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In this talk

I Introduce the language HXPath, an extension of XPath with hybrid
operators

I Introduce an axiomatic system

I Prove completeness via a Henkin-style construction

I A tableaux calculus for HXPath

I Discuss future work
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XPath as a modal language

I XPath is one of the most used query languages for XML documents.

I XML documents are trees (relational structures).

I Core-XPath: fragment that can express properties on the underlying
tree structure

I It is essentially a modal language (such as LTL, PDL).

I Sometimes not expressive enough, e.g.: the join in database theory,
cannot be implemented without access to the data attributes.

I Core-Data-XPath (here XPath=) extends Core-XPath with = and 6=
comparisons for data.
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Data Trees

a, 0

b, 2

i , 1 b, 0 a, 0

a, 1

x

y z

u v w

Figure: An example of a data tree.
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Data Trees and structural properties

a, 0

b, 2

i , 1 b, 0 a, 0

a, 1

x

y z

u v w

Figure: An example of a data tree.

I x has a child labeled by a (in modal logic, ♦a).

I x has a two-steps descendant labeled by b and no child labeled by c (♦♦b ∧ ¬♦c).

I Node named by i has no successors (in hybrid logic, @i¬♦>).

I We cannot talk about data values.
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Data Trees and data properties

a, 0

b, 2

i , 1 b, 0 a, 0

a, 1

x

y z

u v w

Figure: An example of a data tree.

If we evaluate the expressions at x , we have:

I There is a one-step succesor, and a two-steps succesor, with the same data value (in
XPath= 〈↓ = ↓↓〉).

I There is a child labeled by a and a child labeled by b, which have different data values:
〈↓[a] 6= ↓[b]〉.

I Notice we cannot say something like 〈↓ = 2〉!.
I But, with HXPath=(↑↓) we will able to say that there is a child with the same data as the

node named i : 〈↓ = @i 〉.
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Hybrid Data Models

Definition

Let LAB and NOM be two infinite, disjoint countable sets.
A concrete hybrid data model is a tuple M = 〈M,D,→, label , nom, data〉,
where
I M is a non-empty set of elements
I D is a non-empty set of data
I → ⊆ M ×M is the accessibility relation
I label : M → 2LAB is the labeling function,
I nom : NOM→ M is a function which names some nodes
I data : M → D is the function which assigns a data value to each node.

An abstract hybrid data model is a tuple M = 〈M,∼,→, label , nom〉,
where ∼ ⊆ M ×M is an equivalence relation between elements of M.
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Syntax

Definition

The set of path expressions and node expressions of HXPath=(↑↓) are
defined by mutual recursion as follows:

α, β ::= ↓ | ↑ | @i | [ϕ] | αβ
ϕ, ψ ::= a | i | ¬ϕ | ϕ ∧ ψ | 〈α = β〉 | 〈α 6= β〉, a ∈ LAB, i ∈ NOM.

Node Expressions

> ≡ p ∨ ¬p
⊥ ≡ ¬>

〈α〉ϕ ≡ 〈α[ϕ] = α[ϕ]〉
[α]ϕ ≡ ¬〈α〉¬ϕ
@iϕ ≡ 〈@i 〉ϕ

Path Expressions

ε ≡ [>]
〈γ1(α ∪ β)γ2 ∗ γ3〉 ≡ 〈γ1αγ2 ∗ γ3〉 ∨ 〈γ1βγ2 ∗ γ3〉
〈γ1 ∗ γ2(α ∪ β)γ3〉 ≡ 〈γ1 ∗ γ2αγ3〉 ∨ 〈γ1 ∗ γ2βγ3〉
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Semantics

Definition

Let M = 〈M,∼,→, label , nom〉, and x , y ∈ M.
M, x , y |= ↓ iff x → y
M, x , y |= ↑ iff y → x

M, x , y |= @i iff nom(i) = y
M, x , y |= [ϕ] iff x = y and M, x |= ϕ
M, x , y |= αβ iff ∃z ∈ M s.t. M, x , z |= α and M, z , y |= β
M, x |= a iff a ∈ label(x)
M, x |= i iff nom(i) = x
M, x |= ¬ϕ iff M, x 6|= ϕ

M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ
M, x |= 〈α = β〉 iff ∃y , z ∈ M s.t. M, x , y |= α, M, x , z |= β and y ∼ z
M, x |= 〈α 6= β〉 iff ∃y , z ∈ M s.t. M, x , y |= α, M, x , z |= β and y 6∼ z .

Notice:
M, x |= @iϕ iff M, nom(i) |= ϕ
M, x |= 〈δ〉ϕ iff ∃y ∈ M s.t. xδy and M, y |= ϕ
M, x |= [δ]ϕ iff ∀y ∈ M, xδy then M, y |= ϕ.
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Examples

Example

Some HXPath=(↑↓) expressions together with their intuitive meaning:

α[i ] There exists an α path between the current point of
evaluation and the node named i .

@iα There exists an α path between the node named i and
some other node.

〈@i = @j〉 The node named i has the same data than the node named j .
〈α = @iβ〉 There exists a node accessible from the current point of

evaluation by an α path that has the same data than a node
accessible from the point named i by a β path.
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Axiomatization
In addition to an arbitrary set of axiom and rule schemes for propositional
logic, we include generalizations of the K axiom and the Necessitation rule
for the basic modal logic to handle modalities with arbitrary path
expressions. We call the system HXP.

Axiom and rule for classical modal logic

K [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)
` ϕ

Nec
` [α]ϕ

We include also the standard axioms for future and past operators.

Axioms for ↓, ↑-interaction
down-up ϕ→ [↓]〈↑〉ϕ
up-down ϕ→ [↑]〈↓〉ϕ
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Rules for hybrid operators

Then we introduce generalizations of the rules for the hybrid logic HL(@).

Hybrid rules

` j → ϕ
name

` ϕ

` @i 〈γ〉j ∧ 〈@jα ∗ β〉 → θ
paste

` 〈@iγα ∗ β〉 → θ

j is a nominal different from i that does not occur in ϕ, θ, α, β, γ.
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Axioms for @

Now we introduce axioms that handle @. Notice that @i is a path
expression of HXPath=(↑↓) and as a result, some of the standard hybrid
axioms for @ have been generalized. In particular, the K axiom and Nec
rule above also apply to @i . In addition, we provide axioms to ensure that
the relation induced by @ is a congruence.

Axioms for @ Congruence for @

@-self-dual ¬@iϕ↔ @i¬ϕ
@-intro i ∧ ϕ→ @iϕ

@-refl. @i i
@-sym. @i j → @j i
nom @i j ∧ 〈@iα ∗ β〉 → 〈@jα ∗ β〉
agree 〈@j@iα ∗ β〉 ↔ 〈@iα ∗ β〉
back 〈γ@iα ∗ β〉 → 〈@iα ∗ β〉
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Axioms for XPath
We introduce axioms to handle complex path expressions in data
comparisons. Finally, we introduce axioms to handle data tests.

Axioms for paths
comp-assoc 〈(αβ)γ ∗ η〉 ↔ 〈α(βγ) ∗ η〉
comp-neutral 〈αβ ∗ γ〉 ↔ 〈αεβ ∗ γ〉 (α or β can be empty)
comp-dist 〈αβ〉ϕ↔ 〈α〉〈β〉ϕ

Axioms for data
equal 〈ε = ε〉
distinct ¬〈ε 6= ε〉
@-data ¬〈@i=@j〉 ↔ 〈@i 6=@j〉
ε-trans 〈ε = α〉 ∧ 〈ε = β〉 → 〈α = β〉
∗-comm 〈α ∗ β〉 ↔ 〈β ∗ α〉
∗-test 〈[ϕ]α ∗ β〉 ↔ ϕ ∧ 〈α ∗ β〉
@∗-dist 〈@iα ∗ @iβ〉 → @i 〈α ∗ β〉
subpath 〈αβ ∗ γ〉 → 〈α〉>
comp∗-dist 〈α〉〈β ∗ γ〉 → 〈αβ ∗ αγ〉
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Some natural theorems

Proposition

The following formulas are theorems in HXP.

1. test-dist ` 〈[ϕ] = [ψ]〉 ↔ ϕ ∧ ψ
2. test-⊥ ` 〈[ϕ] 6= [ψ]〉 ↔ ⊥
3. @-swap ` @i 〈α ∗ @jβ〉 ↔ @j〈β ∗ @iα〉
4. bridge ` 〈α〉i ∧ @iϕ→ 〈α〉ϕ
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The Completeness Proof

The completeness argument follows the lines of the completeness proof for
HL(@), which is a Henkin-style proof with nominals playing the role of
first-order constants.
In what follows, we will write Γ ` ϕ if and only if ϕ can be obtained from
a set of formulas Γ by applying the inference rules of HXP.

Definition

Let Γ be a set of formulas, we say that Γ is an HXP maximal consistent
set (HXP-MCS, or MCS for short) if and only if Γ 0 ⊥ and for all ϕ /∈ Γ
we have Γ ∪ {ϕ} ` ⊥.
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Each MCS is a full model description

In the same way as for hybrid logic, inside every MCS there are a collection
of MCSs with some desirable properties:

Lemma

Let Γ be an HXP-MCS. For any nominal i ∈ Γ, let us define
∆i = {ϕ | @iϕ ∈ Γ}. Then

1. ∆i is an HXP-MCS.

2. For all nominals i , j , if i ∈ ∆j then ∆i = ∆j .

3. For all nominals i , j , we have @iϕ ∈ ∆j iff @iϕ ∈ Γ.

4. If k ∈ Γ then Γ = ∆k .
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Naming and Pasting MCSs

Definition (Named and Pasted MCS)

Let Γ be an HXP-MCS. We say that Γ is named if for some nominal i we
have that i ∈ Γ (and we will say that Γ is named by i).

We say that Γ is pasted if the following holds:

1. 〈@iδα = β〉 ∈ Γ implies that ∃j , @i 〈δ〉j ∧ 〈@jα = β〉 ∈ Γ

2. 〈@iδα 6= β〉 ∈ Γ implies that ∃j , @i 〈δ〉j ∧ 〈@jα 6= β〉 ∈ Γ.
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Lindenbaum

Lemma (Extended Lindenbaum Lemma)

Let NOM′ be a (countably) infinite set of nominals disjoint from NOM,
and let HXPath=(↑↓)′ be the language obtained by adding these new
nominals to HXPath=(↑↓). Then, every HXP-consistent set of formulas in
HXPath=(↑↓) can be extended to a named and pasted HXP-MCS in
HXPath=(↑↓)′.
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Extracted Model

Definition

Let Γ be a named and pasted HXP-MCS, then we define the extracted
model from Γ, MΓ = 〈M,∼,→, label , nom〉 as:

I M = {∆i | ∆i was obtained from Γ}
I ∆i → ∆j iff 〈↓〉j ∈ ∆i

I a ∈ label(∆i ) iff a ∈ ∆i

I nom(i) = ∆i

I ∆i ∼ ∆j iff 〈ε = @j〉 ∈ ∆i .
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Existence Lemma

Lemma

Let Γ be an HXP-MCS and let MΓ = 〈M, ∼,→, label , nom〉 be the
extracted model from Γ. Suppose ∆ ∈ M and i ∈ ∆. Then

1. 〈δα = β〉 ∈ ∆ implies ∃Σ ∈ M s.t. ∆δΣ and 〈α = @iβ〉 ∈ Σ,

2. 〈δα 6= β〉 ∈ ∆ implies ∃Σ ∈ M s.t. ∆δΣ and 〈α 6= @iβ〉 ∈ Σ,

3. 〈@jα = @kβ〉 ∈ ∆ implies there exists Σ ∈ M s.t. 〈α = @kβ〉 ∈ Σ,

4. 〈@jα 6= @kβ〉 ∈ ∆ implies there exists Σ ∈ M s.t. 〈α 6= @kβ〉 ∈ Σ.
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Truth Lemma

We can prove the Truth Lemma that states that membership in an MCS
of the extracted model is equivalent to being true in that MCS.

Lemma

Let MΓ = 〈M,∼,→, label , nom〉 be the extracted model from a MCS Γ,
and let ∆i ∈ M. Then, for any formula ϕ,

MΓ,∆i |= ϕ iff ϕ ∈ ∆i .

As a result we obtain the completeness result.

Theorem

The axiomatic system HXP is complete for abstract hybrid data models.
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Other systems

I We introduce an axiom system which is a theorem generation
machine.

I It’s very elegant, but not very handy computationally.

I A tableaux calculus is more appropriate to get implementations.

I We follow similar ideas: nominals and satisfaction operators can be
used in tableaux to keep track of the evaluation of a formula during
an attempt to build a model.

I We obtained a terminating PSpace algorithm.
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Some tableaux rules

Prefix Internalization Rules

@n〈α ∗ β〉
(Int)

〈@nα ∗ @nβ〉

@n¬〈α ∗ β〉
(¬Int)

¬〈@nα ∗ @nβ〉

Some XPath rules
〈@n↓α ∗ β〉

(↓) m is new

n→ m
〈@mα ∗ β〉

¬〈@n↓α ∗ β〉 n→ m
(¬↓)

¬〈@mα ∗ β〉

〈@n ∗ @m↓α〉
(↓r ) k is new

m→ k
〈@n ∗ @kα〉

¬〈@n ∗ @m↓α〉 m→ k
(¬↓r )

¬〈@n ∗ @kα〉
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Future Work

I Take advantage of the hybridization of XPath= to obtain general
axiomatizations: define minimal proof systems that are complete
when extended with additional axioms that are pure.

I Explore this general framework and obtain complete axiomatic
systems for natural extensions of HXPath=(↑↓):

I HXPath=(↑↓) with reflexive-transitive closure for downward/upward
navigation (i.e., allowing ↓∗ and ↑∗), and sibling navigation.

I Exploring new kind of data comparisons, for instance, including the
relation < in addition to = and 6=.

I Extend tableaux calculus for:
I Handling data trees.
I Additional navigation axis: descendant (↓∗), ancestor (↑∗), father (↑),

next-sibling (�), etc.

I Get implementations: extending the Hybrid Logic prover HTab to
handle data.

Fervari: Proof Theory for XPath using Hybrid Logic tools LSV-ENS Cachan, 2017 26/26



Future Work

I Take advantage of the hybridization of XPath= to obtain general
axiomatizations: define minimal proof systems that are complete
when extended with additional axioms that are pure.

I Explore this general framework and obtain complete axiomatic
systems for natural extensions of HXPath=(↑↓):

I HXPath=(↑↓) with reflexive-transitive closure for downward/upward
navigation (i.e., allowing ↓∗ and ↑∗), and sibling navigation.

I Exploring new kind of data comparisons, for instance, including the
relation < in addition to = and 6=.

I Extend tableaux calculus for:
I Handling data trees.
I Additional navigation axis: descendant (↓∗), ancestor (↑∗), father (↑),

next-sibling (�), etc.

I Get implementations: extending the Hybrid Logic prover HTab to
handle data.

Fervari: Proof Theory for XPath using Hybrid Logic tools LSV-ENS Cachan, 2017 26/26



Future Work

I Take advantage of the hybridization of XPath= to obtain general
axiomatizations: define minimal proof systems that are complete
when extended with additional axioms that are pure.

I Explore this general framework and obtain complete axiomatic
systems for natural extensions of HXPath=(↑↓):

I HXPath=(↑↓) with reflexive-transitive closure for downward/upward
navigation (i.e., allowing ↓∗ and ↑∗), and sibling navigation.

I Exploring new kind of data comparisons, for instance, including the
relation < in addition to = and 6=.

I Extend tableaux calculus for:
I Handling data trees.
I Additional navigation axis: descendant (↓∗), ancestor (↑∗), father (↑),

next-sibling (�), etc.

I Get implementations: extending the Hybrid Logic prover HTab to
handle data.

Fervari: Proof Theory for XPath using Hybrid Logic tools LSV-ENS Cachan, 2017 26/26



Future Work

I Take advantage of the hybridization of XPath= to obtain general
axiomatizations: define minimal proof systems that are complete
when extended with additional axioms that are pure.

I Explore this general framework and obtain complete axiomatic
systems for natural extensions of HXPath=(↑↓):

I HXPath=(↑↓) with reflexive-transitive closure for downward/upward
navigation (i.e., allowing ↓∗ and ↑∗), and sibling navigation.

I Exploring new kind of data comparisons, for instance, including the
relation < in addition to = and 6=.

I Extend tableaux calculus for:
I Handling data trees.
I Additional navigation axis: descendant (↓∗), ancestor (↑∗), father (↑),

next-sibling (�), etc.

I Get implementations: extending the Hybrid Logic prover HTab to
handle data.

Fervari: Proof Theory for XPath using Hybrid Logic tools LSV-ENS Cachan, 2017 26/26


