
Data Graphs with Incomplete Information
(and a Way to Complete Them)

Carlos Areces1,2, Valentin Cassano1,2,3, Danae Dutto1,2,3, and Raul Fervari1,2,4

1 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
2 Universidad Nacional de Córdoba (UNC), Argentina

3 Universidad Nacional de Río Cuarto (UNRC), Argentina
4 Guangdong Technion - Israel Institute of Technology (GTIIT), China

Abstract. We introduce a modal language for reasoning about data
graphs with incomplete information. Such data graphs are formally rep-
resented as models in which data value functions are partial — to capture
what is unknown. In this setting, we also allow for unknown data val-
ues to be learned. Our main result is a sound and strongly complete
axiomatization for the logic.

Keywords: Data Graphs · Incomplete Data · Modal/Intuitionistic Logic.

1 Modal Logic & Semistructured-Data Query Languages

Nowadays, there is a well established connection between modal logics [15,13]
and semistructured-data query languages such as XPath and some of its rela-
tives [20,25]. The main reason is that semistructured data is usually represented
in the form of relational structures or graphs (e.g., an XML document), and
modal logics are well suited for describing and reasoning over this kind of struc-
tures. This perspective enables us to use modal logic tools to reason with (and
about) XPath-like languages (see, e.g., [9]), thereby helping us to develop meth-
ods to check the consistency of a database and to optimize queries, among other
tasks. Some of these ideas have been explored, e.g., in [18,19], and also, in the
presence of data comparisons, in, e.g., [11,3,1,8,6].

The connection mentioned above is illustrated in [16]. There, a version of
XPath with (in)equality data tests between attributes in an XML document is
named Core-Data-XPath, here called XPath=. Models of XPath= are usually
data trees which can be seen as XML documents. A data tree is a tree whose
nodes contain a label from a finite alphabet and a data value from an infinite
domain. From a modal logic perspective, these data trees are a particular class of
relational models. Naturally, this view can be extended to more general relational
structures, i.e., to arbitrary data graphs. Since data graphs are the underlying
mathematical structure in graph databases (see, e.g., [28,30,4]), studying the
meta-logical properties of languages to query this particular kind of models is
important (see, e.g., [27,1]).

Let us provide an example to guide our discussion. Fig. 1 depicts a graph
database modelling a piece of a library catalog. There, we can see attributes

2 Areces et al.

d : Person
name = D. Adams

j : Person
name = J. Cortazar

g : Book
title = H2G2

l : Book
title = A Certain Lucas

h : Book
title = Hopscotch

:Date
year = 1979

:Date
year = 1963

published

author
author

published

published

author

Fig. 1: Graph Database.

B

P

D

D. Adams d j J. Cortazar

H2G2 g l h Hopscotch

A Certain Lucas

1979 1963

a

p

a

p

a

p

dn dn

dt dt

dt

dy dy

Fig. 2: Concrete Data Model.

(e.g., “author”) as labels on edges; while nodes store data values represented
as “tag = value” pairs (e.g., “title = H2G2”). Attributes are usually drawn
from a finite set, while data values are assumed to be drawn from an infinite
set. Additionally, some nodes may contain keys that uniquely identify a node
(e.g., the ISBN number associated to a certain book, or the passport number
of a person, indicated, e.g., “d:”). On this kind of graph database, we can state
queries such as: “The book with the id l has the same author as the one with
the id h”. In this way, we can express both properties about the structure of the
data graph, and about equality or inequality of the data values contained in it.

To explore graph databases and the possibility of querying them from a
logical perspective we need an adequate logical language. We build on [6] and
consider a hybrid modal language. In this setting, modalities encode attributes,
proposition symbols encode types, and nominals from hybrid logic encode unique
identifiers. Fig. 2 shows what the graph database in Fig. 1 looks like as a model
of the hybrid modal language. In this figure, a and p are accessibility relations
associated to their corresponding modalities (for the attributes “author” and
“published”); P , B, and D, are proposition symbols (for the types “Person”,
“Book”, and “Date”); and d, j, g, l, and h are nominals (for the unique identifiers
appearing in the graph database, representing the passport number of a person
or the ISBN of a book). Finally, data values in Fig. 2 are encoded as functions
dn, dt, and dy (standing for “name”, “title”, and “year” values).

To be noted, the model Fig. 2, usually called a concrete model, tries to remain
as close as possible to the actual graph-database (the similarities between Fig. 1
and Fig. 2 should be obvious). However, depending on the expressive power of our
logical language, a simpler, more abstract class of models may be better suited.
In particular, many data query languages, like XPath, “abstract away” from
the actual data values in the graph database, and only care about the result of
performing comparisons between them (see, e.g., [22,23,3,1,6]). In other words, if
the language includes only tests for (in)equality, for example, we can forget about
actual data values and define an equivalent model (from the logic standpoint)
with data equality relations instead of data value functions. Precisely, two nodes
will be related by data equality if and only if they have the same data value.
In [6] this connection is made explicit, and the simpler class of abstract models
is exploited to prove a soundness and completeness result for a Hilbert-style

Data Graphs with Incomplete Information (and a Way to Complete Them) 3

axiomatization of XPath= extended with nominals and the satisfaction operator.
Henceforth, we will refer to this logic as HXPath=.

To tackle the main theme of this article, let us continue with our running
example. Suppose that the library catalog from Fig. 1 contains a record of a rare
book like the Voynich Manuscript [31]. If we treat books uniformly, the catalog
will have a book node with data values for the name(s) of its author(s) and its
publication year. The problem with the Voynich Manuscript is that neither the
author(s) name(s) nor the exact year of publication are known. Notwithstand-
ing, the book certainly has one or more authors, and certainly it was completed
at some point in time. It is only that this information is unknown to us at the
moment (but nothing prevents us from discovering this information in the fu-
ture). It seems natural to consider, in this case, that the data values for author
and year are undefined for the corresponding node (or, equivalently, to consider
that they are assigned a special ‘null’ value). We call these models “partial data
models”. Formally, in the above-mentioned set up of concrete models, this calls
for the use of partial functions for data representation, and to consider update
operators that would complete the assignment whenever the previously unknown
information becomes available. But once this is done, we should reconsider the
relation between concrete and abstract data models, as it is in principle unclear
how partial data models should be represented in an abstract way, and how are
they related by updates. Intuitively, we could think that now abstract partial
models would contain “partial equivalence relation” (but we would have to give
up reflexivity!). And “learning” the value of an attribute (e.g., the date of edi-
tion of a book) may be thought of as “extending” these relations to reflect the
(in)equalities that now are obtained. As we will discuss in this article, allowing
for this perspective has a huge impact on the logic, and surprisingly at first (and
less so after all the work is properly done) it leads to an intuitionistic version
of HXPath=. Interestingly, this perspective also points to a fresh connection be-
tween modal intuitionistic logics and dynamic logics like those in, e.g., [29,7,10].

Our contribution. We explore a novel approach for treating undefined values
on data graphs. We define a notion of update and present it as a partial ordering
on a collection of partial data models. To our knowledge this is the first time
that these notions have been studied for variants of XPath=. Our work builds on
ideas present in [6] about the data-aware language HXPath=. Moreover, we use
tools from intuitionistic hybrid logic [17] to model the possibly undefined data
values and their possible future definition. The result of putting these pieces
together is a new logic that we call IHXPath=. While at the syntactic level,
the language of IHXPath= seems identical to the one of HXPath=, semantics is
much more involved (as is the case with classical and intuitionistic propositional
logic). Partial data models, and the exact correspondence between concrete and
abstract models in this new setting is presented in Sec. 2. A variant of the
language HXPath= studied in [6], interpreted over abstract partial data models
is given in Sec. 3. Sec. 4 presents an axiom system for IHXPath=, which is
strongly complete for any extension with so-called pure axioms and saturation
rules (Sec. 5). Sec. 6 discusses our results and describes future lines of research.

4 Areces et al.

2 Background and Motivation

The logic HXPath= in [6] formalizes a fragment of XPath that captures both
topological and data (in)equality queries using elements from hybrid modal
logic [5]. In HXPath= data graphs become models of the logic defined in two
alternative, yet equivalent, ways. We explain what these models look like and
use this explanation to motivate our work. In what follows, we assume Prop,
Nom, Mod, and Cmp, are pairwise disjoint fixed sets of symbols for propositions,
nominals, modalities, and data comparisons, respectively. Moreover, we assume
Mod and Cmp to be finite; and Prop and Nom to be countably infinite.

Definition 1 (The models of HXPath=). A concrete data model is a tuple

C = ⟨N, {Ra}a∈Mod, D, {dc}c∈Cmp, g, V ⟩,
where N is a non-empty set of nodes; each Ra is a binary accessibility relation
on nodes; D is a non-empty set of data values; dc : N → D is a (total) function
that assigns data values to nodes; g : Nom → N is a (total) function that assigns
nominals to nodes; and V : Prop → 2N is a valuation function. In turn, an
abstract data model is a tuple

A = ⟨N, {Ra}a∈Mod, {≈c}c∈Cmp, g, V ⟩,
where N , Ra, g, and V are as before; and each ≈c is an equivalence relation on
nodes (representing nodes with the same data value for c).

Remark 1. Notice that concrete and abstract data models are in correspondence
to each other. The first yields the second by defining ≈c = { (n, n′) | dc(n) =
dc(n

′) }, while the second yields the first by defining dc(n) = [n]c.

Fig. 2 depicts a concrete data model. More precisely, it depicts only some
relevant features of a concrete data model in the context of an example. This
is particularly true, e.g., of data values functions such as dt. In other words, as
a total function, dt must assign a value to each node; yet, only some of these
values are present. Though not a technical issue, considering total data values
functions is inelegant from a knowledge representation perspective. After all,
why must we assign titles to nodes whose values are meant to represent, e.g.,
dates? This observation takes us to Def. 2.

Definition 2. A concrete partial data model is a tuple C as in Def. 1; with the
exception that each dc : N ↛ D is a partial function.

What about corresponding abstract data models? On a first glimpse, we may
think of them via relations ≈c = { (n, n′) | dc(n) = dc(n

′) }, which would turn
out to be equivalence relations. However, this fails to account for the cases when
dc is undefined. Namely, n and n′ need defined data values, i.e., need to belong to
the domain of dc. This forces us to abandon reflexivity and view ≈c as a partial
equivalence relation. This observation takes us to Def. 3.

Definition 3. An abstract partial data model is a tuple A as in Def. 1, except
that ≈c is a partial equivalence relation, i.e., it is symmetric and transitive.

Data Graphs with Incomplete Information (and a Way to Complete Them) 5

As a result of these changes, it turns out that now data inequality in abstract
partial data models is not the complement of data equality. Namely, two nodes
n and n′ in an abstract partial data model are taken to have different data if
and only if it is not the case that n ≈c n

′ and in addition n ≈c n and n′ ≈c n
′.

This observation will have an important impact in the way we need to define
our axiomatization in Sec. 4.

Remark 2. We can still build concrete partial data models from abstract partial
data models by setting dc(n) = {n′ | n ≈c n

′ } if {n′ | n ≈c n
′ } ≠ ∅, and dc(n)

undefined otherwise. Similar to the case in Rem. 1, the correspondence between
abstract and concrete partial data models is clear.

Now for the last piece of the puzzle. We have established a natural gener-
alization of concrete and abstract data models capable of handling partial in-
formation. Let us consider again the case of the Voynich manuscript. It is clear
that partial functions are all that we need to represent this book in our models.
But suppose that at some point, we do learn the date of edition. This can be
formalized as a relation on partial data models reflecting the new ‘things’ we
have learned. One of the possibly different ways in which we can capture this
idea is provided in Def. 4.

Definition 4. Let C and C′ be two concrete partial data model. We write C ≼ C′,
and call C′ a concrete data update on C, iff C′ replaces some partial function dc
in C by the partial function d′c = dc ∪ {n 7→ v} s.t. for all n′ ∈ dom(dc)

d′c(n
′) =

{
v if dc(n) = dc(n

′)

dc(n
′) otherwise

and is otherwise equal to C. Similarly, let A and A′ be two abstract partial data
models. We write A ≼ A′, and call A′ an abstract data update on A, iff A′

replaces some relation ≈c in A by the relation ≈′
c = (≈c ∪ {(n, n′), (n′, n)})+,

where n = n′ or n′ ∈ dom(≈c), and is otherwise equal to A.

The notion of update in Def. 4 is best explained by making explicit the
kinds of updates that are allowed. First, (1) we can add a data value v of type
c to an undefined node n. In the concrete case, we have n /∈ dom(dc). This
means that (1) yields a partial function d′c which adds the pair n 7→ v to dc. In
the abstract case, we have n /∈ dom(≈c). This means that (1) yields a partial
equivalence relation ≈′

c which adds the pair (n, n) to ≈c. Second, (2) we can
“update” the data value v of type c assigned to a node n. On a first take, we
restrict our attention to updates that preserve “data equality”. In the concrete
case, (2) yields a partial function d′c that replaces all pairs n′ 7→ dc(n) in dc by a
corresponding pair n′ 7→ v. This kind of update resembles an aliasing situation,
i.e., if a data value is accessed through different nodes, then, modifying the data
value through one node implicitly modifies the data values associated with all
aliased nodes. In the abstract case, (2) captures the idea of partial equivalence
classes in ≈c being “merged” in ≈′

c. Interestingly, if C and C′ are concrete partial
data models such that C ≼ C′, then, their abstract counterparts A and A′ are
such that A ≼ A, and viceversa.

6 Areces et al.

3 Reasoning with Incomplete Information

In this section we introduce a modal logic to reason about collections of abstract
partial data models related by updates. We refer to this modal logic as Intu-
itionistic Hybrid XPath with Data (IHXPath= for short). We define its syntax
in Def. 5 and its semantics in Def. 7.

Definition 5. The language of IHXPath= has path expressions (α, β, . . .) and
node expressions (φ, ψ, . . .), mutually defined by the grammar:

α, β := a | @i | [φ] | αβ
φ, ψ := p | i | ⊥ | φ ∨ ψ | φ ∧ ψ | φ→ ψ | ⟨α⟩φ | [α]φ | ⟨α ∗c β⟩ | [α ∗c β].
In this grammar, p ∈ Prop, i ∈ Nom, a ∈ Mod, and ∗c ∈ {=c, ̸=c}, with c ∈ Cmp.
PE is the set of all path expressions and NE is the set of all nodes expressions.

We abbreviate ¬φ := φ→ ⊥, ⊤ := ¬⊥, ϵ := [⊤], @iφ := ⟨@i⟩φ. We write ∗c
if it is indistinct to use =c or ̸=c. We refer to path expressions of the form [φ] as
tests; and to node expressions of the form ⟨α∗cβ⟩ or [α∗cβ] as data comparisons.
Intuitively, a path expression @iα indicates an α path which starts at a node
named i. Moreover, we read ⟨α ∗c β⟩ as the endpoints of some α and some β
paths have the same/different data value (of type c), and ⟨α⟩φ as φ holds at the
endpoint of some α path. We make clear the intuitive role of “box” modalities
after introducing what models look like in our logic.

Remark 3. It is worth noting that, on the surface, the language for IHXPath=

is inherently that of HXPath= [6]. In more detail, however, it contains some
important changes. In particular, box data comparisons [α ∗c β] are introduced
as primitive, as are the formulas ⟨α⟩φ and [α]φ. As it will be made clear in what
follows, [α ∗c β] and [α]φ are no longer definable in terms of ⟨α ∗c β⟩ and ⟨α⟩φ
due to the lack of duality between boxes and diamonds in an intuitionistic modal
setting. The case of ⟨α⟩φ is particularly interesting as its definability in terms of
⟨α =c α⟩ in HXPath= hinged on the reflexivity of data comparisons, which we
gave up to deal with partial data values.

Let us now turn our attention to the structures on which to interpret path
and nodes expressions (Def. 6), and to the corresponding notion of satisfiability
on these structures (Def. 7). Our definitions combine ideas found in [6] and [17].

Definition 6. An abstract partial update structure (alias a model) is a tuple

M = ⟨M,≼, {⟨Am,∼=m⟩}m∈M ⟩,
where ⟨M,≼⟩ is a poset, and for all m,

Am = ⟨Nm, {Ra
m}a∈Mod, {≈c

m}c∈Cmp, gm, Vm⟩
is an abstract partial data model (Def. 3) and ∼=m is a congruence on Am. In
addition, for all m ≼ m′:

(i) Nm ⊆ Nm′ , (ii) ∼=m ⊆ ∼=m′ , (iii) Ra
m ⊆ Ra

m′ , (iv) ≈c
m ⊆ ≈c

m′ ,
(v) for all p ∈ Prop, Vm(p) ⊆ Vm′(p), and (vi) for all i ∈ Nom, gm(i) = gm′(i).

Data Graphs with Incomplete Information (and a Way to Complete Them) 7

B

P

D

d j

g l h

a

p

a

p

a

p

≈n

≈t

≈y

≈n

≈t

≈y

≈t

m1

B

P

D

d j u

g l h v

a

p

a

p

a

p

a

p

≈n

≈t

≈y

≈n

≈t

≈y

≈t

≈t

m2

B

P

D

d j u

g l h v

a

p

a

p

a

p

a

p

≈n

≈t

≈y

≈n

≈t

≈y

≈t

≈t

≈n

≈y

m3

≼ ≼

Fig. 3: Abstract Partial Data Update Structure.

Definition 7. The relation ⊩ of satisfiability is defined as:

M ,m, n, n′ ⊩ a iff nRa
mn

′

M ,m, n, n′ ⊩ @i iff gm(i) ∼=m n′

M ,m, n, n′ ⊩ [φ] iff n ∼=m n′ and M ,m, n ⊩ φ
M ,m, n, n′ ⊩ αβ iff exists n′′ ∈ Nm s.t. M ,m, n, n′′ ⊩ α and M ,m, n′′, n′ ⊩ β

M ,m, n ⊩ ⊥ never
M ,m, n ⊩ p iff n ∈ Vm(p)
M ,m, n ⊩ i iff n ∼=m gm(i)
M ,m, n ⊩ φ ∧ ψ iff M ,m, n ⊩ φ and M ,m, n ⊩ ψ
M ,m, n ⊩ φ ∨ ψ iff M ,m, n ⊩ φ or M ,m, n ⊩ ψ
M ,m, n ⊩ φ→ ψ iff for all m ≼ m′, M ,m′, n ⊩ φ implies M ,m′, n ⊩ ψ

M ,m, n ⊩ ⟨α⟩φ iff exists n′ ∈ Nm s.t. M ,m, n, n′ ⊩ α and M ,m, n′ ⊩ φ
M ,m, n ⊩ [α]φ iff for all m ≼ m′, n′ ∈ Nm′

M ,m′, n, n′ ⊩ α implies M ,m′, n′ ⊩ φ

M ,m, n ⊩ ⟨α =c β⟩ iff exists n′, n′′ ∈ Nm s.t.
M ,m, n, n′ ⊩ α, M ,m, n, n′′ ⊩ β, and n′ ≈c

m n′′

M ,m, n ⊩ ⟨α ̸=c β⟩ iff exists n′, n′′ ∈ Nm s.t.
M ,m, n, n′ ⊩ α, M ,m, n, n′′ ⊩ β, and
n′ ≈c

m n′, n′′ ≈c
m n′′, and n′ ̸≈c

m n′′

M ,m, n ⊩ [α =c β] iff for all m ≼ m′, n′, n′′ ∈ Nm′

M ,m′, n, n′ ⊩ α and M ,m′, n, n′′ ⊩ β implies n′ ≈c
v n

′′

M ,m, n ⊩ [α ̸=c β] iff for all m ≼ m′, n′, n′′ ∈ Nm′

M ,m′, n, n′ ⊩ α and M ,m′, n, n′′ ⊩ β implies
n′ ≈c

m n′, n′′ ≈c
m n′′, n′ ̸≈c

m n′′.

For Γ ⊆ NE, we define M ,m, n ⊩ Γ iff M ,m, n ⊩ γ for all γ ∈ Γ . Moreover,
for Γ ∪ {φ} ⊆ NE, we define Γ ⊨ φ iff M ,m, n ⊩ Γ implies M ,m, n ⊩ φ.

Intuitively, models as in Def. 6 can be understood as collections of abstract
partial data models related by abstract data updates (cf. Def. 4). These collec-
tions capture possible “histories” of updates. Interpreting “box” data comparisons

8 Areces et al.

and implications in an intuitionistic way permit us to reason about such “histo-
ries”. The result in Prop. 1 is typical in an intuitionistic setting.

Proposition 1. It follows that:

(1) M ,m, n ⊩ φ and m ≼ m′ implies M ,m′, n ⊩ φ;
(2) M ,m, n, n′ ⊩ α and m ≼ m′ implies M ,m′, n, n′ ⊩ α;
(3) M ,m, n ⊩ φ and n ∼=m n′ implies M ,m, n′ ⊩ φ;
(4) M ,m, n, n′ ⊩ α and n ∼=m n′′ and n′ ∼=m n′′′ implies M ,m, n′′, n′′′ ⊩ α.

Example 1. We conclude this section with an example illustrating models and
node and path expressions in use. For instance, the model in Fig. 3 may be
understood as the history of what would occur if we add the Voynich manuscript
(m2) to our original library catalog (m1), and later on we learn its author(s) and
publication date (m3). This history can be queried using node expressions such
as ⟨@la =n @ha⟩, stating that the author’s name of “A certain Lucas” (l) and of
“Hopscotch” (h) is the same, and it holds in m1, m2, and m3. We can also write
@vB, stating that “The Voynich Manuscript” (v) is a book on the catalog. This
new node expression does not hold at m1, but it holds at m2 and m3 –once the
book has been added into the catalog. To be noted, adding a new named node
is modeled by the addition of a new node together with the association, via ∼=,
of this new node to an already existing named node. Moreover, we can check
that @v⟨p⟩⊤, stating that v has a publication date, does not hold at m1, but
it holds at m2 and m3. Finally, we can check that @v⟨p =y p⟩, stating that the
publication date (p) of v is known, holds only at m3.

4 Axiomatization and Completeness

In this section we present a strongly complete axiom system for IHXPath=.
This axiom system takes inspiration from [6] and [17], and consists of the axiom
schemata in Tab. 1 and the inference rules in Tab. 2. The axioms under the
heading ‘Comparisons’ in Tab. 1 deserve a short explanation. These axioms differ
slightly from those in [6], since dealing with partial data values forced us to give
up reflexivity for data equality. This implies that equality/inequality tests must
ensure that they contain actual data. The rules of inference for ‘Paths’ generalize
those from [17] and handle data comparisons. The axiom system for IHXPath=

gives rise to a Hilbert-style notion of deduction of a node expression φ from a
set of node expressions Γ , written Γ ⊢ φ, defined inductively as usual. Prop. 2
is useful in our proof of completeness.

Proposition 2 (Agree). ⊢ @i@jφ↔ @jφ.

Soundness and Completeness. The rest of this section covers the adequacy of
the axiom system. Soundness is obtained by induction. We prove completeness
by showing that every consistent set of node expressions is satisfiable. We use a
Henkin-style construction akin to that for Hybrid Logic (see [24,14]). We take
NE(Nom′), alias NE′, for the set of node expressions with nominals in a set Nom′.

Data Graphs with Incomplete Information (and a Way to Complete Them) 9

Table 1: Axioms for IHXPath=

Basic

(IPL) Theorems of Intuitionistic Prop. Logic

Satisfaction

(Distr@∧) @i(φ ∧ ψ) ↔ (@iφ ∧@iψ)

(Distr@∨) @i(φ ∨ ψ) ↔ (@iφ ∨@iψ)

(Distr@→) @i(φ→ ψ) ↔ (@iφ→ @iψ)
(Falsum) @i⊥ → ⊥
(Refl@) @ii

Comparisons

(T⟨∗⟩) ⟨α ∗c β⟩ → ⟨α =c α⟩
(B⟨∗⟩) ⟨α ∗c β⟩ ↔ ⟨β ∗c α⟩
(4⟨=⟩) (⟨α =c @i⟩ ∧ ⟨@i =c β⟩) → ⟨α =c β⟩
(Irref) ¬⟨α ̸=c α⟩
(CTran) (⟨α ̸=c β⟩ ∧ ⟨@i =c @i⟩) → (⟨α ̸=c @i⟩ ∨ ⟨@i ̸=c β⟩)
(Comp) (⟨α =c @i⟩ ∧ ⟨@i ̸=c β⟩) → ⟨α ̸=c β⟩
(EM⟨=⟩

⟨≠⟩) (⟨α =c α⟩ ∧ ⟨β =c β⟩) → (⟨α =c β⟩ ∨ ⟨α ̸=c β⟩)

Paths

(Cat) ⟨α⟩⟨β⟩φ↔ ⟨αβ⟩φ
(Idϵ) ⟨ϵ⟩φ↔ φ
(Dist1) @i⟨αβ ∗c γ⟩ ↔ @i(⟨α⟩⟨β ∗c @iγ⟩)
(Dist2) ⟨α⟩⟨β ∗c γ⟩ → ⟨αβ ∗c αγ⟩
(Dist3) ⟨@iα ∗c @iβ⟩ → @i⟨α ∗c β⟩
(Test) ⟨[ψ]α⟩φ↔ ψ ∧ ⟨α⟩φ
(Scope) ⟨@jα ∗c β⟩ → ⟨@i@jα ∗c β⟩
(Back) ⟨α@iβ ∗c γ⟩ → ⟨@iβ ∗c γ⟩
(⟨α⟩I) (⟨α⟩i ∧@iφ) → ⟨α⟩φ
(⟨∗⟩I) (⟨α⟩i ∧ ⟨@i ∗c β⟩) → ⟨α ∗c β⟩
([α]E) (⟨α⟩j ∧ [α]φ) → @jφ
([∗]E) (⟨α⟩i ∧ ⟨β⟩j ∧ [α ∗c β]) → ⟨@i ∗c @j⟩

Table 2: Rules of Inference for IHXPath=

Basic

φ φ→ ψ
(MP)

ψ

Satisfaction

φ
(@I’)

@iφ @ij @iφ
(Nom)

@jφ@iφ
(@E)†

φ

† i does not occur in φ.

Paths

φ→ @i⟨αβ ∗c γ⟩ ∧ (φ ∧@i⟨α⟩j ∧@i⟨@jβ ∗c γ⟩) → ψ
(⟨∗⟩E)†

φ→ ψ

(φ→ @i⟨α⟩χ) ∧ ((φ ∧@jχ ∧@i⟨α⟩j) → ψ)
(⟨α⟩E)†

φ→ ψ

(φ ∧@i(⟨α⟩j ∧ ⟨β⟩k)) → ⟨@j ∗c @k⟩
([∗]I)†

φ→ @i[α ∗c β]

(φ ∧@i⟨α⟩j) → @jψ
([α]I)†

φ→ @i[α]ψ
† j and k do not occur in α, β, γ, χ nor ψ.

Definition 8 (Saturated). Let Nom′⊂Nom′′; Γ ′′⊆NE(Nom′′) is saturated iff:

1. Γ ′′ = {φ | Γ ′′ ⊢ φ } ⊂ NE(Nom′′);
2. @i(φ ∨ ψ) ∈ Γ ′′ implies @iφ ∈ Γ ′′ or @iψ ∈ Γ ′′;
3. exists i ∈ Nom′′ s.t. i ∈ Γ ′′;
4. @i⟨a⟩φ ∈ Γ ′′ implies exists j ∈ Nom′′ s.t. {@jφ,@i⟨a⟩j} ⊆ Γ ′′

5. @i⟨@jaα ∗c β⟩ ∈ Γ ′′ implies
exists k ∈ (Nom′′ \ Nom′) s.t. {@j⟨a⟩k,@i⟨@kα ∗c β⟩} ⊆ Γ ′′.

The conditions above have the following names: 1. ⊢-closed; 2. the disjunction
property; 3. named; 4. ⟨α⟩-pasted; and 5. ⟨∗⟩-pasted.

Now we are in position to establish Lem. 1, a.k.a., the Lindenbaum Lemma.
This lemma states a crucial result: consistent sets can be extended to saturated
sets (enriching the language with new symbols for nominals).

10 Areces et al.

Lemma 1 (Saturation Lemma). Let Nom′ ⊂ Nom′′, and Γ ′ ∪ {ψ} ⊆ NE′ be
s.t. Γ ′ ⊬ ψ. There is Γ ′′ ⊆ NE′′ s.t. (1) Γ ′ ⊆ Γ ′′, (2) Γ ′′ is saturated, and (3)
Γ ′′ ⊬ ψ.

Proof. Enumerate all node expressions in NE′′ and let k ∈ (Nom′′ \Nom′) be the
first nominal in this enumeration. Define Σ0 = Γ ′ ∪ {k}. Now, suppose that we
have defined Σn, for n ≥ 0. Let φ(n+1) be the (n + 1)th node expression in the
enumeration. If Σn ∪ {φ(n+1)} ⊢ ψ, then, define Σ(n+1) = Σn. Otherwise, i.e., if
Σn ∪ {φ(n+1)} ⊬ ψ, then, define Σ(n+1) = Σn ∪ {φ(n+1)} ∪Σ′ where:

Σ′ =



∅ if φ(n+1) /∈ {@i(θ ∨ χ),@i⟨a⟩φ,@i⟨@jaα ∗c β⟩}
{@iθ} if φ(n+1) is @i(θ ∨ χ) and Σn ∪ {φ(n+1),@iθ} ⊬ ψ
{@iχ} if φ(n+1) is @i(θ ∨ χ) and Σn ∪ {φ(n+1),@iθ} ⊢ ψ
{@i⟨a⟩j,@jφ} if φ(n+1) is @i⟨a⟩φ

and j ∈ Nom′′ does not appear in Σn ∪ {φ(n+1)}.
{@j⟨a⟩k,@i⟨@kα ∗c β⟩} if φ(n+1) is @i⟨@jaα ∗c β⟩

and k ∈ Nom′′ does not appear in Σn ∪ {φ(n+1)}.

Define Σ =
⋃

n≥0Σn. It is possible to prove by induction that Σ ⊬ ψ. The proof
finishes if Σ is saturated. We prove only the cases ⟨α⟩-pasted and ⟨∗⟩-pasted.

(⟨α⟩-pasted) Let @i⟨a⟩φ ∈ Σ and, w.l.o.g., φ(n+1) = @i⟨a⟩φ. It follows that,
{@i⟨a⟩j,@jφ} ⊆ Σ(n+1) ⊆ Σ for j a nominal in Nom′′ \ Nom′.

(⟨∗⟩-pasted) Let @i⟨@jaα ∗c β⟩ ∈ Σ and, w.l.o.g., φ(n+1) = @i⟨@jaα ∗c β⟩. It
follows that, {@i⟨a⟩j,@i⟨@kα ∗c β⟩} ⊆ Σ(n+1) ⊆ Σ for j ∈ Nom′′.

Lem. 1 enables us to build the model needed for proving completeness (Def. 9).

Definition 9 (Extracted Model). Let {Nom′
i}i∈N be a family of pairwise

disjoint denumerable sets of nominals. Moreover, let Nom∗
n =

⋃n
i=1 Nom

′
i; and

NE∗
n = NE(Nom ∪ Nom∗

n). For every consistent set Γ ⊆ NE; define

MΓ = ⟨M,⊆, {⟨AΓ ′ ,∼=Γ ′⟩}Γ ′∈M ⟩
where: AΓ ′ = ⟨NΓ ′ , {Ra

Γ ′}a∈Mod, {≈c
Γ ′}c∈Cmp, gΓ ′ , VΓ ′⟩ and

1. M = {Γ ′ ⊆ NE∗
n | n ∈ N and Γ ⊆ Γ ′ and Γ ′ is saturated };

2. for all NΓ ′ = { i | i is a nominal appearing in Γ ′ };
3. for all ∼=Γ ′ = { (i, j) | @ij ∈ Γ ′ };
4. for all Ra

Γ ′ = { (i, j) | @i⟨a⟩j ∈ Γ ′ };
5. for all ≈c

Γ ′= { (i, j) | ⟨@i =c @j⟩ ∈ Γ ′ };
6. for all VΓ ′ : Prop → 2NΓ ′ , it follows that VΓ ′(p) = { i | @ip ∈ Γ ′ }; and
7. for all gΓ ′ : Nom → NΓ ′ , it follows that gΓ ′(i) = i.

It can be checked that the structure in Def. 9 is a model in the sense of Def. 6.
On this basis, we state the Truth Lemma 2 and the Completeness Theorem 1.

Lemma 2 (Truth Lemma). Let MΓ be as in Def. 9, it follows that:

(1) MΓ , Γ
′, i, j ⊩ α iff @i⟨α⟩j ∈ Γ ′ (2) MΓ , Γ

′, i ⊩ φ iff @iφ ∈ Γ ′.

Data Graphs with Incomplete Information (and a Way to Complete Them) 11

Proof. The proof is by mutual induction on path and node expressions. The
inductive hypotheses are

(IH1) MΓ , Γ
′, i, j ⊩ α iff @i⟨α⟩j ∈ Γ ′; (IH2) MΓ , Γ

′, i ⊩ φ iff @iφ ∈ Γ ′.

We prove the inductive case for [α =c β] as one of the most interesting. For this
case, we need to prove MΓ , Γ

′, i ⊩ [α =c β] iff @i[α =c β] ∈ Γ ′.
(⇒) The proof proceeds by contradiction. Suppose: (a) MΓ , Γ

′, i ⊩ [α =c β] and
(b) @i[α =c β] /∈ Γ ′. We prove (c) Γ ′∪{@i⟨α⟩j,@i⟨β⟩k} ⊬ @i⟨@j =c @k⟩ for j, k
arbitrary inNΓ ′ . From not (c), i.e., Γ ′∪{@i⟨α⟩j,@i⟨β⟩k} ⊢ @i⟨@j =c @k⟩, we get
Γ ′ ⊢ @i((⟨α⟩j∧⟨β⟩k) → ⟨@j =c @k⟩); and using ([∗]I) we obtain Γ ′ ⊢ @i[α =c β];
this contradicts (b). Then, from Lem. 1,

(d) exists Γ ′′ ⊇ Γ ′ ∪ {@i⟨α⟩j,@i⟨β⟩k} s.t. @i⟨@j =c @k⟩ /∈ Γ ′′.

The claim is: (d) contradicts (a). Suppose that exists such a Γ ′′, using (IH1), we
get that exists Γ ′′ ⊇ Γ ′ and {j, k} ⊆ NΓ ′′ s.t. MΓ , Γ

′′, i, j ⊩ α, MΓ , Γ
′′, i, k ⊩ β,

and j ̸≈c
Γ ′′ k. This means that MΓ , Γ

′, i ⊮ [α =c β]; which is a contradiction.
Therefore, MΓ , Γ

′, i ⊩ [α =c β] implies @i[α =c β] ∈ Γ ′.
(⇐) Let @i[α =c β] ∈ Γ ′. Proving MΓ , Γ

′, i ⊩ [α =c β] is equiv. to proving that
for all Γ ′′ ⊇ Γ ′ and all {j, k} ⊆ NΓ ′′ , if MΓ , Γ

′′, i, j ⊩ α and MΓ , Γ
′′, i, k ⊩ β,

then, j ≈c
Γ ′′ k. Let Γ ′′ ⊇ Γ ′ and {j, k} ⊆ NΓ ′′ be s.t. MΓ , Γ

′′, i, j ⊩ α and
MΓ , Γ

′′, i, k ⊩ β. The proof is concluded if j ≈c
Γ ′′ k, i.e., ⟨@j =c @k⟩ ∈ Γ ′′. From

(A) {@i⟨α⟩j,@i⟨β⟩k} ⊆ Γ ′′. Since Γ ′ ⊆ Γ ′′, @i[α =c β] ∈ Γ ′′. Using ([∗]E), we
get @i⟨@j =c @k⟩ ∈ Γ ′′. Thus, j ≈c

Γ ′′ k.

Theorem 1 (Completeness). Γ ⊨ φ implies Γ ⊢ φ.

Proof. We prove Γ ⊬ φ implies Γ ⊭ φ. Let MΓ be as in Def. 9. From Lem. 1 we
know that exists Γ ′ ⊇ Γ s.t. Γ ′ ∈ MΓ and φ /∈ Γ ′. From Lem. 2, it is clear that
for some nominal i ∈ NΓ ′ , MΓ , Γ

′, i ⊩ Γ and MΓ , Γ
′, i ⊮ φ. This proves Γ ⊭ φ.

5 Extended Axiomatic Systems

In this section we briefly cover extensions of IHXPath= with pure axioms and
existential saturation rules, a family of axioms and rules that enables us to extend
our strong completeness result for a wider family of logics. These ideas make use
of the ability of hybrid logics to fully internalize the first-order conditions that
are needed to characterize many interesting frame classes. Similarly to what is
done in [14,6], if we add pure axioms and existential saturation rules into the
axiom system for IHXPath=, the completeness proof in the previous section
automatically yields strong completeness for the extended axiom systems, with
respect to their respective classes of models.

Standard Translation. We will define a standard translation of the language of
IHXPath= into the language of Intuitionistic FOL with equality (IFOL). This
translation is needed to characterize the frame conditions that the new axioms
and rules define. The semantics of IFOL, can be found, e.g., in [21].

12 Areces et al.

Table 3: Standard Translation into IFOL
Propositional Paths

ST′
x(⊥) = ⊥

ST′
x(p) = p(x)

ST′
x(i) = x = xi

ST′
x(φ ∨ ψ) = ST′

x(φ) ∨ ST′
x(ψ)

ST′
x(φ ∧ ψ) = ST′

x(φ) ∧ ST′
x(ψ)

ST′
x(φ→ ψ) = ST′

x(φ) → ST′
x(ψ)

ST′
x(⟨α⟩φ) = ∃y(ST′

x,y(α) ∧ ST′
y(φ))

ST′
x([α]φ) = ∀y(ST′

x,y(α) → ST′
y(φ))

ST′
x,y(a) = a(x, y)

ST′
x,y(@i) = y = xi

ST′
x,y([φ]) = (x = y) ∧ ST′

y(φ)
ST′

x,y(αβ) = ∃z(ST′
x,z(α) ∧ ST′

z,y(β))

Comparisons

ST′
x(⟨α =c β⟩) = ∃y∃z(ST′

x,y(α) ∧ ST′
x,z(β) ∧ c(y, z))

ST′
x(⟨α ̸=c β⟩) = ∃y∃z(ST′

x,y(α) ∧ ST′
x,z(β) ∧ c(y, y) ∧ c(z, z) ∧ ¬c(y, z))

ST′
x([α =c β]) = ∀y∀z(ST′

x,y(α) ∧ ST′
x,z(β) → c(y, z))

ST′
x([α ̸=c β]) = ∀y∀z(ST′

x,y(α) ∧ ST′
x,z(β) → (c(y, y) ∧ c(z, z) ∧ ¬c(y, z)))

Partial Equality

σc = ∀x∀y(c(x, y) → c(x, y)) τc = ∀x∀y∀z(c(x, y) ∧ c(y, z) → c(x, z))

Definition 10. Fix an alphabet of denumerable sets of: unary predicate symbols
(P), binary relation symbols (R), constant symbols (Con),and variable symbols
(Var). The language of IFOL is defined by the grammar:

φ,ψ := p(t) | r(t, t′) | ⊥ | t = t′ | φ ∨ ψ | φ ∧ ψ | φ→ ψ | ∃xφ | ∀xφ,
where t, t′ are terms –i.e., symbols for constants or variables, p ∈ P, and r ∈ R.

Def. 11 establishes a correspondence from the language of IHXPath= to that
of IFOL. Notice that symbols in Prop and P are in a one to one correspondence;
that we map each a ∈ Mod to a unique a ∈ Rels; and that x, y, z, . . . are symbols
in Var. Prop. 3 indicates that such a correspondence preserves satisfiability.

Definition 11. The standard translation of a node expression φ is defined as:
STx(φ) =

(∧
c∈Cmp(σc ∧ τc)

)
∧ ST′

x(φ); where σc, τc, and ST′
x are as in Tab. 3.

Proposition 3. M ,m, n ⊩ φ iff M ,m ⊩ STx(φ)[x 7→ w, xi 7→ gm(i)].

Pure Axioms and Existential Saturation Rules. We introduce pure axioms and
existential saturation rules, and their associated frame conditions. Briefly, pure
axioms are formulas that use no proposition symbols; and existential saturation
rules are instantiations of first-order formulas with a ∀∃ quantification pattern.
These axioms and rules are incorporated to the axiom system from Sec. 4, which
contains unorthodox inference rules, i.e., rules with side conditions. As discussed
in [14,6], unorthodox rules are crucial to obtain a general completeness result.

Notation. We use in to indicate a sequence i1 . . . in of nominals; and φ(in) to
indicate a node expression with no proposition symbols and with nominals in
in. Lastly, we use Qinφ to indicate Qxi1 . . . Qxinφ for Q ∈ {∀,∃}.

Data Graphs with Incomplete Information (and a Way to Complete Them) 13

Definition 12. A node expression is called pure iff it has no proposition sym-
bols. A rule of the form

φ(injm) → ψ
(ρ)

ψ

is called an existential saturation rule iff in and jm are disjoint sequences of
nominals, and the nominals in ψ are not in jm. We use hd(ρ) to indicate
φ(injm). Sets Π and P of pure expressions and existential saturation rules, re-
spectively, define a frame condition FC(Π ∪ P) defined as:∧

{ ∀x∀in(STx(φ(in))) | φ(in) ∈ Π } ∧
∧
{ ∀x∀in∃jm(STx(hd(ρ))) | ρ ∈ P }.

Extending the axiom system of IHXPath= with pure axioms and existential
saturation forces us to revise the definition of saturation and the saturation
lemma in Def. 8 and Lem. 1; necessary for completeness. This is done in Def. 13
and Lem. 3, respectively. Thm. 2 states the generalized completeness theorem.

Definition 13 (P-saturated). Let Nom′ ⊂ Nom′′ and P a set of existential
saturation rules; Γ ′′ ⊆ NE′′ is P-saturated iff Γ ′′ is saturated and
for all ρ ∈ P and all nominals kn ∈ Γ ′′,

exists lm ⊆ (Nom′′ \ Nom′) s.t. φ[injm/knlm] ∈ Γ ′′ –where φ(injm) = hd(ρ).

Lemma 3 (P-saturation Lemma). Let Nom′ ⊂ Nom′′; Π be a set of pure
axioms and P a set of existential saturation rules. Moreover, let Γ ′ ⊆ NE′ be s.t.
Γ ′ ⊬ ψ. Exists Γ ′′⊆NE′′ s.t.: (1) Γ ′⊆Γ ′′; (2) Γ ′′ is P-saturated; and (3) Γ ′′ ⊬ ψ.

Theorem 2. Let Π and P be sets of pure axioms and existential saturation rules,
respectively. The axiomatic system obtained by extending that from Tabs. 1 and 2
with Π and P as additional axioms and rules, is strongly complete w.r.t. the class
of models whose frames satisfy FC(Π ∪ P).

6 Final Remarks

We presented a logic –IHXPath=– that provides an intuitionistic reading of
XPath with (in)equality checks for attribute values in the presence of partial data
value functions and updates. For this logic, we first identified suitable notions
of concrete and abstract models, and characterized a certain class of update
functions. This lead us to the definition of abstract partial update structures,
which became the models of our logic. To our knowledge, this is the first approach
for dealing with incomplete information based on partial orders between data
graphs. Other attempts to address similar problems use completely different
ideas, such as those presented in [12,26,2]. Moreover, by defining a suitable notion
of updates (defining certain cases in which new information can be added to a
graph database) we discovered a novel link between dynamic data updates and
intuitionistic logic.

14 Areces et al.

We provided an axiomatization and a strong completeness result. Moreover,
we showed that our system preserves strong completeness when extended with
pure axioms and existential saturation rules (with respect to the corresponding
class of models). These extensions allow to characterize several interesting classes
of models (cf, e.g., [14,6]).

Much remains to be done. For instance, besides (in)equalities, we would like
to explore comparison operators such as less than, greater than, etc. Moreover,
we would like to study this logic from a purely dynamic logic perspective, à
la [29,10,7]. It would also be interesting to characterize particular classes of
models (e.g., the case were the accessibility relations define trees). Other model
theoretic questions should also be addressed, e.g., defining a proper notion of
bisimulation that captures the expressive power of the logic. Finally, decidabil-
ity and complexity of different reasoning tasks (e.g., model-checking, satisfia-
bility) should be established. We conjecture, e.g., that the notions of filtration
defined in [6] for HXPath=, might be extended and adapted to IHXPath= to
prove decidability of the satisfiability problem, together with upper-bounds to
its complexity. These are some initial thoughts that deserve further exploration.

Acknowledgments. We thank the reviewers for their valuable comments. Our
work is supported by the Laboratoire International Associé SINFIN, the EU
Grant Agreement 101008233 (MISSION), the ANPCyT projects PICT-2020-
3780, PICT-2021-00400, PICT-2021-00675, and PICTO-2022-CBA-00088, and
the CONICET projects PIBAA-28720210100428CO, PIBAA-28720210100165CO,
and PIP-11220200100812CO.

References

1. Abriola, S., Barceló, P., Figueira, D., Figueira, S.: Bisimulations on data graphs.
Journal of Artificial Intelligence Research 61, 171–213 (2018)

2. Abriola, S., Cifuentes, S., Martinez, M., Pardal, N., Pin, E.: An epistemic ap-
proach to model uncertainty in data-graphs. International Journal of Approximate
Reasoning 160, 108948 (2023)

3. Abriola, S., Descotte, M.E., Fervari, R., Figueira, S.: Axiomatizations for downward
XPath on data trees. Journal of Computer and System Sciences 89, 209–245 (2017)

4. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Computing
Surveys 40(1), 1:1–1:39 (2008)

5. Areces, C., ten Cate, B.: Hybrid logics. In: Handbook of Modal Logic, pp. 821–868.
Elsevier (2006)

6. Areces, C., Fervari, R.: Axiomatizing hybrid XPath with data. Logical Methods in
Computer Science 17(3) (2021)

7. Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Logic
Journal of the IGPL 23(4), 601–627 (2015)

8. Areces, C., Fervari, R., Seiler, N.: Tableaux for hybrid XPath with data. In: 18th
EPIA Conference on Artificial Intelligence (EPIA 2017). LNCS, vol. 10423, pp.
611–623. Springer (2017)

9. Arenas, M., Fan, W., Libkin, L.: On verifying consistency of XML specifications.
In: 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS’02). pp. 259–270. ACM (2002)

Data Graphs with Incomplete Information (and a Way to Complete Them) 15

10. Aucher, G., van Benthem, J., Grossi, D.: Modal logics of sabotage revisited. Journal
of Logic and Computation 28(2), 269–303 (2018)

11. Baelde, D., Lunel, S., Schmitz, S.: A sequent calculus for a modal logic on finite
data trees. In: 25th EACSL Annual Conference on Computer Science Logic (CSL
2016). LIPIcs, vol. 62, pp. 32:1–32:16. Schloss Dagstuhl (2016)

12. Barceló, P., Libkin, L., Reutter, J.L.: Querying regular graph patterns. Journal of
the ACM 61(1), 8:1–8:54 (2014)

13. Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic. Elsevier
(2006)

14. Blackburn, P., ten Cate, B.: Pure extensions, proof rules, and hybrid axiomatics.
Studia Logica 84(2), 277–322 (2006)

15. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in The-
oretical Computer Science, vol. 53. Cambridge University Press (2001)

16. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on
data trees and XML reasoning. Journal of the ACM 56(3) (2009)

17. Braüner, T.: Hybrid Logics and its Proof-Theory, Applied Logics Series, vol. 37.
Springer (2011)

18. ten Cate, B., Fontaine, G., Litak, T.: Some modal aspects of XPath. Journal of
Applied Non-Classical Logics 20(3), 139–171 (2010)

19. ten Cate, B., Litak, T., Marx, M.: Complete axiomatizations for XPath fragments.
Journal of Applied Logic 8(2), 153–172 (2010)

20. Clark, J., DeRose, S.: XML path language (XPath). Website (1999), W3C Recom-
mendation, url = http://www.w3.org/TR/xpath

21. van Dalen, D.: Logic and structure. Universitext, Springer, 5 edn. (2013)
22. Figueira, D.: Reasoning on Words and Trees with Data. PhD thesis, Laboratoire

Spécification et Vérification, ENS Cachan, France (2010)
23. Figueira, D.: Decidability of downward XPath. ACM Transactions on Computa-

tional Logic 13(4), 34 (2012)
24. Goldblatt, R.: An abstract setting for Henkin proofs. Topoi 3(1), 37–41 (1984)
25. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath

queries. ACM Transactions on Database Systems 30(2), 444–491 (2005)
26. Grabon, M., Michaliszyn, J., Otop, J., Wieczorek, P.: Querying data graphs with

arithmetical regular expressions. In: 25th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2016). pp. 1088–1094. IJCAI/AAAI Press (2016)

27. Libkin, L., Martens, W., Vrgoč, D.: Querying graphs with data. Journal of the
ACM 63(2), 14:1–14:53 (2016)

28. Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: International
Conference on Database Theory (ICDT’12). pp. 74–85. ACM (2012)

29. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)
30. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media, Inc. (2013)
31. Schinner, A.: The Voynich manuscript: Evidence of the hoax hypothesis. Cryptolo-

gia 31(2), 95–107 (2007)

	 Data Graphs with Incomplete Information (and a Way to Complete Them)

