Undecidability of Relation-Changing Modal Logics

Carlos Areces!2, Raul Fervaril?, Guillaume Hoffmann!? &
Mauricio Martel3

1 FaMAF, Universidad Nacional de Cérdoba, Argentina
2 CONICET, Argentina
3 Universitit Bremen, Germany

Dali 2017, Brasilia, Brazil

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 1/15

Modal logics: “we like to talk about models”

» Modal logics are known to describe models.
» Choose the right paintbrush:

> 0w, 07
Ep
> <>Zn90
> OFp
>

v

» Now, what about operators that can modify models?
» Change the domain of the model.
» Change the properties of the elements of the domain while we are
evaluating a formula.
» Evaluate ¢ after deleting/adding/swapping around an edge.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017

2/15

Logics that change the model 1/2

What about a swapping modal operator?

(sw)OT OT

w v w 4

What happens when you add that to the basic modal logic?

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017

3/15

Logics that change the model 2/2

What about:

> an edge-deleting modality?

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 4/15

Logics that change the model

What about:

> an edge-deleting modality?
> an edge-adding modality?

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML

2/2

Dali 2017

4/15

Sabotage Modal Logic [van Benthem 2002]

M, w [= (gsb)p iff 3 pair (u,v) of M such that M{_(u W E o,

where My,), is M without the edge (u,v).

Note: (u,v) can be anywhere in the model.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 5/15

Sabotage Modal Logic [van Benthem 2002]

M, w [= (gsb)p iff 3 pair (u,v) of M such that ME(U W E o,

where My,), is M without the edge (u,v).

Note: (u,v) can be anywhere in the model.

What we know [Loding & Rohde 03]:
» Model checking is PSPACE-complete.

» Satisfiability is undecidable (multi-modal case, reduction from PCP).

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML

Dali2017 5/15

Epistemic Operators

» Those are operators that also modify models!

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 6/15

Epistemic Operators

» Those are operators that also modify models!

> [!]e: announce that if ¢ is true, eliminate states of the model where
=) holds (Public Announcement Logic) [Plaza 89].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 6/15

Epistemic Operators

» Those are operators that also modify models!

> [!]e: announce that if ¢ is true, eliminate states of the model where
—1) holds (Public Announcement Logic) [Plaza 89].

» Ow: there is a (-free announcement v such that [!4]p holds
(Arbitrary Public Announcement Logic) [Balbiani et al. 07].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 6/15

Epistemic Operators

\4

Those are operators that also modify models!

v

[!4]p: announce that if ¢ is true, eliminate states of the model where
—1) holds (Public Announcement Logic) [Plaza 89].

Q: there is a O-free announcement 1) such that [!¢]¢ holds
(Arbitrary Public Announcement Logic) [Balbiani et al. 07].

v

v

In some way these operators are deleting states.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 6/15

Epistemic Operators

» Those are operators that also modify models!

> [!]e: announce that if ¢ is true, eliminate states of the model where
—1) holds (Public Announcement Logic) [Plaza 89].

» Ow: there is a (-free announcement v such that [!4]p holds
(Arbitrary Public Announcement Logic) [Balbiani et al. 07].

» In some way these operators are deleting states.

» We will focus on operators that modify the accesibility relation.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 6/15

Meet the operators

Remember the Basic Modal Logic (ML).

» Syntax: propositional language + a modal operator ¢.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 7/15

Meet the operators

Remember the Basic Modal Logic (ML).

» Syntax: propositional language + a modal operator ¢.

» Semantics of Q¢p: traverse some edge, then evaluate .

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML

Dali 2017

7/15

Meet the operators

Remember the Basic Modal Logic (ML).

» Syntax: propositional language + a modal operator ¢.

» Semantics of Q¢p: traverse some edge, then evaluate .

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML

Dali 2017

7/15

Meet the operators

Remember the Basic Modal Logic (ML).

» Syntax: propositional language + a modal operator ¢.
» Semantics of Q¢p: traverse some edge, then evaluate .
Now add new dynamic operators:

» Semantics of global/local swap, sabotage and bridge:

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017

7/15

Meet the operators

Remember the Basic Modal Logic (ML).
» Syntax: propositional language + a modal operator ¢.
» Semantics of Q¢p: traverse some edge, then evaluate .
Now add new dynamic operators:

» Semantics of global/local swap, sabotage and bridge:
> (sw): traverse some edge, turn it around, then evaluate .

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017

7/15

Meet the operators

Remember the Basic Modal Logic (ML).

» Syntax: propositional language + a modal operator ¢.
» Semantics of Q¢p: traverse some edge, then evaluate .
Now add new dynamic operators:

» Semantics of global/local swap, sabotage and bridge:

> (sw): traverse some edge, turn it around, then evaluate .
» (gsw)y: turn around some edge anywhere, then evaluate .

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017

7/15

Meet the operators

Remember the Basic Modal Logic (ML).

» Syntax: propositional language + a modal operator ¢.

» Semantics of Q¢p: traverse some edge, then evaluate .

Now add new dynamic operators:

» Semantics of global/local swap, sabotage and bridge:
> (sw): traverse some edge, turn it around, then evaluate .
» (gsw)y: turn around some edge anywhere, then evaluate .
> (sb)y: traverse some edge, delete it, then evaluate ¢.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017

7/15

Meet the operators

Remember the Basic Modal Logic (ML).

» Syntax: propositional language + a modal operator ¢.

» Semantics of Q¢p: traverse some edge, then evaluate .

Now add new dynamic operators:

» Semantics of global/local swap, sabotage and bridge:
> (sw): traverse some edge, turn it around, then evaluate .
» (gsw)y: turn around some edge anywhere, then evaluate .
> (sb)y: traverse some edge, delete it, then evaluate ¢.
> (gsb)y: delete some edge anywhere, then evaluate .

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017

7/15

Meet the operators

Remember the Basic Modal Logic (ML).

» Syntax: propositional language + a modal operator ¢.

» Semantics of Q¢p: traverse some edge, then evaluate .

Now add new dynamic operators:

» Semantics of global/local swap, sabotage and bridge:

> (sw): traverse some edge, turn it around, then evaluate .
gsw)p: turn around some edge anywhere, then evaluate .
sb)p: traverse some edge, delete it, then evaluate .
gsb)p: delete some edge anywhere, then evaluate .
brye: add a new edge, traverse it, then evaluate ¢.

>
>
>
>

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017

7/15

Meet the operators

Remember the Basic Modal Logic (ML).

» Syntax: propositional language + a modal operator ¢.

» Semantics of Q¢p: traverse some edge, then evaluate .

Now add new dynamic operators:

» Semantics of global/local swap, sabotage and bridge:
> (sw): traverse some edge, turn it around, then evaluate .
» (gsw)y: turn around some edge anywhere, then evaluate .
> (sb)y: traverse some edge, delete it, then evaluate ¢.
> (gsb)y: delete some edge anywhere, then evaluate .
> (br)¢: add a new edge, traverse it, then evaluate .
> (gbr)y: add a new edge, then evaluate ¢.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017

7/15

Very expressive languages

» These languages have been extensively investigated [Ferv14].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 8/15

Very expressive languages

» These languages have been extensively investigated [Ferv14].
» More expressive than ML [AFH12,14].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 8/15

Very expressive languages

» These languages have been extensively investigated [Ferv14].
» More expressive than ML [AFH12,14].
» Model checking is PSPACE-complete. [AFH12].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 8/15

Very expressive languages

» These languages have been extensively investigated [Ferv14].
» More expressive than ML [AFH12,14].
» Model checking is PSPACE-complete. [AFH12].
» They are fragments of FOL [AFH14,15].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 8/15

Very expressive languages

» These languages have been extensively investigated [Ferv14].
» More expressive than ML [AFH12,14].
» Model checking is PSPACE-complete. [AFH12].
» They are fragments of FOL [AFH14,15].
» Non-terminating tableaux systems [AFH13].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 8/15

Very expressive languages

» These languages have been extensively investigated [Ferv14].
» More expressive than ML [AFH12,14].
» Model checking is PSPACE-complete. [AFH12].
» They are fragments of FOL [AFH14,15].
» Non-terminating tableaux systems [AFH13].
» Some undecidability results were known [AFH14].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 8/15

Very expressive languages

» These languages have been extensively investigated [Ferv14].
» More expressive than ML [AFH12,14].
» Model checking is PSPACE-complete. [AFH12].
» They are fragments of FOL [AFH14,15].
» Non-terminating tableaux systems [AFH13].
» Some undecidability results were known [AFH14].
» Translations into Hybrid Logic [AFHM14].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 8/15

Contributions

» We found connections between relation-changing operators and other
dynamics operators (e.g. hybrid and memory logics).

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 9/15

Contributions

» We found connections between relation-changing operators and other
dynamics operators (e.g. hybrid and memory logics).

» We can simulate some notions of binding by
adding/deleting/swapping edges.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 9/15

Contributions

» We found connections between relation-changing operators and other
dynamics operators (e.g. hybrid and memory logics).

» We can simulate some notions of binding by
adding/deleting/swapping edges.

» Then, we prove undecidability of RCML by using a spy point-like
technique + reduction from the undecidable satisfiability problem of

ML(®, ®).

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 9/15

Contributions

» We found connections between relation-changing operators and other
dynamics operators (e.g. hybrid and memory logics).

» We can simulate some notions of binding by
adding/deleting/swapping edges.

» Then, we prove undecidability of RCML by using a spy point-like
technique + reduction from the undecidable satisfiability problem of
ML(®, ®).

» Two steps:

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 9/15

Contributions

» We found connections between relation-changing operators and other
dynamics operators (e.g. hybrid and memory logics).

» We can simulate some notions of binding by
adding/deleting/swapping edges.

» Then, we prove undecidability of RCML by using a spy point-like
technique + reduction from the undecidable satisfiability problem of
ML(®, ®).

» Two steps:

» Adapt the undecidability proof of ALCself to mono-modal memory
logic.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 9/15

Contributions

» We found connections between relation-changing operators and other
dynamics operators (e.g. hybrid and memory logics).

» We can simulate some notions of binding by
adding/deleting/swapping edges.

» Then, we prove undecidability of RCML by using a spy point-like
technique + reduction from the undecidable satisfiability problem of
ML(®, ®).

» Two steps:

» Adapt the undecidability proof of ALCself to mono-modal memory
logic.

> Give a satisfiability preserving translation from memory logic into
relation-changing logics.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 9/15

Memory Logics in a nutshell

Models in ML(®, ®) are extensions of classic Kripke models with a
memory:

» M= (W,R,V,S), with S C W.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 10/15

Memory Logics in a nutshell

Models in ML(®, ®) are extensions of classic Kripke models with a
memory:

» M= (W,R,V,S), with S C W.
In addition to ML, the memory logic ML(®, ®) has two new operators:
» Remember: (W,R,V,S),w = ®¢ iff (W,R,V,SU{w}),w = .

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML

Dali 2017 10/15

Memory Logics in a nutshell

Models in ML(®, ®) are extensions of classic Kripke models with a
memory:

» M= (W,R,V,S), with S C W.
In addition to ML, the memory logic ML(®, ®) has two new operators:

» Remember: (W,R,V,S),w = ®¢ iff (W,R,V,SU{w}),w = .
» Known: (W, R, V.S),wE ® iff wes.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML

Dali 2017 10/15

Memory Logics in a nutshell

Models in ML(®, ®) are extensions of classic Kripke models with a
memory:

» M= (W,R,V,S), with S C W.
In addition to ML, the memory logic ML(®, ®) has two new operators:

» Remember: (W,R,V,S),w = ®¢ iff (W,R,V,SU{w}),w = .
» Known: (W, R, V.S),wE ® iff wes.

Observation

® can be seen as marking a state as visited, and ® as checking if a state
has been visited.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML

Dali 2017 10/15

Memory Logics in a nutshell

Models in ML(®, ®) are extensions of classic Kripke models with a
memory:

» M= (W,R,V,S), with S C W.

In addition to ML, the memory logic ML(®, ®) has two new operators:
» Remember: (W,R,V,S),w = ®¢ iff (W,R,V,SU{w}),w = .
» Known: (W, R, V.S),wE ® iff wes.

Observation

® can be seen as marking a state as visited, and ® as checking if a state
has been visited.

v

Proposition
The satisfiability problem of the memory logic ML(®, ®) is undecidable.

v

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 10/15

Undecidability proofs

Each translation from ML(®, ®) into relation-changing logics proceeds in
two steps:

» A fixed part called Struct, enforces constraints on the structure of the
model.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 11/15

Undecidability proofs

Each translation from ML(®, ®) into relation-changing logics proceeds in
two steps:

» A fixed part called Struct, enforces constraints on the structure of the
model.

» The second part is defined inductively on ML(®, (&)-formulas, and
uses the structure provided by Struct to simulate the ® and ®
operators.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 11/15

Undecidability proofs

Each translation from ML(®, ®) into relation-changing logics proceeds in
two steps:

» A fixed part called Struct, enforces constraints on the structure of the
model.

» The second part is defined inductively on ML(®, (&)-formulas, and

uses the structure provided by Struct to simulate the ® and ®
operators.

Theorem

The satisfiability problem of the six RCML is undecidable. }

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML

Dali 2017 11/15

Undecidability proofs

Each translation from ML(®, ®) into relation-changing logics proceeds in
two steps:

» A fixed part called Struct, enforces constraints on the structure of the
model.

» The second part is defined inductively on ML(®, (&)-formulas, and
uses the structure provided by Struct to simulate the ® and ®
operators.

Theorem
The satisfiability problem of the six RCML is undecidable.

Proof

Satisfiability problem of ML(®, ®) = satisfiability problem of ML(#),
with & € {(sb), (gsb), (br), (gbr), (sw), (gsw) }.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 11/15

Encoding ML(®, ®) with global sabotage

®@—>0Ouwn
@ —>0Ouwn

TN~

CO—~>0un

Structigy () = —sA A O(=s — 0s)

0<i<md(p)

Dali 2017 12/15

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML

Encoding ML(®, ®) with global sabotage

®@—>0Ouwn
®—~>0Ow

P

CO—~>0un

Structigy () = —sA A O(=s — 0s)

0<i<md(p)

Let ¢ be a ML(®, ®)-formula, we define the translation into ML((gsb)):

Tr(gsb) (®) - _‘<>S
Tr<g5b) (OLP) = 0(“5 A Tr(gsb) (W))
Trigsn) (@) = (gsh)(—0s A Trgan (1))

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 12/15

Encoding ML(®, ®) with global sabotage

®@—>0Ouwn

P

=5

®—>0Ouw

CO—~>0un

Structigy () = —sA A O(=s — 0s)

0<i<md(p)

Let ¢ be a ML(®, ®)-formula, we define the translation into ML((gsb)):

Tr(gsb) (®) - _‘<>S
Tr<g5b) (OLP) = 0(“5 A Tr(gsb) (W))
Trigsn) (@) = (gsh)(—0s A Trgan (1))

Then,

 is satisfiable < (Struct(gepy (¢) A Trgsby () is satisfiable

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017

12/15

Encoding ML(®, ®) with local sabotage

eI

AN

O
S

2

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML

o—> -

Struct (gpy =

sAO=s A O0s A [sb][sb](s — O0s)

A O[sb](s — ¢00O=s)

A O0(=s — 0s)

A Olsb](s—[sb](O-s—0O0(s—0¢s)))

A O[sb](s—0O(0-s—0O0(s—¢0=s)))

A O00(s — O¢s) A Od[sb](s — ¢O-s)

Dali 2017 13/15

Encoding ML(®, ®) with local sabotage

ﬁ

\

Trisny (9) = O(¢), with:

(®)'

Struct(py= s AO=s A OOs A [sb][sb](s — 00s)

A O[sb](s — ¢00O=s)

A O0(=s — 0s)

A Olsb](s—[sb](O-s—0O0(s—0¢s)))
A O[sb](s—0O(0-s—0O0(s—¢0=s)))

A O00(s — O¢s) A Od[sb](s — ¢O-s)

_‘OS

OY) = O(=sA(®))
(®v)

(sb)(s A (sb)(—0s A (¥)'))

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 13/15

Encoding ML(®, ®) with local sabotage

ﬁ

\

Trisny (9) = O(¢), with:

(®)' —0s
(09) = O(=sA(¥))
(ov) (sb)(s A (sb)(—0s A (¥)'))

Struct(py= s AO=s A OOs A [sb][sb](s — 00s)

A O[sb](s — ¢O=s)

A O0(—s — 0s)

A Olsb](s—[sb](O-s—0O0(s—0¢s)))
A Olsb](s—»O(0-s—00(s— 00=s)))

A O00(s — O¢s) A Od[sb](s — ¢O-s)

Then,

 is satisfiable iff (Structy A Trspy()) is satisfiable

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 13/15

Other encodings

» Similar translations for the rest of logics.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 14/15

Other encodings

» Similar translations for the rest of logics.

» For local swap we also need a spy point.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 14/15

Other encodings

» Similar translations for the rest of logics.

» For local swap we also need a spy point.

» Global cases and both versions of bridge are more similar to global
sabotage.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 14/15

Other encodings

v

Similar translations for the rest of logics.

v

For local swap we also need a spy point.

v

Global cases and both versions of bridge are more similar to global
sabotage.

v

Proofs are adaptable for other versions of RCML (e.g., change
adjacent edges but don't move).

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 14/15

Ending remarks

-+ Provide undecidability results for the six RCML we investigate.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 15/15

Ending remarks

-+ Provide undecidability results for the six RCML we investigate.

+ Complete the picture of their computational behaviour.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 15/15

Ending remarks

-+ Provide undecidability results for the six RCML we investigate.
+ Complete the picture of their computational behaviour.

+ Improve previous proofs for local swap and global sabotage, avoiding
redundant encodings of the tiling problem or PCP.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 15/15

Ending remarks

-+ Provide undecidability results for the six RCML we investigate.
+ Complete the picture of their computational behaviour.

+ Improve previous proofs for local swap and global sabotage, avoiding
redundant encodings of the tiling problem or PCP.

- Finite satisfiability

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 15/15

Ending remarks

-+ Provide undecidability results for the six RCML we investigate.
+ Complete the picture of their computational behaviour.

+ Improve previous proofs for local swap and global sabotage, avoiding
redundant encodings of the tiling problem or PCP.

- Finite satisfiability
» undecidable for multi-modal sabotage logic

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 15/15

Ending remarks

-+ Provide undecidability results for the six RCML we investigate.
+ Complete the picture of their computational behaviour.

+ Improve previous proofs for local swap and global sabotage, avoiding
redundant encodings of the tiling problem or PCP.

- Finite satisfiability
» undecidable for multi-modal sabotage logic
» decidable for mono-modal local swap/sabotage.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 15/15

Ending remarks

-+ Provide undecidability results for the six RCML we investigate.
+ Complete the picture of their computational behaviour.
+ Improve previous proofs for local swap and global sabotage, avoiding
redundant encodings of the tiling problem or PCP.
- Finite satisfiability
» undecidable for multi-modal sabotage logic
» decidable for mono-modal local swap/sabotage.

- Proof systems.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML Dali 2017 15/15

