Moving Arrows and Four Model Checking Results

Carlos Areces^{1,2}, <u>Raul Fervari¹</u> & Guillaume Hoffmann¹

¹ FaMAF, Universidad Nacional de Córdoba, Argentina, ² CONICET, Argentina

WoLLIC 2012, Buenos Aires, Argentina

C. Areces, R. Fervari & G. Hoffmann: Moving Arrows and Four Model Checking Results

Modal logics: "we like to talk about models"

- Modal logics are known to describe models.
- Choose the right paintbrush:
 - $\blacktriangleright \Diamond \varphi, \Diamond^{-} \varphi$
 - ► E*φ*
 - $\land \diamond \geq n \varphi \\ \diamond \ast \varphi$
 - ► *\4 ► ...
- Now, what about operators that can modify models?
 - Change the domain of the model.
 - Change the properties of the elements of the domain while we are evaluating a formula.
 - \blacktriangleright Evaluate φ after deleting/adding/swapping around an edge.

What about a swapping modal operator?

What happens when you add that to the basic modal logic?

Logics that change the model

What about:

an edge-deleting modality?

Logics that change the model

What about:

- an edge-deleting modality?
- an edge-adding modality?

Sabotage Modal Logic [van Benthem 2002]

 $\mathcal{M}, w \models \langle gs \rangle \varphi$ iff \exists pair (u, v) of \mathcal{M} such that $\mathcal{M}^-_{\{(u,v)\}}, w \models \varphi$,

where $\mathcal{M}^{-}_{\{(u,v)\}}$ is \mathcal{M} without the edge (u, v).

Note: (u, v) can be *anywhere* in the model.

Sabotage Modal Logic [van Benthem 2002]

 $\mathcal{M}, w \models \langle gs \rangle \varphi \text{ iff } \exists \text{ pair } (u, v) \text{ of } \mathcal{M} \text{ such that } \mathcal{M}^-_{\{(u, v)\}}, w \models \varphi,$

where $\mathcal{M}^{-}_{\{(u,v)\}}$ is \mathcal{M} without the edge (u, v).

Note: (u, v) can be *anywhere* in the model.

What we know [Löding & Rohde 03]:

- Model checking is PSPACE-complete.
- Satisfiability is undecidable.

Those are operators that also modify models!

- Those are operators that also modify models!
- ► $[!\psi]\varphi$: announce that if ψ is true, eliminate states of the model where $\neg \psi$ holds (Public Announcement Logic) [Plaza 89].

- Those are operators that also modify models!
- ► $[!\psi]\varphi$: announce that if ψ is true, eliminate states of the model where $\neg\psi$ holds (Public Announcement Logic) [Plaza 89].
- ◊φ: there is a ◊-free announcement ψ such that [!ψ]φ holds (Arbitrary Public Announcement Logic) [Balbiani et al. 07].

- Those are operators that also modify models!
- ► $[!\psi]\varphi$: announce that if ψ is true, eliminate states of the model where $\neg \psi$ holds (Public Announcement Logic) [Plaza 89].
- ◊φ: there is a ◊-free announcement ψ such that [!ψ]φ holds (Arbitrary Public Announcement Logic) [Balbiani et al. 07].
- In some way these operators are deleting states.

- Those are operators that also modify models!
- ► $[!\psi]\varphi$: announce that if ψ is true, eliminate states of the model where $\neg \psi$ holds (Public Announcement Logic) [Plaza 89].
- ◊φ: there is a ◊-free announcement ψ such that [!ψ]φ holds (Arbitrary Public Announcement Logic) [Balbiani et al. 07].
- In some way these operators are deleting states.
- ► We will focus on operators that modify the accesibility relation.

Remember the Basic Modal Logic (\mathcal{BML}).

► Syntax: propositional language + a modal operator ◊.

Remember the Basic Modal Logic (\mathcal{BML}).

- Syntax: propositional language + a modal operator \Diamond .
- Semantics of $\Diamond \varphi$: traverse some edge, then evaluate φ .

Remember the Basic Modal Logic (\mathcal{BML}).

- Syntax: propositional language + a modal operator \Diamond .
- Semantics of $\Diamond \varphi$: traverse some edge, then evaluate φ .

Remember the Basic Modal Logic (\mathcal{BML}).

- Syntax: propositional language + a modal operator \Diamond .
- Semantics of $\Diamond \varphi$: traverse some edge, then evaluate φ .

Now add new dynamic operators:

Semantics of **sw**ap, **g**lobal/local **s**abotage and **br**idge:

Remember the Basic Modal Logic (\mathcal{BML}).

- Syntax: propositional language + a modal operator \Diamond .
- Semantics of $\Diamond \varphi$: traverse some edge, then evaluate φ .

- Semantics of **sw**ap, **g**lobal/**l**ocal **s**abotage and **br**idge:
 - $\langle sw \rangle \varphi$: traverse some edge, turn it around, then evaluate φ .

Remember the Basic Modal Logic (\mathcal{BML}).

- Syntax: propositional language + a modal operator \Diamond .
- Semantics of $\Diamond \varphi$: traverse some edge, then evaluate φ .

- Semantics of **sw**ap, **g**lobal/local **s**abotage and **br**idge:
 - $\langle sw \rangle \varphi$: traverse some edge, turn it around, then evaluate φ .
 - $\langle gs \rangle \varphi$: delete some edge anywhere, then evaluate φ .

Remember the Basic Modal Logic (\mathcal{BML}).

- Syntax: propositional language + a modal operator \Diamond .
- Semantics of $\Diamond \varphi$: traverse some edge, then evaluate φ .

- Semantics of **sw**ap, **g**lobal/local **s**abotage and **br**idge:
 - $\langle sw \rangle \varphi$: traverse some edge, turn it around, then evaluate φ .
 - $\langle gs \rangle \varphi$: delete some edge anywhere, then evaluate φ .
 - $\langle Is \rangle \varphi$: traverse some edge, delete it, then evaluate φ .

Remember the Basic Modal Logic (\mathcal{BML}).

- Syntax: propositional language + a modal operator \Diamond .
- Semantics of $\Diamond \varphi$: traverse some edge, then evaluate φ .

- Semantics of **sw**ap, **g**lobal/local **s**abotage and **br**idge:
 - $\langle sw \rangle \varphi$: traverse some edge, turn it around, then evaluate φ .
 - $\langle gs \rangle \varphi$: delete some edge anywhere, then evaluate φ .
 - $\langle Is \rangle \varphi$: traverse some edge, delete it, then evaluate φ .
 - $\langle br \rangle \varphi$: add a new edge, traverse it, then evaluate φ .

Examples: no tree model property

Theorem

 $\mathcal{ML}(\blacklozenge)$ lacks the tree model property, for $\blacklozenge \in \{\langle sw \rangle, \langle gs \rangle, \langle ls \rangle, \langle br \rangle\}.$

Examples: no tree model property

Theorem

 $\mathcal{ML}(\blacklozenge)$ lacks the tree model property, for $\blacklozenge \in \{\langle sw \rangle, \langle gs \rangle, \langle ls \rangle, \langle br \rangle\}.$

Proof.1. $\Box \perp \land \langle br \rangle \Box \perp$ $w \text{ and } v \neq w \text{ are unconnected.}$ 2. $\Diamond \Diamond \top \land [gs] \Box \bot$ w is reflexive.3. $\Diamond \Diamond \top \land [Is] \Box \bot$ w is reflexive.4. $p \land (\bigwedge_{1 \leq i \leq 3} \Box^i \neg p) \land \langle sw \rangle \Diamond \Diamond p$ w has a reflexive successor.

We want to learn more about the models that these logics can describe.

So we need:

- ► Definition of ♦-bisimilarity.
- ► A bisimilarity theorem that says that two ♦-bisimilar models are undistinguishable by *ML*(♦).

1/2

always	(nontriv)	Z is not empty		
always	(agree)	If $(w, S)Z(w', S')$, w and w' agree propositionally.		
\diamond	(zig)	If wSv, there is $v' \in W'$ s.t. $w'S'v'$ and $(v, S)Z(v', S')$		
	(zag)	If $w'S'v'$, there is $v \in W$ s.t. wSv and $(v, S)Z(v', S')$		
$\langle sw \rangle$	(<i>sw</i> -zig)	If wSv, there is $v' \in W'$ s.t. $w'S'v'$ and $(v, S_{vw}^*)Z(v', S_{v'w'}')$		
	(<i>sw</i> -zag)	If $w'S'v'$, there is $v \in W$ s.t. wSv and $(v, S_{vw}^*)Z(v', S_{v'w'}')$		

2/2

$\langle gs \rangle$	(gs-zig)	If vSu, there is $v', u' \in W'$ s.t. $v'S'u'$ and $(w, S_{vu})Z(w', S_{v'u'})$
	(gs-zag)	If $v'S'u'$, there is $v, u \in W$ s.t. vSu and $(w, S_{vu}^-)Z(w', S_{v'u'}')$
$\langle ls \rangle$	(<i>ls</i> -zig)	If wSv, there is $v' \in W'$ s.t. $w'S'v'$ and $(v, S_{wv}^{-})Z(v', S_{w'v'}^{-})$
	(<i>ls</i> -zag)	If $w'S'v'$, there is $v \in W$ s.t. wSv and $(v, S_{wv}^-)Z(v', S_{w'v'}')$
$\langle br \rangle$	(<i>br</i> -zig)	If $\neg wSv$, there is $v' \in W'$ s.t. $\neg w'S'v'$ and $(v, S_{wv}^+)Z(v', S_{w'v'}')$
	(<i>br</i> -zag)	If $\neg w'S'v'$, there is $v \in W$ s.t. $\neg wSv$ and $(v, S_{wv}^+)Z(v', S_{w'v'}')$

Invariance for Dynamic Logics

Theorem

For $\mathcal{ML}(\blacklozenge), \blacklozenge \in \{\langle sw \rangle, \langle gs \rangle, \langle ls \rangle, \langle br \rangle\}$, $\mathcal{M}, w \bigoplus_{\mathcal{ML}(\blacklozenge)} \mathcal{M}', w'$ implies $\mathcal{M}, w \equiv_{\mathcal{ML}(\blacklozenge)} \mathcal{M}', w'$.

What if we want to show that all of these logics are uncomparable?

- Find two \blacklozenge_1 -bisimilar models distinguishable by $\mathcal{ML}(\blacklozenge_2)$.
- Find two \blacklozenge_2 -bisimilar models distinguishable by $\mathcal{ML}(\blacklozenge_1)$.

Then $\mathcal{ML}(\blacklozenge_1)$ and $\mathcal{ML}(\blacklozenge_2)$ are uncomparable.

Now let's have fun!

\mathcal{M}	\mathcal{M}'	Distinct by	Bisimilar for
•	• •	$\langle br \rangle \langle br \rangle \top$	$\mathcal{ML}(\langle \textit{ls} \rangle)$
W	w'	$\langle gs \rangle op$	$\mathcal{ML}(\langle \textit{sw} angle)$
$\mathbf{\hat{v}}$		$\langle Is \rangle \Diamond \top$	$\mathcal{ML}(\langle sw angle)$
Ŵ	w'	$\langle gs \rangle \Diamond \top$	$\mathcal{ML}(\langle \textit{br} angle)$
W	w'	$\langle sw \rangle \langle sw \rangle \Diamond \Diamond \Diamond \Box \bot$ [br][br] \bot	$\mathcal{ML}(\langle gs angle) \ \mathcal{ML}(\langle ls angle)$
$W \longrightarrow \cdots$	$W' \bullet \longrightarrow \bullet \longrightarrow \cdots$	$\langle sw \rangle \Diamond \Box \bot$	$\mathcal{ML}(\langle \textit{br} angle)$
w • • • • • • • • • • • • • • • • • • •	w' • • • • • • • • • • • • • • • • • • •	$\langle Is angle \Diamond \Box \bot$	$\mathcal{ML}(\langle gs angle)$

It all boils down to that...

Theorem

For all $\blacklozenge_1, \blacklozenge_2 \in \{\langle sw \rangle, \langle gs \rangle, \langle ls \rangle, \langle br \rangle\}$ with $\blacklozenge_1 \neq \blacklozenge_2, \mathcal{ML}(\blacklozenge_1)$ and $\mathcal{ML}(\blacklozenge_2)$ are uncomparable.

 \blacktriangleright It is well known that model checking \mathcal{BML} is only polynomial.

- It is well known that model checking \mathcal{BML} is only polynomial.
- But, what happens with dynamic operators?

- \blacktriangleright It is well known that model checking \mathcal{BML} is only polynomial.
- But, what happens with dynamic operators?
- ▶ Model checking PAL is PSPACE-complete [Balbiani et al. 07].

- ▶ It is well known that model checking BML is only polynomial.
- But, what happens with dynamic operators?
- ▶ Model checking PAL is PSPACE-complete [Balbiani et al. 07].
- ► For global sabotage is PSPACE-complete [Löding & Rohde 03].

- ▶ It is well known that model checking BML is only polynomial.
- But, what happens with dynamic operators?
- ▶ Model checking PAL is PSPACE-complete [Balbiani et al. 07].
- For global sabotage is PSPACE-complete [Löding & Rohde 03].
- Let us prove PSPACE-completeness for local sabotage, bridge and swap logic.

For α a Quantified Boolean Formula with k variables:

For α a Quantified Boolean Formula with k variables:

1. Build \mathcal{M}_k as:

For α a Quantified Boolean Formula with k variables:

1. Build \mathcal{M}_k as:

2. Build a $\mathcal{ML}(\langle sw \rangle)$ formula from a QBF as follows: $(\exists x_i.\alpha)' = \langle sw \rangle (p_i \land \Diamond(\alpha)')$ $(x_i)' = \neg \Diamond (p_i \land p_{\top})$ $(\neg \alpha)' = \neg (\alpha)'$ $(\alpha \land \beta) = (\alpha)' \land (\beta)'$

For α a Quantified Boolean Formula with k variables:

1. Build \mathcal{M}_k as:

2. Build a $\mathcal{ML}(\langle sw \rangle)$ formula from a QBF as follows: $(\exists x_i.\alpha)' = \langle sw \rangle (p_i \land \Diamond(\alpha)')$ $(x_i)' = \neg \Diamond (p_i \land p_{\top})$ $(\neg \alpha)' = \neg (\alpha)'$ $(\alpha \land \beta) = (\alpha)' \land (\beta)'$

3. α is true iff $\mathcal{M}_k, w \models (\alpha)'$

Model checking is PSPACE-complete

We have similar translations for $\mathcal{ML}(\langle gs \rangle)$, $\mathcal{ML}(\langle ls \rangle)$ and $\mathcal{ML}(\langle br \rangle)$.

Model checking is PSPACE-complete

We have similar translations for $\mathcal{ML}(\langle gs \rangle)$, $\mathcal{ML}(\langle ls \rangle)$ and $\mathcal{ML}(\langle br \rangle)$.

Being in *PSPACE* is shown with a depth-first algorithm that follows the definition of \models .

Model checking is PSPACE-complete

We have similar translations for $\mathcal{ML}(\langle gs \rangle)$, $\mathcal{ML}(\langle ls \rangle)$ and $\mathcal{ML}(\langle br \rangle)$.

Being in *PSPACE* is shown with a depth-first algorithm that follows the definition of \models .

Theorem

For $\blacklozenge \in \{\langle sw \rangle, \langle gs \rangle, \langle ls \rangle, \langle br \rangle\}$, model checking for any of the logics $\mathcal{ML}(\blacklozenge)$ is PSPACE-complete.

► These logics have similar features to Sabotage Modal Logic:

These logics have similar features to Sabotage Modal Logic:
 Lack of tree model property.

► These logics have similar features to Sabotage Modal Logic:

- Lack of tree model property.
- PSPACE-complete model checking problem.

- ► These logics have similar features to Sabotage Modal Logic:
 - Lack of tree model property.
 - PSPACE-complete model checking problem.
- They are all uncomparable in expressivity.

- ► These logics have similar features to Sabotage Modal Logic:
 - Lack of tree model property.
 - PSPACE-complete model checking problem.
- They are all uncomparable in expressivity.
- Decidability of the satisfiability problem?

- These logics have similar features to Sabotage Modal Logic:
 - Lack of tree model property.
 - PSPACE-complete model checking problem.
- They are all uncomparable in expressivity.
- Decidability of the satisfiability problem?
 - We have a proof that $\mathcal{ML}(\langle sw \rangle)$ is undecidable.

- These logics have similar features to Sabotage Modal Logic:
 - Lack of tree model property.
 - PSPACE-complete model checking problem.
- They are all uncomparable in expressivity.
- Decidability of the satisfiability problem?
 - We have a proof that $\mathcal{ML}(\langle sw \rangle)$ is undecidable.
 - We don't know yet about $\mathcal{ML}(\langle ls \rangle)$ and $\mathcal{ML}(\langle br \rangle)$.

- These logics have similar features to Sabotage Modal Logic:
 - Lack of tree model property.
 - PSPACE-complete model checking problem.
- They are all uncomparable in expressivity.
- Decidability of the satisfiability problem?
 - We have a proof that $\mathcal{ML}(\langle sw \rangle)$ is undecidable.
 - We don't know yet about $\mathcal{ML}(\langle ls \rangle)$ and $\mathcal{ML}(\langle br \rangle)$.
- Further step: axiomatizations.