
Undecidability of Relation-Changing Modal Logics

Carlos Areces1,2, Raul Fervari1,2, Guillaume Hoffmann1,2 &
Mauricio Martel3

1 FaMAF, Universidad Nacional de Córdoba, Argentina
2 CONICET, Argentina

3 Universität Bremen, Germany

DaĹı 2017, Braśılia, Brazil

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 1/15

Modal logics: “we like to talk about models”

I Modal logics are known to describe models.
I Choose the right paintbrush:

I ♦ϕ, ♦−ϕ
I Eϕ
I ♦≥nϕ
I ♦∗ϕ
I . . .

I Now, what about operators that can modify models?
I Change the domain of the model.
I Change the properties of the elements of the domain while we are

evaluating a formula.
I Evaluate ϕ after deleting/adding/swapping around an edge.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 2/15

Logics that change the model 1/2

What about a swapping modal operator?

w

〈sw〉♦>
v w v

♦>

What happens when you add that to the basic modal logic?

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 3/15

Logics that change the model 2/2

What about:

I an edge-deleting modality?

I an edge-adding modality?

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 4/15

Logics that change the model 2/2

What about:

I an edge-deleting modality?

I an edge-adding modality?

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 4/15

Sabotage Modal Logic [van Benthem 2002]

M,w |= 〈gsb〉ϕ iff ∃ pair (u, v) of M such that M−{(u,v)},w |= ϕ,

where M−{(u,v)} is M without the edge (u, v).

Note: (u, v) can be anywhere in the model.

What we know [Löding & Rohde 03]:

I Model checking is PSPACE-complete.

I Satisfiability is undecidable (multi-modal case, reduction from PCP).

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 5/15

Sabotage Modal Logic [van Benthem 2002]

M,w |= 〈gsb〉ϕ iff ∃ pair (u, v) of M such that M−{(u,v)},w |= ϕ,

where M−{(u,v)} is M without the edge (u, v).

Note: (u, v) can be anywhere in the model.

What we know [Löding & Rohde 03]:

I Model checking is PSPACE-complete.

I Satisfiability is undecidable (multi-modal case, reduction from PCP).

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 5/15

Epistemic Operators

I Those are operators that also modify models!

I [!ψ]ϕ: announce that if ψ is true, eliminate states of the model where
¬ψ holds (Public Announcement Logic) [Plaza 89].

I ♦ϕ: there is a ♦-free announcement ψ such that [!ψ]ϕ holds
(Arbitrary Public Announcement Logic) [Balbiani et al. 07].

I In some way these operators are deleting states.

I We will focus on operators that modify the accesibility relation.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 6/15

Epistemic Operators

I Those are operators that also modify models!

I [!ψ]ϕ: announce that if ψ is true, eliminate states of the model where
¬ψ holds (Public Announcement Logic) [Plaza 89].

I ♦ϕ: there is a ♦-free announcement ψ such that [!ψ]ϕ holds
(Arbitrary Public Announcement Logic) [Balbiani et al. 07].

I In some way these operators are deleting states.

I We will focus on operators that modify the accesibility relation.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 6/15

Epistemic Operators

I Those are operators that also modify models!

I [!ψ]ϕ: announce that if ψ is true, eliminate states of the model where
¬ψ holds (Public Announcement Logic) [Plaza 89].

I ♦ϕ: there is a ♦-free announcement ψ such that [!ψ]ϕ holds
(Arbitrary Public Announcement Logic) [Balbiani et al. 07].

I In some way these operators are deleting states.

I We will focus on operators that modify the accesibility relation.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 6/15

Epistemic Operators

I Those are operators that also modify models!

I [!ψ]ϕ: announce that if ψ is true, eliminate states of the model where
¬ψ holds (Public Announcement Logic) [Plaza 89].

I ♦ϕ: there is a ♦-free announcement ψ such that [!ψ]ϕ holds
(Arbitrary Public Announcement Logic) [Balbiani et al. 07].

I In some way these operators are deleting states.

I We will focus on operators that modify the accesibility relation.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 6/15

Epistemic Operators

I Those are operators that also modify models!

I [!ψ]ϕ: announce that if ψ is true, eliminate states of the model where
¬ψ holds (Public Announcement Logic) [Plaza 89].

I ♦ϕ: there is a ♦-free announcement ψ such that [!ψ]ϕ holds
(Arbitrary Public Announcement Logic) [Balbiani et al. 07].

I In some way these operators are deleting states.

I We will focus on operators that modify the accesibility relation.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 6/15

Meet the operators

Remember the Basic Modal Logic (ML).

I Syntax: propositional language + a modal operator ♦.

I Semantics of ♦ϕ: traverse some edge, then evaluate ϕ.

Now add new dynamic operators:

I Semantics of global/local swap, sabotage and bridge:

I 〈sw〉ϕ: traverse some edge, turn it around, then evaluate ϕ.
I 〈gsw〉ϕ: turn around some edge anywhere, then evaluate ϕ.
I 〈sb〉ϕ: traverse some edge, delete it, then evaluate ϕ.
I 〈gsb〉ϕ: delete some edge anywhere, then evaluate ϕ.
I 〈br〉ϕ: add a new edge, traverse it, then evaluate ϕ.
I 〈gbr〉ϕ: add a new edge, then evaluate ϕ.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 7/15

Meet the operators

Remember the Basic Modal Logic (ML).

I Syntax: propositional language + a modal operator ♦.

I Semantics of ♦ϕ: traverse some edge, then evaluate ϕ.

Now add new dynamic operators:

I Semantics of global/local swap, sabotage and bridge:

I 〈sw〉ϕ: traverse some edge, turn it around, then evaluate ϕ.
I 〈gsw〉ϕ: turn around some edge anywhere, then evaluate ϕ.
I 〈sb〉ϕ: traverse some edge, delete it, then evaluate ϕ.
I 〈gsb〉ϕ: delete some edge anywhere, then evaluate ϕ.
I 〈br〉ϕ: add a new edge, traverse it, then evaluate ϕ.
I 〈gbr〉ϕ: add a new edge, then evaluate ϕ.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 7/15

Meet the operators

Remember the Basic Modal Logic (ML).

I Syntax: propositional language + a modal operator ♦.

I Semantics of ♦ϕ: traverse some edge, then evaluate ϕ.

Now add new dynamic operators:

I Semantics of global/local swap, sabotage and bridge:

I 〈sw〉ϕ: traverse some edge, turn it around, then evaluate ϕ.
I 〈gsw〉ϕ: turn around some edge anywhere, then evaluate ϕ.
I 〈sb〉ϕ: traverse some edge, delete it, then evaluate ϕ.
I 〈gsb〉ϕ: delete some edge anywhere, then evaluate ϕ.
I 〈br〉ϕ: add a new edge, traverse it, then evaluate ϕ.
I 〈gbr〉ϕ: add a new edge, then evaluate ϕ.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 7/15

Meet the operators

Remember the Basic Modal Logic (ML).

I Syntax: propositional language + a modal operator ♦.

I Semantics of ♦ϕ: traverse some edge, then evaluate ϕ.

Now add new dynamic operators:

I Semantics of global/local swap, sabotage and bridge:

I 〈sw〉ϕ: traverse some edge, turn it around, then evaluate ϕ.
I 〈gsw〉ϕ: turn around some edge anywhere, then evaluate ϕ.
I 〈sb〉ϕ: traverse some edge, delete it, then evaluate ϕ.
I 〈gsb〉ϕ: delete some edge anywhere, then evaluate ϕ.
I 〈br〉ϕ: add a new edge, traverse it, then evaluate ϕ.
I 〈gbr〉ϕ: add a new edge, then evaluate ϕ.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 7/15

Meet the operators

Remember the Basic Modal Logic (ML).

I Syntax: propositional language + a modal operator ♦.

I Semantics of ♦ϕ: traverse some edge, then evaluate ϕ.

Now add new dynamic operators:

I Semantics of global/local swap, sabotage and bridge:
I 〈sw〉ϕ: traverse some edge, turn it around, then evaluate ϕ.

I 〈gsw〉ϕ: turn around some edge anywhere, then evaluate ϕ.
I 〈sb〉ϕ: traverse some edge, delete it, then evaluate ϕ.
I 〈gsb〉ϕ: delete some edge anywhere, then evaluate ϕ.
I 〈br〉ϕ: add a new edge, traverse it, then evaluate ϕ.
I 〈gbr〉ϕ: add a new edge, then evaluate ϕ.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 7/15

Meet the operators

Remember the Basic Modal Logic (ML).

I Syntax: propositional language + a modal operator ♦.

I Semantics of ♦ϕ: traverse some edge, then evaluate ϕ.

Now add new dynamic operators:

I Semantics of global/local swap, sabotage and bridge:
I 〈sw〉ϕ: traverse some edge, turn it around, then evaluate ϕ.
I 〈gsw〉ϕ: turn around some edge anywhere, then evaluate ϕ.

I 〈sb〉ϕ: traverse some edge, delete it, then evaluate ϕ.
I 〈gsb〉ϕ: delete some edge anywhere, then evaluate ϕ.
I 〈br〉ϕ: add a new edge, traverse it, then evaluate ϕ.
I 〈gbr〉ϕ: add a new edge, then evaluate ϕ.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 7/15

Meet the operators

Remember the Basic Modal Logic (ML).

I Syntax: propositional language + a modal operator ♦.

I Semantics of ♦ϕ: traverse some edge, then evaluate ϕ.

Now add new dynamic operators:

I Semantics of global/local swap, sabotage and bridge:
I 〈sw〉ϕ: traverse some edge, turn it around, then evaluate ϕ.
I 〈gsw〉ϕ: turn around some edge anywhere, then evaluate ϕ.
I 〈sb〉ϕ: traverse some edge, delete it, then evaluate ϕ.

I 〈gsb〉ϕ: delete some edge anywhere, then evaluate ϕ.
I 〈br〉ϕ: add a new edge, traverse it, then evaluate ϕ.
I 〈gbr〉ϕ: add a new edge, then evaluate ϕ.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 7/15

Meet the operators

Remember the Basic Modal Logic (ML).

I Syntax: propositional language + a modal operator ♦.

I Semantics of ♦ϕ: traverse some edge, then evaluate ϕ.

Now add new dynamic operators:

I Semantics of global/local swap, sabotage and bridge:
I 〈sw〉ϕ: traverse some edge, turn it around, then evaluate ϕ.
I 〈gsw〉ϕ: turn around some edge anywhere, then evaluate ϕ.
I 〈sb〉ϕ: traverse some edge, delete it, then evaluate ϕ.
I 〈gsb〉ϕ: delete some edge anywhere, then evaluate ϕ.

I 〈br〉ϕ: add a new edge, traverse it, then evaluate ϕ.
I 〈gbr〉ϕ: add a new edge, then evaluate ϕ.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 7/15

Meet the operators

Remember the Basic Modal Logic (ML).

I Syntax: propositional language + a modal operator ♦.

I Semantics of ♦ϕ: traverse some edge, then evaluate ϕ.

Now add new dynamic operators:

I Semantics of global/local swap, sabotage and bridge:
I 〈sw〉ϕ: traverse some edge, turn it around, then evaluate ϕ.
I 〈gsw〉ϕ: turn around some edge anywhere, then evaluate ϕ.
I 〈sb〉ϕ: traverse some edge, delete it, then evaluate ϕ.
I 〈gsb〉ϕ: delete some edge anywhere, then evaluate ϕ.
I 〈br〉ϕ: add a new edge, traverse it, then evaluate ϕ.

I 〈gbr〉ϕ: add a new edge, then evaluate ϕ.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 7/15

Meet the operators

Remember the Basic Modal Logic (ML).

I Syntax: propositional language + a modal operator ♦.

I Semantics of ♦ϕ: traverse some edge, then evaluate ϕ.

Now add new dynamic operators:

I Semantics of global/local swap, sabotage and bridge:
I 〈sw〉ϕ: traverse some edge, turn it around, then evaluate ϕ.
I 〈gsw〉ϕ: turn around some edge anywhere, then evaluate ϕ.
I 〈sb〉ϕ: traverse some edge, delete it, then evaluate ϕ.
I 〈gsb〉ϕ: delete some edge anywhere, then evaluate ϕ.
I 〈br〉ϕ: add a new edge, traverse it, then evaluate ϕ.
I 〈gbr〉ϕ: add a new edge, then evaluate ϕ.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 7/15

Very expressive languages

I These languages have been extensively investigated [Ferv14].

I More expressive than ML [AFH12,14].

I Model checking is PSPACE-complete. [AFH12].

I They are fragments of FOL [AFH14,15].

I Non-terminating tableaux systems [AFH13].

I Some undecidability results were known [AFH14].

I Translations into Hybrid Logic [AFHM14].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 8/15

Very expressive languages

I These languages have been extensively investigated [Ferv14].

I More expressive than ML [AFH12,14].

I Model checking is PSPACE-complete. [AFH12].

I They are fragments of FOL [AFH14,15].

I Non-terminating tableaux systems [AFH13].

I Some undecidability results were known [AFH14].

I Translations into Hybrid Logic [AFHM14].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 8/15

Very expressive languages

I These languages have been extensively investigated [Ferv14].

I More expressive than ML [AFH12,14].

I Model checking is PSPACE-complete. [AFH12].

I They are fragments of FOL [AFH14,15].

I Non-terminating tableaux systems [AFH13].

I Some undecidability results were known [AFH14].

I Translations into Hybrid Logic [AFHM14].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 8/15

Very expressive languages

I These languages have been extensively investigated [Ferv14].

I More expressive than ML [AFH12,14].

I Model checking is PSPACE-complete. [AFH12].

I They are fragments of FOL [AFH14,15].

I Non-terminating tableaux systems [AFH13].

I Some undecidability results were known [AFH14].

I Translations into Hybrid Logic [AFHM14].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 8/15

Very expressive languages

I These languages have been extensively investigated [Ferv14].

I More expressive than ML [AFH12,14].

I Model checking is PSPACE-complete. [AFH12].

I They are fragments of FOL [AFH14,15].

I Non-terminating tableaux systems [AFH13].

I Some undecidability results were known [AFH14].

I Translations into Hybrid Logic [AFHM14].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 8/15

Very expressive languages

I These languages have been extensively investigated [Ferv14].

I More expressive than ML [AFH12,14].

I Model checking is PSPACE-complete. [AFH12].

I They are fragments of FOL [AFH14,15].

I Non-terminating tableaux systems [AFH13].

I Some undecidability results were known [AFH14].

I Translations into Hybrid Logic [AFHM14].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 8/15

Very expressive languages

I These languages have been extensively investigated [Ferv14].

I More expressive than ML [AFH12,14].

I Model checking is PSPACE-complete. [AFH12].

I They are fragments of FOL [AFH14,15].

I Non-terminating tableaux systems [AFH13].

I Some undecidability results were known [AFH14].

I Translations into Hybrid Logic [AFHM14].

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 8/15

Contributions

I We found connections between relation-changing operators and other
dynamics operators (e.g. hybrid and memory logics).

I We can simulate some notions of binding by
adding/deleting/swapping edges.

I Then, we prove undecidability of RCML by using a spy point-like
technique + reduction from the undecidable satisfiability problem of
ML(r , k).

I Two steps:

I Adapt the undecidability proof of ALCself to mono-modal memory
logic.

I Give a satisfiability preserving translation from memory logic into
relation-changing logics.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 9/15

Contributions

I We found connections between relation-changing operators and other
dynamics operators (e.g. hybrid and memory logics).

I We can simulate some notions of binding by
adding/deleting/swapping edges.

I Then, we prove undecidability of RCML by using a spy point-like
technique + reduction from the undecidable satisfiability problem of
ML(r , k).

I Two steps:

I Adapt the undecidability proof of ALCself to mono-modal memory
logic.

I Give a satisfiability preserving translation from memory logic into
relation-changing logics.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 9/15

Contributions

I We found connections between relation-changing operators and other
dynamics operators (e.g. hybrid and memory logics).

I We can simulate some notions of binding by
adding/deleting/swapping edges.

I Then, we prove undecidability of RCML by using a spy point-like
technique + reduction from the undecidable satisfiability problem of
ML(r , k).

I Two steps:

I Adapt the undecidability proof of ALCself to mono-modal memory
logic.

I Give a satisfiability preserving translation from memory logic into
relation-changing logics.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 9/15

Contributions

I We found connections between relation-changing operators and other
dynamics operators (e.g. hybrid and memory logics).

I We can simulate some notions of binding by
adding/deleting/swapping edges.

I Then, we prove undecidability of RCML by using a spy point-like
technique + reduction from the undecidable satisfiability problem of
ML(r , k).

I Two steps:

I Adapt the undecidability proof of ALCself to mono-modal memory
logic.

I Give a satisfiability preserving translation from memory logic into
relation-changing logics.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 9/15

Contributions

I We found connections between relation-changing operators and other
dynamics operators (e.g. hybrid and memory logics).

I We can simulate some notions of binding by
adding/deleting/swapping edges.

I Then, we prove undecidability of RCML by using a spy point-like
technique + reduction from the undecidable satisfiability problem of
ML(r , k).

I Two steps:
I Adapt the undecidability proof of ALCself to mono-modal memory

logic.

I Give a satisfiability preserving translation from memory logic into
relation-changing logics.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 9/15

Contributions

I We found connections between relation-changing operators and other
dynamics operators (e.g. hybrid and memory logics).

I We can simulate some notions of binding by
adding/deleting/swapping edges.

I Then, we prove undecidability of RCML by using a spy point-like
technique + reduction from the undecidable satisfiability problem of
ML(r , k).

I Two steps:
I Adapt the undecidability proof of ALCself to mono-modal memory

logic.
I Give a satisfiability preserving translation from memory logic into

relation-changing logics.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 9/15

Memory Logics in a nutshell

Models in ML(r , k) are extensions of classic Kripke models with a
memory:

I M = 〈W ,R,V , S〉, with S ⊆W .

In addition to ML, the memory logic ML(r , k) has two new operators:

I Remember: 〈W ,R,V ,S〉,w |= r ϕ iff 〈W ,R,V ,S ∪ {w}〉,w |= ϕ.

I Known: 〈W ,R,V ,S〉,w |= k iff w ∈ S .

Observation

r can be seen as marking a state as visited, and k as checking if a state
has been visited.

Proposition

The satisfiability problem of the memory logic ML(r , k) is undecidable.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 10/15

Memory Logics in a nutshell

Models in ML(r , k) are extensions of classic Kripke models with a
memory:

I M = 〈W ,R,V , S〉, with S ⊆W .

In addition to ML, the memory logic ML(r , k) has two new operators:

I Remember: 〈W ,R,V ,S〉,w |= r ϕ iff 〈W ,R,V ,S ∪ {w}〉,w |= ϕ.

I Known: 〈W ,R,V ,S〉,w |= k iff w ∈ S .

Observation

r can be seen as marking a state as visited, and k as checking if a state
has been visited.

Proposition

The satisfiability problem of the memory logic ML(r , k) is undecidable.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 10/15

Memory Logics in a nutshell

Models in ML(r , k) are extensions of classic Kripke models with a
memory:

I M = 〈W ,R,V , S〉, with S ⊆W .

In addition to ML, the memory logic ML(r , k) has two new operators:

I Remember: 〈W ,R,V ,S〉,w |= r ϕ iff 〈W ,R,V ,S ∪ {w}〉,w |= ϕ.

I Known: 〈W ,R,V ,S〉,w |= k iff w ∈ S .

Observation

r can be seen as marking a state as visited, and k as checking if a state
has been visited.

Proposition

The satisfiability problem of the memory logic ML(r , k) is undecidable.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 10/15

Memory Logics in a nutshell

Models in ML(r , k) are extensions of classic Kripke models with a
memory:

I M = 〈W ,R,V , S〉, with S ⊆W .

In addition to ML, the memory logic ML(r , k) has two new operators:

I Remember: 〈W ,R,V ,S〉,w |= r ϕ iff 〈W ,R,V ,S ∪ {w}〉,w |= ϕ.

I Known: 〈W ,R,V ,S〉,w |= k iff w ∈ S .

Observation

r can be seen as marking a state as visited, and k as checking if a state
has been visited.

Proposition

The satisfiability problem of the memory logic ML(r , k) is undecidable.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 10/15

Memory Logics in a nutshell

Models in ML(r , k) are extensions of classic Kripke models with a
memory:

I M = 〈W ,R,V , S〉, with S ⊆W .

In addition to ML, the memory logic ML(r , k) has two new operators:

I Remember: 〈W ,R,V ,S〉,w |= r ϕ iff 〈W ,R,V ,S ∪ {w}〉,w |= ϕ.

I Known: 〈W ,R,V ,S〉,w |= k iff w ∈ S .

Observation

r can be seen as marking a state as visited, and k as checking if a state
has been visited.

Proposition

The satisfiability problem of the memory logic ML(r , k) is undecidable.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 10/15

Undecidability proofs

Each translation from ML(r , k) into relation-changing logics proceeds in
two steps:

I A fixed part called Struct, enforces constraints on the structure of the
model.

I The second part is defined inductively on ML(r , k)-formulas, and
uses the structure provided by Struct to simulate the r and k

operators.

Theorem

The satisfiability problem of the six RCML is undecidable.

Proof

Satisfiability problem of ML(r , k) ⇒ satisfiability problem of ML(�),
with � ∈ {〈sb〉, 〈gsb〉, 〈br〉, 〈gbr〉, 〈sw〉, 〈gsw〉}.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 11/15

Undecidability proofs

Each translation from ML(r , k) into relation-changing logics proceeds in
two steps:

I A fixed part called Struct, enforces constraints on the structure of the
model.

I The second part is defined inductively on ML(r , k)-formulas, and
uses the structure provided by Struct to simulate the r and k

operators.

Theorem

The satisfiability problem of the six RCML is undecidable.

Proof

Satisfiability problem of ML(r , k) ⇒ satisfiability problem of ML(�),
with � ∈ {〈sb〉, 〈gsb〉, 〈br〉, 〈gbr〉, 〈sw〉, 〈gsw〉}.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 11/15

Undecidability proofs

Each translation from ML(r , k) into relation-changing logics proceeds in
two steps:

I A fixed part called Struct, enforces constraints on the structure of the
model.

I The second part is defined inductively on ML(r , k)-formulas, and
uses the structure provided by Struct to simulate the r and k

operators.

Theorem

The satisfiability problem of the six RCML is undecidable.

Proof

Satisfiability problem of ML(r , k) ⇒ satisfiability problem of ML(�),
with � ∈ {〈sb〉, 〈gsb〉, 〈br〉, 〈gbr〉, 〈sw〉, 〈gsw〉}.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 11/15

Undecidability proofs

Each translation from ML(r , k) into relation-changing logics proceeds in
two steps:

I A fixed part called Struct, enforces constraints on the structure of the
model.

I The second part is defined inductively on ML(r , k)-formulas, and
uses the structure provided by Struct to simulate the r and k

operators.

Theorem

The satisfiability problem of the six RCML is undecidable.

Proof

Satisfiability problem of ML(r , k) ⇒ satisfiability problem of ML(�),
with � ∈ {〈sb〉, 〈gsb〉, 〈br〉, 〈gbr〉, 〈sw〉, 〈gsw〉}.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 11/15

Encoding ML(r , k) with global sabotage

ϕ
. . .

s s

s

Struct〈gsb〉(ϕ) = ¬s ∧
∧

0≤i≤md(ϕ)

�i (¬s → ♦s)

Let ϕ be a ML(r , k)-formula, we define the translation into ML(〈gsb〉):

Tr〈gsb〉(k) = ¬♦s
Tr〈gsb〉(♦ϕ) = ♦(¬s ∧ Tr〈gsb〉(ϕ))
Tr〈gsb〉(r ϕ) = 〈gsb〉(¬♦s ∧ Tr〈gsb〉(ϕ))

Then,
ϕ is satisfiable ⇔ (Struct〈gsb〉(ϕ) ∧ Tr〈gsb〉(ϕ)) is satisfiable

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 12/15

Encoding ML(r , k) with global sabotage

ϕ
. . .

s s

s

Struct〈gsb〉(ϕ) = ¬s ∧
∧

0≤i≤md(ϕ)

�i (¬s → ♦s)

Let ϕ be a ML(r , k)-formula, we define the translation into ML(〈gsb〉):

Tr〈gsb〉(k) = ¬♦s
Tr〈gsb〉(♦ϕ) = ♦(¬s ∧ Tr〈gsb〉(ϕ))
Tr〈gsb〉(r ϕ) = 〈gsb〉(¬♦s ∧ Tr〈gsb〉(ϕ))

Then,
ϕ is satisfiable ⇔ (Struct〈gsb〉(ϕ) ∧ Tr〈gsb〉(ϕ)) is satisfiable

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 12/15

Encoding ML(r , k) with global sabotage

ϕ
. . .

s s

s

Struct〈gsb〉(ϕ) = ¬s ∧
∧

0≤i≤md(ϕ)

�i (¬s → ♦s)

Let ϕ be a ML(r , k)-formula, we define the translation into ML(〈gsb〉):

Tr〈gsb〉(k) = ¬♦s
Tr〈gsb〉(♦ϕ) = ♦(¬s ∧ Tr〈gsb〉(ϕ))
Tr〈gsb〉(r ϕ) = 〈gsb〉(¬♦s ∧ Tr〈gsb〉(ϕ))

Then,
ϕ is satisfiable ⇔ (Struct〈gsb〉(ϕ) ∧ Tr〈gsb〉(ϕ)) is satisfiable

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 12/15

Encoding ML(r , k) with local sabotage

ϕ
. . .

s

Struct〈sb〉= s ∧ �¬s ∧ �♦s ∧ [sb][sb](s → �♦s)

∧ �[sb](s → ♦�¬s)
∧ ��(¬s → ♦s)
∧ �[sb](s→[sb](�¬s→��(s→�♦s)))
∧ �[sb](s→�(�¬s→��(s→♦�¬s)))
∧ ���(s → �♦s) ∧ ��[sb](s → ♦�¬s)

Tr〈sb〉(ϕ) = ♦(ϕ)′, with:

(k)′ = ¬♦s
(♦ψ)′ = ♦(¬s ∧ (ψ)′)
(r ψ)′ = 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (ψ)′))

Then,
ϕ is satisfiable iff (Struct〈sb〉 ∧ Tr〈sb〉(ϕ)) is satisfiable

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 13/15

Encoding ML(r , k) with local sabotage

ϕ
. . .

s

Struct〈sb〉= s ∧ �¬s ∧ �♦s ∧ [sb][sb](s → �♦s)

∧ �[sb](s → ♦�¬s)
∧ ��(¬s → ♦s)
∧ �[sb](s→[sb](�¬s→��(s→�♦s)))
∧ �[sb](s→�(�¬s→��(s→♦�¬s)))
∧ ���(s → �♦s) ∧ ��[sb](s → ♦�¬s)

Tr〈sb〉(ϕ) = ♦(ϕ)′, with:

(k)′ = ¬♦s
(♦ψ)′ = ♦(¬s ∧ (ψ)′)
(r ψ)′ = 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (ψ)′))

Then,
ϕ is satisfiable iff (Struct〈sb〉 ∧ Tr〈sb〉(ϕ)) is satisfiable

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 13/15

Encoding ML(r , k) with local sabotage

ϕ
. . .

s

Struct〈sb〉= s ∧ �¬s ∧ �♦s ∧ [sb][sb](s → �♦s)

∧ �[sb](s → ♦�¬s)
∧ ��(¬s → ♦s)
∧ �[sb](s→[sb](�¬s→��(s→�♦s)))
∧ �[sb](s→�(�¬s→��(s→♦�¬s)))
∧ ���(s → �♦s) ∧ ��[sb](s → ♦�¬s)

Tr〈sb〉(ϕ) = ♦(ϕ)′, with:

(k)′ = ¬♦s
(♦ψ)′ = ♦(¬s ∧ (ψ)′)
(r ψ)′ = 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (ψ)′))

Then,
ϕ is satisfiable iff (Struct〈sb〉 ∧ Tr〈sb〉(ϕ)) is satisfiable

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 13/15

Other encodings

I Similar translations for the rest of logics.

I For local swap we also need a spy point.

I Global cases and both versions of bridge are more similar to global
sabotage.

I Proofs are adaptable for other versions of RCML (e.g., change
adjacent edges but don’t move).

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 14/15

Other encodings

I Similar translations for the rest of logics.

I For local swap we also need a spy point.

I Global cases and both versions of bridge are more similar to global
sabotage.

I Proofs are adaptable for other versions of RCML (e.g., change
adjacent edges but don’t move).

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 14/15

Other encodings

I Similar translations for the rest of logics.

I For local swap we also need a spy point.

I Global cases and both versions of bridge are more similar to global
sabotage.

I Proofs are adaptable for other versions of RCML (e.g., change
adjacent edges but don’t move).

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 14/15

Other encodings

I Similar translations for the rest of logics.

I For local swap we also need a spy point.

I Global cases and both versions of bridge are more similar to global
sabotage.

I Proofs are adaptable for other versions of RCML (e.g., change
adjacent edges but don’t move).

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 14/15

Ending remarks

+ Provide undecidability results for the six RCML we investigate.

+ Complete the picture of their computational behaviour.

+ Improve previous proofs for local swap and global sabotage, avoiding
redundant encodings of the tiling problem or PCP.

- Finite satisfiability

I undecidable for multi-modal sabotage logic
I decidable for mono-modal local swap/sabotage.

- Proof systems.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 15/15

Ending remarks

+ Provide undecidability results for the six RCML we investigate.

+ Complete the picture of their computational behaviour.

+ Improve previous proofs for local swap and global sabotage, avoiding
redundant encodings of the tiling problem or PCP.

- Finite satisfiability

I undecidable for multi-modal sabotage logic
I decidable for mono-modal local swap/sabotage.

- Proof systems.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 15/15

Ending remarks

+ Provide undecidability results for the six RCML we investigate.

+ Complete the picture of their computational behaviour.

+ Improve previous proofs for local swap and global sabotage, avoiding
redundant encodings of the tiling problem or PCP.

- Finite satisfiability

I undecidable for multi-modal sabotage logic
I decidable for mono-modal local swap/sabotage.

- Proof systems.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 15/15

Ending remarks

+ Provide undecidability results for the six RCML we investigate.

+ Complete the picture of their computational behaviour.

+ Improve previous proofs for local swap and global sabotage, avoiding
redundant encodings of the tiling problem or PCP.

- Finite satisfiability

I undecidable for multi-modal sabotage logic
I decidable for mono-modal local swap/sabotage.

- Proof systems.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 15/15

Ending remarks

+ Provide undecidability results for the six RCML we investigate.

+ Complete the picture of their computational behaviour.

+ Improve previous proofs for local swap and global sabotage, avoiding
redundant encodings of the tiling problem or PCP.

- Finite satisfiability
I undecidable for multi-modal sabotage logic

I decidable for mono-modal local swap/sabotage.

- Proof systems.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 15/15

Ending remarks

+ Provide undecidability results for the six RCML we investigate.

+ Complete the picture of their computational behaviour.

+ Improve previous proofs for local swap and global sabotage, avoiding
redundant encodings of the tiling problem or PCP.

- Finite satisfiability
I undecidable for multi-modal sabotage logic
I decidable for mono-modal local swap/sabotage.

- Proof systems.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 15/15

Ending remarks

+ Provide undecidability results for the six RCML we investigate.

+ Complete the picture of their computational behaviour.

+ Improve previous proofs for local swap and global sabotage, avoiding
redundant encodings of the tiling problem or PCP.

- Finite satisfiability
I undecidable for multi-modal sabotage logic
I decidable for mono-modal local swap/sabotage.

- Proof systems.

C. Areces, R. Fervari, G. Hoffmann & M. Martel: Undecidability of RCML DaĹı 2017 15/15

