈ Δ′

implies Δ′ ∈ RΓ⟨𝜓,𝜑 ⟩ (Δ).

Proposition 4.6. For any formula 𝜑 ; if 𝜑 ∈ Δ for every Δ ∈ SΓ ,
then A𝜑 ∈ Δ for every Δ ∈ SΓ .

Proposition 4.7. If𝜓 ∈ Δ then, RΓ⟨𝜓 ′,𝜑 ′ ⟩ (Δ) ≠ ∅, implies for all

Δ′ ∈ SΓ , A(𝜓 → 𝜓 ′) ∈ Δ′.

Proposition 4.8. Let X ∈ {Kc𝑖 ,N}; if there is Θ ∈ SΓ such that
{𝜓, X(𝜓,𝜑)} ⊆ Θ, then there is Θ′ ∈ SΓ such that 𝜑 ∈ Θ′.

Props. 4.4 to 4.8 are instrumental in our proof of the Truth Lemma
for 𝔐Γ

𝑐 , which is stated below.

Lemma 4.1 (Truth lemma). Let Γ ∈ 𝚽, and let 𝔐Γ
𝑐 be as in

Def. 4.2; for all Δ ∈ SΓ , and for all 𝜑 ∈ DLKc,𝔐Γ
𝑐 ,Δ ⊩ 𝜑 iff 𝜑 ∈ Δ.

Proof. Let𝔐Γ
𝑐 = ⟨SΓ, RΓ,VΓ,UΓ,NΓ⟩. The proof is by induction

on the structure of 𝜑 . The atomic and Boolean cases are as usual,
so we focus on the Kc𝑖 case (the case of N being similar).
Case 𝜑 = Kc𝑖 (𝜓, 𝜌): . (⇒) Suppose𝔐Γ

𝑐 ,Θ ⊩ Kc𝑖 (𝜓, 𝜌). Then, there
isΠ ∈ UΓ (𝑖) such that:Π ⊆ NΓ , J𝜓K𝔐

Γ
𝑐 ⊆ SE(Π) and RΠ (J𝜓K𝔐

Γ
𝑐 ) ⊆

J𝜌K𝔐
Γ
𝑐 . We have two cases:

• If J𝜓K𝔐
Γ
𝑐 = ∅, then by IH, ¬𝜓 ∈ Θ′ for all Θ′ ∈ SΓ . Thus,

by Prop. 4.6, A¬𝜓 ∈ Θ′ for allΘ′ ∈ SΓ , and therefore, A(𝜓 →
⊥) ∈ Θ′. Since ⊥ → 𝜌 is a tautology, by Nec, A(⊥ → 𝜌) ∈
Θ′. Using an instance of KcA, (A(𝜓 → ⊥) ∧ Kc𝑖 (⊥,⊥) ∧
A(⊥ → 𝜌)) → Kc𝑖 (𝜓, 𝜌) ∈ Θ′. Then, by Kc⊥ and MP, we
get that Kc𝑖 (𝜓, 𝜌) ∈ Θ′, for all Θ′ ∈ SΓ . Thus, Kc𝑖 (𝜓, 𝜌) ∈ Θ.

• If J𝜓K𝔐
Γ
𝑐 ≠ ∅, then Π = {⟨𝜓 ′, 𝜑′⟩} since Π = ∅ would force

J𝜓K𝔐
Γ
𝑐 = ∅. Take Θ ∈ SΓ such that𝔐Γ

𝑐 ,Θ, ⊩ 𝜓 . By IH,𝜓 ∈ Θ.
Moreover, for all Θ′ ∈ SΓ , if𝜓 ∈ Θ′ then:
– Θ′ has an RΓ⟨𝜓 ′,𝜑 ′ ⟩-successor, and

– for all Θ′′ ∈ SΓ s.t. (Θ′,Θ′′) ∈ RΓ⟨𝜓 ′,𝜑 ′ ⟩ , 𝜌 ∈ Θ′′ (IH).

Note that as Θ′ has an RΓ⟨𝜓 ′,𝜑 ′ ⟩-successor,𝜓
′ ∈ Θ, and there-

fore,𝜓 → 𝜓 ′, for all Θ′ ∈ SΓ . By Prop. 4.7, A(𝜓 → 𝜓 ′) ∈ Θ′

for all Θ′ ∈ SΓ . By Prop. 4.5, every Θ′′ ∈ SΓ such that
𝜑 ′ ∈ Θ′′ can be RΓ⟨𝜓 ′,𝜑 ′ ⟩-reached from Θ′. Therefore, for

every Θ′ ∈ SΓ such that𝜓 ∈ Θ′ we have that every Θ′′ ∈ SΓ
such that 𝜑 ′ ∈ Θ′′ can be RΓ⟨𝜓 ′,𝜑 ′ ⟩-reached from Θ′; i.e.,

Θ′′ ∈ J𝜑 ′K𝔐
Γ
𝑐 ⊆ RΓΠ (J𝜓K𝔐

Γ
𝑐 ) ⊆ J𝜌K𝔐

Γ
𝑐 . Then, we get 𝜌 ∈

Θ′′. Thus, for allΘ′′ ∈ SΓ , 𝜑 ′ → 𝜌 ∈ Θ′′. Using Prop. 4.6, for
all Θ′′ ∈ SΓ , A(𝜑 ′ → 𝜌) ∈ Θ′′. Finally, putting all together,
for all Θ′ ∈ SΓ , {A(𝜓 → 𝜓 ′),Kc𝑖 (𝜓 ′, 𝜑′),A(𝜑 ′ → 𝜌)} ⊂ Θ′.
By axiom KcA, Kc𝑖 (𝜓, 𝜌) ∈ Θ′ and thus, Kc𝑖 (𝜓, 𝜌) ∈ Θ.

(⇐) Suppose Kc𝑖 (𝜓, 𝜌) ∈ Θ. Then, by Prop. 4.4, Kc𝑖 (𝜓, 𝜌) ∈ Θ′

for all Θ′ ∈ SΓ . Moreover, Kc𝑖 (𝜓, 𝜌) ∈ Γ and RΓ⟨𝜓,𝜌 ⟩ is defined. To

prove that 𝔐Γ
𝑐 ,Θ ⊩ Kc𝑖 (𝜓, 𝜌), we have to consider two cases:

• There is no Θ′ such that 𝜓 ∈ Θ′. By IH, J𝜓K𝔐
Γ
𝑐 = ∅. Using

Π = ∅, we trivially have that 𝔐Γ
𝑐 ,Θ ⊩ Kc𝑖 (𝜓, 𝜌).

• There is Θ′ such that𝜓 ∈ Θ′: by Prop. 4.8, there is Θ′′ such
that 𝜌 ∈ Θ′′. By IH, 𝔐Γ

𝑐 ,Θ
′ ⊩ 𝜓 and 𝔐Γ

𝑐 ,Θ
′′ ⊩ 𝜌 . Since it is

defined, Π = {⟨𝜓, 𝜌⟩} is SE at all𝜓 -states (since there is an



RΓ⟨𝜓,𝜌 ⟩-successorΘ
′′), reaches from these only 𝜌-states via Π

(by construction of RΓ⟨𝜓,𝜌 ⟩ ), and {⟨𝜓, 𝜌⟩} ⊆ NΓ (by Prop. 4.2).

Thus,𝔐Γ
𝑐 ,Θ ⊩ Kc𝑖 (𝜓, 𝜌).

□

Following from Lemma 4.1, and using a standard argument, we
establish the following result.

Theorem 1. The axiom system DLK𝑐 in Tab. 3 is sound and
strongly complete for DLKc over the class of all U-NLTSs.

5 COMPLEXITY

In this section, we investigate the computational complexity of
the satisfiability problem of DLKc. For this logic, we will establish
membership in NP by showing a polynomial size model property.

Given a formula, we will show that it is possible to select just a
piece of the canonical model which is relevant for its evaluation.
The selected model will preserve satisfiability, and moreover, its
size will be polymonial w.r.t. the size of the input formula.

Definition 5.1 (Selection function). Let Γ be a MCS, and let
𝔐Γ

𝑐 = ⟨SΓ, RΓ,VΓ,UΓ,NΓ⟩ be a canonical model; let 𝑤 ∈ SΓ and 𝜑
be a formula. Define Act𝜑 = {⟨\1, \2⟩ ∈ ActΓ | X(\1, \2) ∈ 𝑠 𝑓 (𝜑)} ∪
{⟨⊤,⊤⟩}, with X ∈ {Kc𝑖 ,N} and 𝑠 𝑓 (𝜑) the set of subformulas of 𝜑
defined in the usual way. A canonical selection function sel𝜑𝑤 is a
function that takes 𝔐Γ

𝑐 ,𝑤 and 𝜑 as input, returns a set S′ ⊆ SΓ , and
is such that:

(1) sel𝜑𝑤 (𝑝) = {𝑤};
(2) sel𝜑𝑤 (¬𝜑1) = sel𝜑𝑤 (𝜑1)
(3) sel𝜑𝑤 (𝜑1 ∨ 𝜑2) = sel𝜑𝑤 (𝜑1) ∪ sel𝜑𝑤 (𝜑2);
(4) If JX(𝜑1, 𝜑2)K𝔐

Γ
𝑐 ≠ ∅ and J𝜑1K𝔐

Γ
𝑐 = ∅ for X ∈ {Kc𝑖 ,N}:

sel𝜑𝑤 (X(𝜑1, 𝜑2)) = {𝑤};
(5) If JX(𝜑1, 𝜑2)K𝔐

Γ
𝑐 ≠ ∅ and J𝜑1K𝔐

Γ
𝑐 ≠ ∅ for X ∈ {Kc𝑖 ,N}:

sel𝜑𝑤 (X(𝜑1, 𝜑2)) = {𝑤1,𝑤2} ∪ sel𝜑𝑤1 (𝜑1) ∪ sel𝜑𝑤2 (𝜑2),
where𝑤1,𝑤2 are s.t. (𝑤1,𝑤2) ∈ RΓ⟨𝜑1,𝜑2 ⟩ ;

(6) If JKc𝑖 (𝜑1, 𝜑2)K𝔐
Γ
𝑐 = ∅ (note that J𝜑1K𝔐

Γ
𝑐 ≠ ∅):

For each {⟨𝜓1,𝜓2⟩} = {𝑎} ∈ UΓ (𝑖) ∩ Act𝜑 :

(a) if J𝜑1K𝔐
Γ
𝑐 ⊈ SE(𝑎):

add sel𝜑𝑤1 (𝜑1) ∪ {𝑤1} to sel𝜑𝑤 (Kc𝑖 (𝜑1, 𝜑2)),
where𝑤1 ∈ J𝜑1K𝔐

Γ
𝑐 and𝑤1 ∉ SE(𝑎);

(b) if RΓ𝑎 (J𝜑1K𝔐
Γ
𝑐 ) ⊈ J𝜑2K𝔐

Γ
𝑐 :

add {𝑤1,𝑤2}∪sel𝜑𝑤1 (𝜑1)∪sel
𝜑
𝑤2 (𝜑2) to sel

𝜑
𝑤 (Kc𝑖 (𝜑1, 𝜑2)),

where𝑤1 ∈ J𝜑1K𝔐
Γ
𝑐 ,𝑤2 ∈ RΓ𝑎 (𝑤1) and𝑤2 ∉ J𝜑2K𝔐

Γ
𝑐 ;

(7) If JN(𝜑1, 𝜑2)K𝔐
Γ
𝑐 = ∅ (note that J𝜑1K𝔐

Γ
𝑐 ≠ ∅):

For each ⟨𝜓1,𝜓2⟩ = 𝑎 ∈ NΓ ∩Act𝜑 :
(a) if J𝜑1K𝔐

Γ
𝑐 ⊈ SE(𝑎):

add {𝑤1} ∪ sel𝜑𝑤1 (𝜑1) to sel
𝜑
𝑤 (N(𝜑1, 𝜑2)),

where𝑤1 ∈ J𝜑1K𝔐
Γ
𝑐 and𝑤1 ∉ SE(𝑎);

(b) if RΓ𝑎 (J𝜑1K𝔐
Γ
𝑐 ) ⊈ J𝜑2K𝔐

Γ
𝑐 :

add {𝑤1,𝑤2} ∪ sel𝜑𝑤1 (𝜑1) ∪ sel𝜑𝑤2 (𝜑2) to sel
𝜑
𝑤 (N(𝜑1, 𝜑2)),

where𝑤1 ∈ J𝜑1K𝔐
Γ
𝑐 ,𝑤2 ∈ RΓ𝑎 (𝑤1) and𝑤2 ∉ J𝜑2K𝔐

Γ
𝑐 .

The overall idea is inspired by selection methods in modal log-
ics [8], and in knowing how logic [2]. The selection function picks

enough states of the canonical model, in order to ensure the preser-
vation of the truth of the subformulas of a given input formula. In
addition, we also need to pick the proper set of normed plans and
uncertainty sets. This is made precise in the following definition.

Definition 5.2 (Selected model). Let 𝔐Γ
𝑐 be the canonical

model for an MCS Γ, 𝑤 a state in 𝔐Γ
𝑐 , and 𝜑 a formula. Let sel𝜑𝑤

be a selection function, we define the model selected by sel𝜑𝑤 as
𝔐

𝜑
𝑤 = ⟨S𝜑𝑤 , R

𝜑
𝑤 ,V

𝜑
𝑤 ,U

𝜑
𝑤 ,N

𝜑
𝑤⟩, where

S𝜑𝑤 = sel𝜑𝑤 (𝜑);

(R𝜑𝑤)⟨\1,\2 ⟩ = RΓ⟨\1,\2 ⟩ ∩(S
𝜑
𝑤 × S𝜑𝑤), for each ⟨\1, \2⟩ ∈ Act𝜑 ;

N𝜑
𝑤 = NΓ ∩Act𝜑 ;

(U𝜑
𝑤) (𝑖) = {{𝑎} ∈ UΓ (𝑖) | 𝑎 ∈ Act𝜑 } ∪ {∅}, for 𝑖 ∈ Agt;

V𝜑𝑤 is the restriction of VΓ to S𝜑𝑤 .

Proposition 5.1. 𝔐𝜑
𝑤 = ⟨S𝜑𝑤 , R

𝜑
𝑤 ,V

𝜑
𝑤 ,U

𝜑
𝑤 ,N

𝜑
𝑤⟩ is a U-NLTS.

Moreover, Π ∈ U𝜑
𝑤 (𝑖) implies Π ⊆ N𝜑

𝑤 .

Proof. The structure ⟨S𝜑𝑤 , R
𝜑
𝑤 ,V

𝜑
𝑤⟩ is an LTS as sel𝜑𝑤 (𝜑) ≠ ∅.

Sincewe preserved ⟨⊤,⊤⟩ inN𝜑
𝑤 , and (U

𝜑
𝑤) is just a restriction ofUΓ

to Act𝜑 , it is easy to see that it meets the conditions of Def. 3.7. Thus,
𝔐

𝜑
𝑤 is a U-NLTS. The last implication follows by definition. □

Below we state the crucial property for characterizing the com-
plexity of checking the satisfiability of DLKc-formulas.

Proposition 5.2. Let 𝔐Γ
𝑐 be a canonical model,𝑤 a state in 𝔐Γ

𝑐

and 𝜑 a formula. Let𝔐𝜑
𝑤 be the selected model by a selection function

sel𝜑𝑤 . Then, 𝔐Γ
𝑐 ,𝑤 ⊩ 𝜑 implies that for all 𝜓 subformula of 𝜑 , and

for all 𝑣 ∈ S𝜑𝑤 , we have that𝔐Γ
𝑐 , 𝑣 ⊩ 𝜓 iff𝔐

𝜑
𝑤 , 𝑣 ⊩ 𝜓 . Moreover,𝔐𝜑

𝑤

is polynomial on the size of 𝜑 .

Proof (Sketch). The proof of that 𝔐𝜑
𝑤 preserves the satisfia-

bility of formulas follows by a standard induction in the size of 𝜑 .
It remains to show that 𝔐𝜑

𝑤 is polynomial on the size of 𝜑 . The
selection function adds states from𝔐Γ

𝑐 , only for each subformula
of 𝜑 with Kc𝑖 or N as the outermost connective. The number of
states added at each time is polynomial in the size of 𝜑 . Hence, the
size of S𝜑𝑤 is polynomial. Since (U𝜑

𝑤) (𝑖) andN
𝜑
𝑤 are also polynomial,

the size of𝔐𝜑
𝑤 is polynomial in the size of 𝜑 . □

In order to prove that the satisfiability problem is in NP, it re-
mains to show that the model checking problem is in P (the proof
is omitted due to lack of space, but it is similar to the one provided
in [2] for an epistemic knowing how logic).

Proposition 5.3. The model checking problem for DLKc is in P.

Now, we are in position to characterize the complexity of the
satisfiability problem for DLKc.

Theorem 2. The satisfiability problem for DLKc is NP-complete.

Proof. Hardness follows fromNP-completeness of propositional
logic (a fragment of DLKc). By Prop. 5.2, each satisfiable formula 𝜑
has a model of polynomial size on 𝜑 . Thus, we can guess a poly-
monial model 𝔐,𝑤 , and test 𝔐,𝑤 ⊩ 𝜑 (which can be done in
polynomial time, due to Prop. 5.3). Therefore, the result follows. □



6 REASONING ABOUT ABILITIES

So far, we studied a logical formalism that enables us to express and
reason about normative courses of actions and responsibilities for
agents. These notions are syntactically captured in our logic using
the modalities N and Kc𝑖 , respectively. From a semantic standpoint,
these modalities are interpreted on a model relative to a set N of
‘normed’ plans. This raises the question of whether it is possible to
reason in our logic about the possible plans the agents may engage
on, i.e., expressing what an agent ‘can do’, independently of the
given norms or even of their own individual perception. Having this
new feature is useful for studying interactions between the given
abilities and what agents can do according to the norms. To this end,
in this section, we investigate the impact of adding a new modality
(called S) to DLKc and refer to the resulting logic as DLKc+.

Definition 6.1. The language of DLKc+ is defined by:

𝜑,𝜓 F 𝑝 | ¬𝜑 | 𝜑 ∨𝜓 | S(𝜓,𝜑) | N(𝜓,𝜑) | Kc𝑖 (𝜓,𝜑),
where: 𝑝 ∈ Prop and 𝑖 ∈ Agt. Intuitively, a formula S(𝜓,𝜑) is read
as: “there is a course of action that brings about 𝜑 given𝜓”.

The semantic clause for the modality S is given below. It is worth
noticing that this semantic clause is exactly the one for the knowing
how modality of [32, 33]. As argued in [2], such a modality can
be seen as an ability modality, rather than an epistemic one. We
adhere to [2] and take S as an ability modality.

Definition 6.2. Let 𝔐 = ⟨S, R,V,U,N⟩ be a U-NLTS, 𝑠 ∈ S, and
𝜑 be a formula; Def. 3.8 is extended to account for the operator S as:

𝔐, 𝑠 ⊩ S(𝜓,𝜑) iff exists 𝜋 ∈ Act∗ such that
(i) J𝜓K𝔐 ⊆ SE(𝜋) and
(ii) R𝜋 (J𝜓K𝔐) ⊆ J𝜑K𝔐 .

The following example motivates the use of S.

Example 6.1. In the context of our FEEP example, the formula
S(⊤, 𝑠) expresses that ‘there is a course of action that always (⊤)
allows agents to reach a safe location’, whereas S(𝑓 ∧ 𝑐, 𝑠) states that
‘there is a course of action that always leads to a safe location in case
of a fire event, provided there is the capacity (𝑐) of doing so’. In the
context of the LTS in Fig. 2, we have that

(1) 𝔐, 𝑠1 ⊩ S(𝑓 ∧ 𝑐, 𝑠) (2) 𝔐, 𝑠1 ̸⊩ S(⊤, 𝑠) .
For (1), we can take the plan 𝜋4 = pull.alarm; use.ramp; call.999 as
a witness. Notice that (2) holds, since in state 𝑠2, there is no plan for
reaching a safe location (i.e., a state in which 𝑠 holds). Intuitively, the
LTS in Fig. 2 can be seen as illustrating the actions available in the
case of a fire in a building. Item (1) tells us that in such a scenario
it is possible to reach a safe location if there is the capacity to do so;
whereas item (2) tells us that it is not always possible to reach a safe
location, e.g., if we are trapped in an elevator.

An axiomatization for DLKc+ is obtained by adding the axiom
schemas in Tab. 4 to the axiom system introduced in Tab. 3. Notice
that, NS establishes the interaction between N and S. Intuitively, it
tells us that whichever is regulated by norms is also feasible. This
rules out normative systems in which certain norms are impossible
–e.g., if we think of norms in terms of obligations, this axiom tells us
that our logic adheres to the principle impossibilium nulla obligatio
est, which states that impossible norms shall be excused. As one

Table 4: Additional axioms for DLKc+.

4SA ⊢ S(𝜓,𝜑 ) → AS(𝜓,𝜑 ) NS ⊢ N(𝜓,𝜑 ) → S(𝜓,𝜑 )
5SA ⊢ ¬ S(𝜓,𝜑 ) → A¬ S(𝜓,𝜑 ) EmpS ⊢ A(𝜓 → 𝜑 ) → S(𝜓,𝜑 )

CompS ⊢ (S(𝜓, 𝜒 ) ∧ S(𝜒,𝜑 ) ) → S(𝜓,𝜑 )

would expect, the converse of NS is not a theorem of the logic –i.e.,
it is possible for certain courses of actions not to be regulated by
norms. Lastly, the axioms EmpS andCompS capture some intuitions
behind the possible courses of actions. These axioms are present in
the original proposal for a knowing howmodality [32]. In particular,
EmpS tells us that it is possible to turn universally valid implications
into abilities by doing nothing (witnessed by the empty plan 𝜖);
whereas CompS tells us that courses of actions that have a common
goal/context can be composed. In [2], it is argued that they account
for some level of omniscience that one might disagree with. This
challenge, however, is set aside here since S is taken not as an
epistemic modality but as an ability modality.

Theorem 3. The axioms and rules in Tabs. 3 and 4 yield a sound
and strongly complete axiom system for DLKc+ over U-NLTSs.

We conclude with a comment on the computational behaviour
of DLKc+. The semantics of S is exactly the one of Kh in [32, 33].
It is shown in [24], that the satisfiability problem is decidable for
this logic (in fact, the result is proved for a more general logic). We
claim that following ideas from [26], we can provide a complexity
characterization for this logic, whose status is still an open problem.

7 FINAL REMARKS

We presented a deontic logic for modelling the notion of know-
ingly complying with a given set of norms. The logic features two
modalities N and Kc𝑖 , one refining the other. On the one hand, N
models those abilities that are normed (i.e., those that are within
the limits of the law). On the other hand, Kc𝑖 is the modality of
’knowingly complying’ (i.e., it models the conciousness of an agent
when achieving a certain goal by using a normed course of action).
We used a fire emergency evauation plan (FEEP) as a running exam-
ple to illustrate the components of the logic. Then, we introduced a
sound and strongly complete axiom system to provide an account
on how the modalities interact in the logic. Moreover, we showed
that the satisfiability problem for the logic is NP-complete, relying
on a small model property. Finally, we extended the logic with a
modality S to capture the general abilities of the agents. We studied
the effects of including such a modality. This result illustrates the
flexibility of our framework, and shows how the three aspects in
our deontic systems interact among each other.

There are several interesting directions for future work. First,
it would be interesting to characterize the exact complexity of the
satisfiability poblem of the extended logic DLKc+. This would give
us, as a by product, the exact complexity of the basic knowing how
logic from [32, 34]. Second, by playing with the relation between
the set of plans U(𝑖) of each agent and the set of norms N, it is
possible to establish different levels of responsibility for the agents.
This relates with the different notions of knowingly doing of [10–
12]. Finally, our approach enables us to impose new restrictions on
the different components of the model (or weakening them), and
obtain new logics. It would be interesting to study these different
systems in a deontic context.
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