
DefTab: A Tableaux System for Sceptical
Consequence in Default Modal Logics

Carlos Areces1, Valentin Cassano12, Raul Fervari13, and Guillaume Hoffmann13

1 CONICET and Universidad Nacional de Córdoba, Argentina
2 Universidad Nacional de Ŕıo Cuarto, Argentina

3 Guangdong Technion - Israel Institute of Technology, China

Abstract. We report on an implementation of a tableaux calculus for
sceptical consequence in Default Logic built on Hybrid Modal Logic.
In turn, our tool offers support for checking default consequence over
formulas from Propositional Logic, Basic Modal Logic and Hybrid Logic.
We develop a test suite for assessing the correctness, scalability, and
efficiency of our system, and inform on the results. Interestingly, our
method can be adapted to generate examples for other default provers.

1 Introduction

A tableau method [11] is a standard proof procedure based on ‘refutations’. To
prove that a certain fact is valid, the procedure begins with a syntactical ex-
pression intended to assert the negation of the given fact. Then, successive steps
syntactically break down this assertion into cases. Finally, impossibility condi-
tions dictate closing cases. A proof is obtained if all cases are closed. Tableaux
are one of the most popular proof calculi for Modal Logics, as they are known
to lead to efficient and modular implementations [9].

The tableaux method presented here, called default tableaux, operates in the
way just described. The novelty is that this tableaux method captures scepti-
cal consequence in Default Logic [17], one of the most prominent approaches
for non-monotonic reasoning [1]. Two distinguishing characteristics of a default
logic are defaults and alternative extensions. Briefly, defaults can be understood
as defeasible rules of inference, whereas extensions can be understood as sets
closed under the application of defaults. Alternative extensions originate from
‘consistency checks’ on the application of defaults. A formula is called a ‘sceptical
consequence’ if it is a consequence from every alternative extension. Our tableaux
method handles sceptical consequence for DHL, a default logic built over Hy-
brid Logic (HL) [3,4], via default tableaux. Default tableaux are introduced as an
extension of tableaux for HL. These tableaux build on results presented in [5,7].

Moreover, we report on DefTab, an implementation of the default tableaux
mentioned above. DefTab was originally conceived for checking sceptical conse-
quence in Default Intuitionistic Logic [7]. Here, we advance on a modular im-
plementation of a default prover acting over different modal logics. The general
implementation of the tool is based on the architecture of HTab [13], a tableaux

2 Areces, Cassano, Fervari, and Hoffmann

system for HL (see also [12]). Given the ability of handling formulas from HL,
our prover also supports formulas from fragments of HL such as Classical Propo-
sitional Logic and Basic Modal Logic. Each fragment is in itself interesting.

We discuss the overall architecture of DefTab, the implementation of default
tableaux algorithm, and optimization details. In addition, we present an empiri-
cal evaluation of the tool to assess its correctness and efficiency. To this end, we
build a test suite for sceptical consequence in DHL by using hGen [2], a random
formula generator for HL and the mentioned fragments. We provide a system-
atic method to convert formulas generated by hGen into interesting test cases
for DHL. We posit other provers could benefit from our method in the future.

2 Basic Definitions

Hybrid Logic. The language of HL is defined on an enumerable set P =
{ pi | 0 ≤ i } of proposition symbols and an enumerable set N = {ni | 0 ≤ i } of
nominals, and is determined by the following BNF:

φ ::= pi | ni | ¬φ | φ ∧ φ | 2φ | @ni
φ | Aφ.

Other Boolean connectives are defined as usual. The modal formula 3φ is an
abbreviation for ¬2¬φ, whereas Eφ abbreviates ¬A¬φ. We will also refer to
some fragments of HL: the Basic Hybrid Logic (HL−) is obtained by removing the
constructor Aφ from the BNF above. The Basic Modal Logic (BML) is obtained
by additionally removing ni and @niφ from the BNF. Finally, the Classical
Propositional Logic (CPL) is obtained by additionally removing 2φ.

A hybrid Kripke model M is a tuple ⟨W,R, V ⟩ where: W is a non-empty set
of elements called worlds; R ⊆ W 2 is the accessibility relation; and the valuation
V : P ∪N 7→ 2W is a function s.t. for all n ∈ N, |V (n)| = 1.

The notion of satisfiability, written M, w |= φ, is defined inductively as fol-
lows, with the Boolean cases defined as usual:

M, w |= pi iff w ∈ V (pi)
M, w |= ni iff {w} = V (ni)
M, w |= 2φ iff for all w′ ∈ W, Rww′ implies M, w′ |= φ
M, w |= Aφ iff for all w′ ∈ W, M, w′ |= φ
M, w |= @niφ iff M, w′ |= φ, where {w′} = V (ni).

We write M, w |= Φ to abbreviate: for all φ ∈ Φ, M, w |= φ. We call φ a (local)
semantic consequence ([3]) of Φ, notation Φ ⊨ φ, iff for every hybrid Kripke
model M, and world w of M, if M, w |= Φ, then M, w |= φ.

Normal Default Logic. The work on Default Logic, initiated in [17], comprises
nowadays a wide range of non-monotonic formalisms built on an underlying
(typically monotonic) logic. In what follows, we describe a default logic built on
HL, and call this default logic Default Hybrid Logic (DHL).

DHL is characterized by normal defaults and extensions. A normal default is
a pair (π, χ) of formulas of HL written as π/χ; where π is called the prerequisite
of the default, and χ its consequent. A normal default can be understood as a

DefTab: A Tableaux System for Sceptical Consequence... 3

non-admissible rule of inference of HL which is only applied if its application
does not yield a contradiction. Normal defaults are common in the literature,
since interestingly most existing variants of Default Logic converge in the case
of normal defaults (see, e.g., [1]). Extensions are defined with respect to default
theories. A default theory is a pair Θ = ⟨Φ,∆⟩ where: Φ is a set of formulas of
HL, also indicated by ΦΘ; and ∆ is a set of normal defaults, also indicated by
∆Θ. An extension can be understood as a saturation of a set of facts via the
application of defaults. The precise definition of an extension is given in Def. 4.

Definition 1. Let δ = π/χ be a default and ∆ be a set of defaults; then: δΠ = π,
δX = χ; ∆Π = { δΠ | δ ∈ ∆ }, ∆X = { δX | δ ∈ ∆ } and ∆ ∪ δ = ∆ ∪ {δ}.

Definition 2 (Detachment). Let Θ be a default theory, and ∆ ∪ δ ⊆ ∆Θ; we
say that δ is triggered by ∆ (in Θ) iff (ΦΘ ∪∆X) ⊨ δΠ. We say that δ is blocked
by ∆ iff (ΦΘ ∪ (∆ ∪ δ)X) ⊨ ⊥. We say that δ is detached by ∆ if δ is triggered,
and not blocked, by ∆.

If we think of a default π/χ as a rule which enables us to pass from π to χ,
the notion of detachment in Def. 2 tells us under which conditions on π we
can obtain χ. The definition of detachment is an intermediate step towards the
definition of an extension via generating sets.

Definition 3 (Generating Set). Let Θ be a default theory; we call ∆ ⊆ ∆Θ

a generating set if there is a total-ordering ⋖ on ∆Θ s.t. ∆ = D⋖
Θ
(n), where

n = |∆Θ|, D⋖
Θ
(0) = ∅, and for all 0 < i < n:

D⋖
Θ
(i+1) =


D⋖
Θ
(i) ∪ δ if δ ∈ ∆Θ\D⋖

Θ
(i) is detached by D⋖

Θ
(i), and

for all η ̸= δ ∈ ∆Θ\D⋖
Θ
(i), if η is detached by D⋖

Θ
(i), δ ⋖ η

D≺
Θ
(i) otherwise.

Definition 4 (Extension). Let Θ be a default theory and E = ΦΘ ∪∆X; the
set E is an extension of Θ iff ∆ is a generating subset of ∆Θ. We use E(Θ) to
indicate the set of all extensions of Θ.

As mentioned, intuitively, an extension is a set of formulas that is closed
under detachment. We present the definition of default consequence in Def. 5.

Definition 5 (Default Consequence). We say a formula φ is a sceptical
consequence of a default theory Θ, notation Θ |≈ φ, iff for all E ∈E(Θ), E ⊨ φ.

The notion of default consequence in Def. 5 is referred to as sceptical in the
literature on Default Logic. In Sec. 3 we present a syntactic characterization of
sceptical consequence via a default tableaux proof calculus. This proof calculus
is the focus of our system description. We illustrate our definitions in Ex. 1.

Example 1. We start by assuming that every world in the model has a succes-
sor, and that every world is either a sink world (nominal s) or ‘sees’ the sink
world. These assumptions are expressed in a default theory as facts, i.e., by

4 Areces, Cassano, Fervari, and Hoffmann

Φ = {A3⊤,A(s ∨ 3s)}. Moreover, we have three defaults: δ1 = ⊤/@n2
3n3,

δ2 = ⊤/@n3
¬s, and δ3 = ⊤/@n3

2n3. Thus, we have ∆ = {δ1, δ2, δ3}, and
Θ = ⟨Φ,∆⟩. The default δ1 expresses that n2 must ‘see’ n3. This default is de-
tached by Φ. Then, we have the defaults δ2, expressing that n3 must not be
the sink world, and δ3, expressing that n3 must only ‘see’ itself. Both of these
defaults are individually detached by δ1, but they block each other: δ2 forces
n3 to have a successor different from itself to comply with the facts, while δ3
forces n3 to see only itself, i.e., it forces n3 be the sink. This means that we
have two generating sets, {δ1, δ2} and {δ1, δ3}, thus there are two extensions:
E1 = Φ ∪ {@n23n3,@n3¬s} and E2 = Φ ∪ {@n23n3,@n32n3}. In both cases,
n2 sees the sink in two steps, i.e., Θ |≈ @n2

33s.

3 Default Tableaux Proof Calculus

We present the default tableaux calculus for sceptical consequence in DHL which
is the focus of our system description. In what follows, we consider all the formu-
las from HL in negation normal form. The default tableaux calculus for sceptical
consequence in DHL constructs so-called default tableaux. A default tableau is a
tree whose nodes are of three different kinds. We write nodes of the first kind as
@iφ, meaning that φ holds at world i. The second kind of nodes (which is a spe-
cial case of the first kind) is written as @i3j, meaning that world j is accessible
from world i. Nodes of the third kind are indicated by defaults. This last kind
of nodes marks the use of a default in a proof attempt. A default tableau for a
formula φ from a default theory Θ, is a default tableau whose root is @0¬φ, and
whose construction is carried out using the rules from Fig. 1.

@i(φ ∧ ψ)
(∧)

@iφ,@iψ

@i3φ
(3)1

@i3j,@jφ

@i@aφ
(@)

@aφ

@iEφ
(E)1

@jφ

@i(φ ∨ ψ)
(∨)

@iφ | @iψ

@i2φ, @i3j
(2)

@jφ

@iφ, @ij
(nom)2

@jφ

@iAφ
(A)2

@jφ

@jj
(ref)2

@0φ
(F)3

δ1
@0δ

X
1 . . .

δi
@0δ

X
i . . .

δn
@0δ

X
n

(D)4

1 The nominal j is new to the branch.
2 The nominal j is already in the branch.
3 For φ ∈ ΦΘ.
4 For { δi | i ∈ [1, n] } = { δ ∈ ∆Θ\∆B | δ is detached by ∆B }, where ∆B is the set of defaults in

the branch.

Fig. 1. Tableau expansion rules for DHL.

The rule (F) enables us to incorporate formulas from ΦΘ into a default
tableau, while the rule (D) enables us to incorporate defaults from ∆Θ. This

DefTab: A Tableaux System for Sceptical Consequence... 5

last rule corresponds to the concept of detachment in Def. 2. The notion of
deducibility using default tableaux is made precise in Def. 7.

Definition 6 (Closure). A branch of a default tableau is closed (▲), if @iφ
and @i¬φ occur in the branch. A branch is open (▼) if it is not closed. A default
tableau is closed if all of its branches are closed; otherwise it is open.

Definition 7 (Default Deducibility). We call any closed default tableau for
φ from Θ a sceptical proof of φ from Θ, notation Θ |∼ φ.

The expansion rules in Fig. 1 together with Def. 7 yield a sceptical proof
calculus which is is sound and complete (see [7] for details of this claim).

Theorem 1 (Soundess and Completeness.). Θ |∼ φ iff Θ |≈ φ.

In addition, notice that if we forbid the application of the rule (D), we obtain
a notion of deducibility ΦΘ ⊢ φ which yields a sound and complete proof calculus
for HL, i.e., ΦΘ ⊢ φ iff ΦΘ ⊨ φ (see [16]). We use ⊢ to syntactically check the side
condition of the rule (D), and decide whether it can be applied or not.

Definition 8 (Saturation). A branch of a default tableau is saturated, nota-
tion (♦), if the application of any of the expansion rules in Fig. 1 is redundant.

It can be proven that every branch of a default tableau can be extended to
one that is saturated in a finite number of steps. Also, if a default tableau for φ
from Θ has a branch that is open and saturated, then Θ ̸|≈ φ. From these two
facts, it follows that default tableaux decide sceptical consequence.

4 Implementation

DefTab is an implementation of the tableaux proof calculus for sceptical default
consequence in Sec. 3. The architecture of DefTab is based on the hybrid logic
prover HTab [13], and incorporates the specific features for implementing default
reasoning. HTab implements a terminating tableaux algorithm for HL and comes
ready with some optimizations such as semantic branching and backjumping.
All these features, as well as others, are reported in detail in [13]. Given Θ
and φ as input, DefTab builds proof attempts of Θ |∼ φ by searching for Kripke
models for φ, and subsequently restricting these models with the use of sentences
from ΦΘ and defaults from ∆Θ. DefTab reports whether a default proof has been
found or not. In the latter case, it exhibits an extension of Θ from which the φ
does not follow; thus establishing that φ is not a default consequence of Θ. In
what follows we discuss some implementation details, including some comments
on optimizations. DefTab is available at http://tinyurl.com/deftab0.

http://tinyurl.com/deftab0

6 Areces, Cassano, Fervari, and Hoffmann

Tableaux and Subtableaux. The tableaux algorithm of DefTab follows a
standard strategy for proof search, and the novel part is the treatment of the
rule (D). In such a case, it selects a default δ from the set ∆Θ, and checks if δ
is detached, according to Def. 2. This relies on subtableaux, that is, tableaux
executions that are independent of the main default tableaux. These subtableaux
are needed to check whether δ is detached in the branch; i.e., whether it is
triggered (i.e., δΠ is a consequence of the premises and the consequences already
obtained in the branch), and not blocked (i.e., if δX adds an inconsistency into
the branch). If δ is detached, then @0δ

X is added to the branch, δ is marked as
treated, and the algorithm continues with the expansion of the updated branch.
Once no rule can be applied, the algorithm returns TRUE if and only if φ is a
default consequence of Θ.

Subtableaux caching. One of the main optimizations provided in DefTab is
caching, operating under the following premise. Subtableaux are executed to
check which default rules are triggered or blocked in the context of a branch.
Many of these checks are redundant, since the results of such subtableaux does
not change change unless a default rule is applied to a branch. DefTab implements
a simple caching system that stores subtableaux results in a dictionary. Each
time a subtableaux is about to be executed, the set of initial formulas is checked
against the cache. If there is a cache hit, the result is taken from the cache and
a tableaux run is saved. Note that subtableaux do not involve the rule (D), that
is, they are purely tableaux of the underlying logic.

Default rules data structures. At any given moment, DefTab maintains de-
faults in two lists: available and triggered. The available list contains the defaults
of the input default theory. When the (D) rule is about to be applied, several
steps are performed to handle default rules systematically. First, the available
list is scanned, and each rule is checked to be triggered. Triggered rules are
moved into the triggered list, and the rest is left into the available list. Note that
non-triggered rules, may become triggered in the future after some default is
added to the branch. The triggered list is also scanned, and each rule is checked
to be blocked in the current branch. When a rule is blocked, it is deleted from the
triggered list and will never come back again in the branch. Once this is done,
DefTab uses that list to apply the rule (D). The tableaux branches as many times
as there are rules in the (non-blocked) triggered list. For each new branch, the
procedure removes the corresponding rule from the triggered list, and adds it
and its consequent formula to the branch.

Backjumping. Backjumping [14] is a standard optimization for the HL calculus
that greatly improves performance (see [13]). The overall idea is that, instead
of performing a simple backtracking when a branch is found to be closed, back-
jumping calculates the lowest level to which the execution of the tableaux may
directly come back when a clash is found. This requires all formulas in the
tableaux to be annotated with a set of dependencies. A dependency is the level
of a branching rule application. For the specific case of default tableaux, we take

DefTab: A Tableaux System for Sceptical Consequence... 7

special care of tracking dependencies of the formulas introduced by the appli-
cation of rule (D). To do so, once a default π/χ is triggered, we bookkeep it in
the triggered list along with the dependencies of the formulas that triggered it,
according to Definition 2. Concretely, this is the union of the dependencies of all
defaults ∆ such that ΦΘ ∪ ∆X |= π. When (D) rule is applied, the consequent
of a default is added to the current branch with these dependencies, plus the
dependency of the current tableaux level.

Usage. DefTab takes as input a file following the structure of the following
simple example file hybrid01.dt.

facts:

N0: <> N1;

defaults:

(N0: <>N1) --> (N1:<>N0);

consequence:

N0:<><>N0;

– The keyword facts indicates the beginning of
the set of formulas of the default theory.

– The keyword defaults indicates the beginning
of the set of defaults. The syntax for a default
π/χ is π --> χ.

– The keyword consequence indicates the for-
mula to be proven.

DefTab is executed from the command line as:

$./deftab -f hybrid01.dt

Indeed a sceptical consequence.

Elapsed time: 0.00 seconds

The output indicates that N0:<><>N0

(@n033n0) is a sceptical conse-

quence of the default theory.

5 Testing Generation and Methodology

Hybrid and Default Formulas Generation. Another contribution of our
work is to provide a systematic way of constructing test cases for DHL provers.
To our knowledge, there is no standard test set for automated reasoning with
default logic, and less so for default reasoning based on HL.

We build test cases for DHL using the random formula generator hGen [2].
hGen enables us to generate formulas in conjunctive normal form (CNF) from
several fragments of HL, such as CPL, BML and HL−. Moreover, hGen also allows
us to specify the different parameters of a formula: number of clauses, size of
clauses and modal depths of each subformula of a clause, probability of that
an operator appears in the clause (e.g. modal, hybrid, universal), and the total
number of propositional symbols and nominals.

We adapted hGen to generate normal default theories from random HL for-
mulas. The transformation depends on the satisfiability status of the original
HL formulas. The first case applies to satisfiable formulas of HL in CNF. Given
c1 . . . cn the clauses of an HL formula, we put each one of them as the consequent

8 Areces, Cassano, Fervari, and Hoffmann

of a default ⊤/ci, and put ⊥ as the consequence to be proved. As the original
set of clauses is satisfiable, and the consequence is never provable, all the de-
faults will be applied (as putting ⊤ as the prerequisite triggers every rule) in all
possible permutations. This is an easy way to stress our tool.

The second case works with unsatisfiable formulas of HL in CNF. Here, we use
an intentionally harder transformation. Given c1 . . . cn the clauses of the HL for-
mula, then for all i<n, we generate two rules: ⊤/ci ∨ ci+1 and ci ∨ ci+1/ci ∧ ci+1.
Finally, we add cn as consequence. In this case, not all defaults will be applied
to a same branch, but a great amount of them. Moreover, the formula cn may or
may not be a sceptical consequence of the default theory; this is another differ-
ence with the case of satisfiable formulas. This case not only serves to test the
scalability of our tool, but also its correctness.

Test Suite Structure. The Bash script testsuite.sh executes four steps:
formula generation, renaming, benchmark, and consistency check.

The formula generation step uses hGen to generate random sets of formulas
from CPL, BML, HL− and HL, respectively. Initially, each set contains 1000
formulas. Then, the Hybrid Logic prover HTab ([13]) is run to classify each set
of formulas into satisfiable (SAT) and unsatisfiable (UNSAT). This way, hGen
generates the corresponding default theories, as described in the previous section.
The renaming step is then performed to organize file names in each folder.

The benchmark step enables to specify a list of provers to be run. Currently,
it is performed with DefTab with cache disabled (NC) and DefTab with cache
enabled (C), but the script can be easily modified to run any new default prover.
The provers are executed on all input files of each combination of 4 languages and
2 satisfiability values, and the results (execution time and answer) are stored in
log files. The script reports how many formulas could be solved within 10 seconds,
30 seconds, and 60 seconds. This is done by running the provers with the highest
timeout value; the other values are deduced from the prover’s running time.

Finally, the consistency check step looks for inconsistent outputs between
provers by comparing the log files generated in the previous step.

Although the preselected option is to run all these steps together, they can
also be run separately. This enables to run the benchmark step on a known set
of formulas, to reproduce results. Instructions on how to run the tests, the test
script and the set of formulas used to generate the following results can be found
at http://tinyurl.com/deftab0.

hGen parameters. For each language, we tuned hGen’s parameters to get a
good SAT/UNSAT balance of its output (ideally a 50/50 ratio). We also aimed
at getting a balanced difficulty of the translated default theories. That is, the sets
of default theories should be hard enough so that many of them make DefTab
timeout and we may measure improvements in the future, but not too hard so
we can already observe different results according to different timeout values.
The parameters for each language are: for CPL, 33 clauses and 10 proposition
symbols; for BML, 34 clauses, 10 proposition symbols, one relation and 2 nested
modal operators as maximum; for HL−, 15 clauses, 3 proposition symbols, 3

http://tinyurl.com/deftab0

DefTab: A Tableaux System for Sceptical Consequence... 9

nominals, one relation and 6 nested modal and hybrid operators as maximum;
and for HL, 13 clauses, 2 proposition symbols, 2 nominals, one relation and
6 nested modal, hybrid and universal operators as maximum. Moreover, each
language has fine-tuned probabilities of the different logic connectives in order
to meet the SAT/UNSAT and timeout balances that the following results show.
All parameters can be found in the released test script.

Results. We report below a run of the benchmark script with 1000 formulas
per language, performed with DefTab with cache disabled (NC) and DefTab with
cache enabled (C). DefTab was compiled with GHC 8.10.7, and the tests were run
on the following platform: Ubuntu 22.04 operating system, Linux 5.19 kernel,
12th Gen Intel i7-1260P CPU with 16 cores, 16GB of RAM and SSD storage.

Formulas

Timeout 10 secs.
(NC)

10 secs.
(C)

30 secs.
(NC)

30 secs.
(C)

60 secs.
(NC)

60 secs.
(C)

CPL SAT (516) 122 135 133 144 138 146
CPL UNSAT (484) 255 324 309 364 336 384

BML SAT (462) 356 399 384 417 398 425
BML UNSAT (538) 154 193 252 324 295 367

HL− SAT (534) 401 434 419 444 431 450

HL− UNSAT (466) 142 153 150 170 158 183

HL SAT (480) 284 321 309 331 320 343
HL UNSAT (520) 145 161 161 183 169 193

Finally, the following table describes the outcome of checking sceptical con-
sequence of those formulas that were originally unsatisfiable. We take therein all
the tests cases that finished with timeout of 60 seconds, solved using caching.
The column label by ‘Consequence’ indicates the number of formulas for which
running DefTab returns it is indeed a sceptical consequence in the corresponding
default theories; while ‘Not Consequence’ indicates the number of formulas for
which DefTab returns they are not a sceptical consequence.

Formulas

Results
Total Consequence

Not
Consequence

CPL UNSAT 384 24 360
BML UNSAT 367 322 45

HL− UNSAT 183 111 72
HL UNSAT 193 100 93

These results are useful for checking consistency across the execution of dif-
ferent provers, or provers executed with different parameters, as we are currently
doing with DefTab’s cache option. Moreover, we would like to compare the ob-
tained data with the results of running other provers for the different fragments
that are supported by DefTab, to assess both soundness and the performance of
our tool. This is part of our future work agenda.

10 Areces, Cassano, Fervari, and Hoffmann

6 Final Remarks

We reported on DefTab, a tableaux-based system to decide sceptical consequence
in Default Logic over Hybrid Modal Logic. To the best of our knowledge, DefTab
is the first prover combining Modal and Default Logic. This said, other provers
do exist for Default Logic. For instance, DeReS is a default logic reasoner with an
underlying propositional tableaux calculus [8]. This prover is designed to check
default consequence treating reasoning in the underlying logic as a “black box”.
This contrasts with DefTab which extends tableaux reasoning in the underlying
logic with the use of defaults. At present, DefTab only supports sceptical con-
sequence checking, while DeReS also supports credulous consequence checking.
We have not been able to find a working implementation of DeReS. However,
many of the ideas presented in [8] can be explored in our setting, in particular,
the kind of (graph-based) problems that are used to generate test cases.

Although not a default logic reasoner, in [15], a nonmonotonic reasoning
plug-in for OWL ontologies is presented. DefTab could approach this tool by im-
plementing multiple relations (roles) and role inclusions to its underlying modal
language. In [10] a tool supporting default reasoning over knowledge bases is
reported, this time not via a calculus implementation but via a translation into
conjunctive query programs in a Description Logic reasoner. After adapting our
calculus to handle Description Logic features, it would be interesting to use the
above-mentioned tools to perform a comparison with DefTab, both for correct-
ness and performance.

We provided a systematic way of testing our tool, by introducing a test suite
generation method based on hGen [2] and HTab [13,12]. This idea can be easily
adapted to any kind of default prover working over CPL, BML, HL− and HL. We
tested the performance of our tool using this test suite, and empirically showed
that DefTab’s subtableaux caching optimization positive impacts on performance.

For future work there are several other interesting lines of research. The
treatment of defaults in the calculus can be seen as parametric on the underly-
ing logic (modulo some basic properties, e.g., the possibility of using premises,
see [6]). DefTab was originally designed to handle Default Logic over Intuition-
istic Logic [7]. Herein, the tableaux-based procedure not only handles classical
reasoning instead of intuitionistic reasoning, but also it is extended to support
a family of Modal Logics (i.e., the fragments we described along the paper).
Moreover, our approach allowed us to design test suites that can be used to test
DefTab and other nonmonotonic provers. These ideas can be extended to better
assess the behaviour of the tools. We believe that our implementation is a first
step towards having a modular prover that can be generalized to a wider family
of Default Logics.

Acknowledgments. We thank the reviewers for their valuable comments.
Our work is partially supported by the projects ANPCyT-PICT-2020-3780,
ANPCyT-PICT-2021-00400, CONICET PIP 11220200100812CO, the EU Grant
Agreement 101008233 (MISSION), and by the Laboratoire International Associé
SINFIN.

DefTab: A Tableaux System for Sceptical Consequence... 11

References

1. G. Antoniou and K. Wang. Default logic. In D. Gabbay and J. Woods, editors,
The Many Valued and Nonmonotonic Turn in Logic, volume 8 of Handbook of the
History of Logic, pages 517–555. North-Holland, 2007.

2. C. Areces and J. Heguiabehere. hgen: A random cnf formula generator for hybrid
languages. In Methods for Modalities 3 - M4M-3, Nancy, France, Nancy, France,
2003.

3. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge U Press,
2001.

4. P. Blackburn, J. van Benthem, and F. Wolter, editors. Handbook of Modal Logic.
Elsevier, 2007.

5. V. Cassano, C. Areces, and P. Castro. Reasoning about prescription and descrip-
tion using prioritized default rules. In G. Barthe, G. Sutcliffe, and M. Veanes,
editors, 22nd International Conference on Logic for Programming, Artificial Intel-
ligence and Reasoning (LPAR-22), volume 57 of EPiC Series in Computing, pages
196–213. EasyChair, 2018.

6. V. Cassano, R. Fervari, C. Areces, and P. Castro. Interpolation and beth definabil-
ity in default logics. In F. Calimeri, N. Leone, and M. Manna, editors, Logics in
Artificial Intelligence - 16th European Conference, JELIA 2019, Rende, Italy, May
7-11, 2019, Proceedings, volume 11468 of LNCS, pages 675–691. Springer, 2019.

7. V. Cassano, R. Fervari, G. Hoffmann, C. Areces, and P. Castro. A tableaux calculus
for default intuitionistic logic. In P. Fontaine, editor, Automated Deduction - CADE
27 - 27th International Conference on Automated Deduction, Natal, Brazil, August
27-30, 2019, Proceedings, volume 11716 of LNCS, pages 161–177. Springer, 2019.

8. P. Cholewinski, V. Marek, and M. Truszczynski. Default reasoning system deres.
In 5th International Conference on Principles of Knowledge Representation and
Reasoning (KR’96), pages 518–528. Morgan Kaufmann, 1996.

9. M. D’Agostino, D. M. Gabbay, R. Hahnle, and J. Posegga, editors. Handbook of
Tableau Methods. Springer, 1999.

10. M. Dao-Tran, T. Eiter, and T. Krennwallner. Realizing default logic over descrip-
tion logic knowledge bases. In C. Sossai and G. Chemello, editors, Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, pages 602–613, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

11. M. Fitting. Introduction. In D’Agostino et al. [9], pages 1–43.
12. G. Hoffmann. Lightweight hybrid tableaux. Journal of Applied Logic, 8(4):397–408,

2010.
13. G. Hoffmann and C. Areces. HTab: a terminating tableaux system for hybrid logic.

In C. Areces and S. Demri, editors, Proceedings of the 5th Workshop on Methods
for Modalities, M4M 2007, Cachan, France, November 29-30, 2007, volume 231 of
ENTCS, pages 3–19. Elsevier, 2007.

14. U. Hustadt and R. Schmidt. Simplification and backjumping in modal tableau. In
International Conference on Automated Reasoning with Analytic Tableaux and Re-
lated Methods (TABLEAUX’98), volume 1397 of LNCS, pages 187–201. Springer,
1998.

15. T. Meyer, K. Moodley, and U. Sattler. DIP: A defeasible-inference platform for
OWL ontologies. CEUR Workshop Proceedings, 2014.

16. G. Priest. An Introduction to Non-classical Logic: From If to Is. Cambridge U
Press, 2000.

17. R. Reiter. A logic for default reasoning. AI, 13(1-2):81–132, 1980.

