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In this talk

» Introduce the language HXPath, an extension of XPath with hybrid
operators
» Introduce an axiomatic system

» Prove completeness via a Henkin-style construction
A tableaux calculus for HXPath

Discuss future work

v

v
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XPath as a modal language

» XPath is one of the most used query languages for XML documents.
» XML documents are trees (relational structures).

» Core-XPath: fragment that can express properties on the underlying
tree structure

> It is essentially a modal language (such as LTL, PDL).

» Sometimes not expressive enough, e.g.: the join in database theory,
cannot be implemented without access to the data attributes.

» Core-Data-XPath (here XPath_) extends Core-XPath with = and #
comparisons for data.
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Data Trees

W

Figure: An example of a data tree.
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Data Trees and structural properties

Figure: An example of a data tree.

> x has a child labeled by a (in modal logic, ¢a).
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Data Trees and structural properties

Figure: An example of a data tree.

> x has a child labeled by a (in modal logic, ¢a).
> x has a two-steps descendant labeled by b and no child labeled by c (00b A —Oc).
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Data Trees and structural properties

Figure: An example of a data tree.

> x has a child labeled by a (in modal logic, ¢a).
> x has a two-steps descendant labeled by b and no child labeled by c (00b A —Oc).
» Node named by i has no successors (in hybrid logic, @;=(T).
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Data Trees and structural properties

Figure: An example of a data tree.

x has a child labeled by a (in modal logic, 0a).
x has a two-steps descendant labeled by b and no child labeled by ¢ (00b A —0c).
Node named by i has no successors (in hybrid logic, @;=0T).

vvyyy

We cannot talk about data values.
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Data Trees and structural properties

Figure: An example of a data tree.

x has a child labeled by a (in Core-XPath, ({[a])).
x has a two-steps descendant labeled by b and no child labeled by ¢ ((J[b]) A ={{[c])).
Node named by i has no successors (in Core-XPath + @, (©;[—(])])).

We cannot talk about data values.

vvyyy
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Data Trees and data properties

W

Figure: An example of a data tree.

If we evaluate the expressions at x, we have:

» There is a one-step succesor, and a two-steps succesor, with the same data value (in

XPath= ({ = |)).

Fervari: Proof Theory for XPath using Hybrid Logic tools LSV-ENS Cachan, 2017 7/26



Data Trees and data properties

W

Figure: An example of a data tree.

If we evaluate the expressions at x, we have:

» There is a one-step succesor, and a two-steps succesor, with the same data value (in
XPath— (| = ).

» There is a child labeled by a and a child labeled by b, which have different data values:
(Hal # J[b]).
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Data Trees and data properties

W

Figure: An example of a data tree.

If we evaluate the expressions at x, we have:

» There is a one-step succesor, and a two-steps succesor, with the same data value (in

XPath_ (| = 1)).
» There is a child labeled by a and a child labeled by b, which have different data values:

(lal # Lb]).

> Notice we cannot say something like (| = 2)!.

Fervari: Proof Theory for XPath using Hybrid Logic tools LSV-ENS Cachan, 2017 7/26



Data Trees and data properties

W

Figure: An example of a data tree.

If we evaluate the expressions at x, we have:

» There is a one-step succesor, and a two-steps succesor, with the same data value (in

XPath_ (| = 1)).
» There is a child labeled by a and a child labeled by b, which have different data values:

(lal # Lb]).

> Notice we cannot say something like (| = 2)!.

» But, with HXPath—=(1]) we will able to say that there is a child with the same data as the
node named i: (| = @;).
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Hybrid Data Models

Definition

Let LAB and NOM be two infinite, disjoint countable sets.
A concrete hybrid data model is a tuple M = (M, D, —, label, nom, data),
where

» M is a non-empty set of elements

D is a non-empty set of data

— C M x M is the accessibility relation

label : M — 2B is the labeling function,

nom : NOM — M is a function which names some nodes

data: M — D is the function which assigns a data value to each node.

vVvyyYyVvyy
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Hybrid Data Models

Definition

Let LAB and NOM be two infinite, disjoint countable sets.
A concrete hybrid data model is a tuple M = (M, D, —, label, nom, data),
where
» M is a non-empty set of elements
D is a non-empty set of data
— C M x M is the accessibility relation
label : M — 2B is the labeling function,
nom : NOM — M is a function which names some nodes
data: M — D is the function which assigns a data value to each node.

An abstract hybrid data model is a tuple M = (M, ~, —, label, nom),
where ~ C M x M is an equivalence relation between elements of M.

vVvyyYyVvyy
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Syntax

Definition

The set of path expressions and node expressions of HXPath_(1) are
defined by mutual recursion as follows:

o, =116 |[¢g] | aB
o i=alil-p| oAy | {a=p)| (a#p), aclAB,icNOM.

v
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Syntax
Definition

The set of path expressions and node expressions of HXPath_(1) are
defined by mutual recursion as follows:

a,f =1 11]0 [ | b

@ 5= ali]-p| oAy | (@=p) | (@#p), acLAB,iecNOM.
Node Expressions
T = pV-p
1 = =T
() = (alg] = afg])
[ale = ~{a)-e
Qp = (Q)y
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Syntax

Definition

The set of path expressions and node expressions of HXPath_(1) are
defined by mutual recursion as follows:

a,f =1 11]0 [ | b

v

o i=al|il-@| oAy | {a=8)| (a#pB), acLAB,icNOM.
Node Expressions
T = pV-p
1 = -T
() = (alg] = afg])
[ale = ~{a)-e
Qp = (G)y
Path Expressions
€ [T]

(r1(aU B)y2 *73)
(71 % y2(a U B)v3)

(r1072 % 93) V (71872 * 73)
(71 * 2073) V (71 * 72873)
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Semantics

Definition

Let M = (M, ~, —, label, nom), and x,y € M.
M,x,y =] iff x—y
M, x,y ET iff y = x
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Semantics

Definition

Let M = (M, ~, —, label, nom), and x,y € M.
M,x,y =] iff x—y
M, x,y ET iff y = x
M, x,y E ©; iff nom(i)=y
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Semantics

Definition
Let M = (M, ~, —, label, nom), and x,y € M.
M,x,y =] iff x—y
M, x,y ET iff y = x
M, x,y E ©; iff nom(i)=y
M, x,y E[p] iff x=yand M,x[E ¢
M, x,y Eaf iff 3ze Mst. M x,zEaand M,z,y Ef
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Semantics

Definition
Let M = (M, ~, —, label, nom), and x,y € M.
M,x,y =] iff x—y
M, x,y ET iff y = x
M, x,y E ©; iff nom(i)=y
M, x,y E[p] iff x=yand M,x[E ¢
M, x,y Eaf iff 3ze Mst. M x,zEaand M,z,y Ef
M, x = a iff a € label(x)
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Semantics

Definition

Let M = (M, ~, —, label, nom), and x,y € M.

M, x,y E 1
M,x,y BT
M,X,y ': @i
M, x,y = [#]
M, x,y Eap
M,x Ea
M, xEi

iff
iff
iff
iff
iff
iff
iff

X =y

y — X

nom(i) =y
x=yand M,x E ¢

JzeMst. M,x,zEaand M,z,y Ef
a € label(x)
nom(i) = x
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Semantics

Definition

Let M = (M, ~, —, label, nom), and x,y € M.

M, x,y E 1
M,x,y BT
M,X,y ': @i
M, x,y = [#]
M, x,y Eap
M, x Ea
M, xEi
M,X ): P
M, x =N

iff
iff
iff
iff
iff
iff
iff
iff
iff

X =y

y — X

nom(i) =y
x=yand M,x E ¢

JzeMst. M,x,zEaand M,z,y Ef
a € label(x)

nom(i) = x

M, x =

M, x =@ and M, x =
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Semantics

Definition

Let M = (M, ~, —, label, nom), and x,y € M.

M, x,y E 1
M,x,y BT
M,X,y ': @i
M, x,y = [#]
M, x,y Eap
M, x Ea

M, xEi

MaX ): P
M, x =N
M, x = (o= B)

iff
iff
iff
iff
iff
iff
iff
iff
iff
iff

X =y

y — X

nom(i) =y
x=yand M,x E ¢

JzeMst. M,x,zEaand M,z,y Ef

a € label(x)

nom(i) = x

M, x [ ¢

M, x =@ and M, x =

dy,ze Mst. M,x,yEFa, M,x,zEfBandy ~ z
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Semantics

Definition

Let M = (M, ~, —, label, nom), and x,y € M.

M, x,y E1
M, x,y E1
M7X7y':@i
M, x,y E [¢]
M, x,y Eap
M, x Ea

M, xEi

MaX ):_'90
M, x =N
M, x = (o= B)
M, x | (a # B)

iff
iff
iff
iff
iff
iff
iff
iff
iff
iff
iff

X =y

y — X

nom(i) =y
x=yand M,x E ¢

JzeMst. M,x,zEaand M,z,y =0

a € label(x)

nom(i) = x

M, x [ ¢

M, x =@ and M, x =9

dy,ze Mst. M,x,yEFa, M,x,zEfBandy ~ z

Jy,ze Mst. M,x,y Fa, M,x,zEp and y # z.
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Semantics

Definition
Let M = (M, ~, —, label, nom), and x,y € M.
M,x,y =] iff x—y
M, x,y ET iff y = x
M, x,y E ©; iff nom(i)=y
M, x,y E[p] iff x=yand M,x[E ¢
M, x,y Eaf iff 3ze Mst. M,x,zEaand M,z,y Ef
M, x = a iff a € label(x)
M, x =i iff nom(i) = x
M, x = —p iff M,x @
M, xE oAy iff M,xEpand M,x E1
M, xE{(a=p) iff y,ze Mst. M,x,y Ea, M,x,z=Efandy ~z
M, xE{(a#p) iff y,ze Mst. M x,y Ea, M,x,zEfandy ¢ z.

M, x = Q;p iff M,nom(i) = ¢
Notice: M, x = (0)p iff Ty € M s.t. xdy and M,y = ¢
M, x = [8le iff Yy € M, xdy then M,y = ¢.
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Examples

Example
Some HXPath_(1]) expressions together with their intuitive meaning:

alfi] There exists an o path between the current point of
evaluation and the node named /.
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Examples

Example
Some HXPath_(1]) expressions together with their intuitive meaning:

alfi] There exists an o path between the current point of
evaluation and the node named /.
Q;«x There exists an o path between the node named / and

some other node.
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Examples

Example
Some HXPath_(1]) expressions together with their intuitive meaning:

alfi] There exists an o path between the current point of
evaluation and the node named /.
Q;«x There exists an o path between the node named / and

some other node.
(0; =©j) The node named i has the same data than the node named ;.
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Examples

Example
Some HXPath_(1]) expressions together with their intuitive meaning:

alfi] There exists an o path between the current point of
evaluation and the node named /.
Q;«x There exists an o path between the node named / and

some other node.
(Q; =©;) The node named i has the same data than the node named ;.
(= ©;8) There exists a node accessible from the current point of
evaluation by an « path that has the same data than a node
accessible from the point named i/ by a § path.
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Axiomatization

In addition to an arbitrary set of axiom and rule schemes for propositional
logic, we include generalizations of the K axiom and the Necessitation rule

for the basic modal logic to handle modalities with arbitrary path
expressions. We call the system HXP.

Axiom and rule for classical modal logic

Nec

K [a](¢ = ¥) = ([a]e = [a]¥) alo

We include also the standard axioms for future and past operators.

Axioms for |, T-interaction

down-up ¢ — [J](T)e
up-down ¢ — [1]{})¢
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Rules for hybrid operators

Then we introduce generalizations of the rules for the hybrid logic HL(@).

Hybrid rules

Fji—op FQi(v)j A (Qjax 5) — 0
———— name paste
o F(Qyax ) — 0

J is a nominal different from i that does not occur in ¢, 6, a, 3, 7.

Fervari: Proof Theory for XPath using Hybrid Logic tools LSV-ENS Cachan, 2017 13/26



Axioms for @

Now we introduce axioms that handle @. Notice that ©; is a path
expression of HXPath_(1]) and as a result, some of the standard hybrid
axioms for @ have been generalized. In particular, the K axiom and Nec
rule above also apply to @;. In addition, we provide axioms to ensure that
the relation induced by @ is a congruence.

Axioms for @ Congruence for @

O-refl. ©;f

@—sym. @,‘j — @J’i

nom Q;j A <@,'04 * ,8> — (©ja * ﬂ>
agree  (Q;Q;a x ) <> (Q;ax x f5)
back  (y@;a* ) — (Q;a * 3)

@-self-dual —@;p <+ @;—p
©-intro iNp— Qip
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Axioms for XPath

We introduce axioms to handle complex path expressions in data
comparisons. Finally, we introduce axioms to handle data tests.

Axioms for paths
comp-assoc ((aB)y xn) <> (a(By) *n)
comp-neutral  (af * ) <> (aef *y) (a or B can be empty)
comp-dist (aB)p < (a)(B)¢
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Axioms for XPath

We introduce axioms to handle complex path expressions in data
comparisons. Finally, we introduce axioms to handle data tests.

Axioms for paths

comp-assoc  ((aB)y xn) <> ((B7) *n)
comp-neutral  (af * ) <> (aef *y) (a or B can be empty)

comp-dist (aB)p < (a){B)p
Axioms for data

equal (e=¢€)

distinct —(e#¢€)

©-data —(0;=0j) +» (0;#0;)

e-trans (e=a)A{e=pB) = (a=p)

*-comm (a*B) < (Bx*a)

x-test ([plax B) < o A{ax B)

©x-dist (Qja * @;3) — Qi{a * f5)

subpath (aB x7v) = ()T

compk-dist  (a){(B *y) = (af * ay)
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Some natural theorems

Proposition

The following formulas are theorems in HXP.

1. test-dist F ([¢] =[¥]) <> AU
test-L = ([p] # [¢]) < L

O@-swap F Q;j{a*Q;f3) <> Q;(f5 * Q)
bridge F (a)i A Qjp — (a)p

w

=
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The Completeness Proof

The completeness argument follows the lines of the completeness proof for
HL(@), which is a Henkin-style proof with nominals playing the role of
first-order constants.

In what follows, we will write I = ¢ if and only if ¢ can be obtained from
a set of formulas [ by applying the inference rules of HXP.

Definition

Let [ be a set of formulas, we say that I' is an HXP maximal consistent
set (HXP-MCS, or MCS for short) if and only if [ ¥ L and for all ¢ ¢ T
we have U {p} - L.
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Each MCS is a full model description

In the same way as for hybrid logic, inside every MCS there are a collection
of MCSs with some desirable properties:

Lemma

Let T be an HXP-MCS. For any nominal i € T, let us define
Aj={p|QipeTl}. Then

1. A; is an HXP-MCS.

2. For all nominals i,j, if i € A; then A; = A;.

3. For all nominals i, j, we have @ip € A; iffQ;p € T.

4. Ifk €T thenT = Ay.
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Naming and Pasting MCSs

Definition (Named and Pasted MCS)

Let ' be an HXP-MCS. We say that I is named if for some nominal / we
have that i € I' (and we will say that I is named by 7).
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Naming and Pasting MCSs

Definition (Named and Pasted MCS)
Let ' be an HXP-MCS. We say that I is named if for some nominal / we
have that i € I' (and we will say that I is named by 7).
We say that I is pasted if the following holds:
1. (Qjoa = B) € I implies that 3j, Q;(6)j A (Qja = ) € T
2. (Qida # ) € T implies that 3j, ©;(0)j A (Qjar # 3) € T.
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Lindenbaum

Lemma (Extended Lindenbaum Lemma)

Let NOM’ be a (countably) infinite set of nominals disjoint from NOM,
and let HXPath—(1l)" be the language obtained by adding these new
nominals to HXPath—(1]). Then, every HXP-consistent set of formulas in

HXPath—(1]) can be extended to a named and pasted HXP-MCS in
HXPath—(1])'.
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Extracted Model

Definition
Let I be a named and pasted HXP-MCS, then we define the extracted
model from I, Mr = (M, ~, —, label, nom) as:
» M ={A;| A, was obtained from I}
A — AJ' iff <\L>j e A;
a € label(4;) iff a € A;
nom(i) = A,

A~ AJ' iff <€ = @J> e A;.

v

v

\4

v
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Existence Lemma

Lemma
Let T be an HXP-MCS and let Mr = (M, ~,—, label, nom) be the
extracted model from . Suppose A € M and i € A. Then
1. (b= B) € A implies 3X € M s.t. AdX and (o = Q;f) € X,
2. (b # B) € A implies IX € M s.t. AOX and (o # Q;5) € ¥,

Fervari: Proof Theory for XPath using Hybrid Logic tools
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Existence Lemma

Lemma

Let T be an HXP-MCS and let Mr = (M, ~,—, label, nom) be the
extracted model from . Suppose A € M and i € A. Then

1. (b= B) € A implies 3X € M s.t. AdX and (o = Q;f) € X,
. (0a # B) € A implies 3X € M s.t. ASE and (o # Q;3) € &,
. (Qja = Q) € A implies there exists © € M s.t. (o« = Q,3) € X,
. (Qja # Oy ) € A implies there exists ¥ € M s.t. (o # Q,f5) € L.

A W N
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Truth Lemma

We can prove the Truth Lemma that states that membership in an MCS
of the extracted model is equivalent to being true in that MCS.

Lemma

Let Mr = (M, ~,—, label, nom) be the extracted model from a MCST,
and let A; € M. Then, for any formula ¢,

Mr, A = ¢ iff o € A

Fervari: Proof Theory for XPath using Hybrid Logic tools
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Truth Lemma

We can prove the Truth Lemma that states that membership in an MCS
of the extracted model is equivalent to being true in that MCS.

Lemma
Let Mr = (M, ~,—, label, nom) be the extracted model from a MCST,
and let A; € M. Then, for any formula ¢,

Mr, A ): @ iff p e A;.

As a result we obtain the completeness result.

Theorem

The axiomatic system HXP is complete for abstract hybrid data models. J
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Other systems

» We introduce an axiom system which is a theorem generation
machine.

» It's very elegant, but not very handy computationally.
» A tableaux calculus is more appropriate to get implementations.

» We follow similar ideas: nominals and satisfaction operators can be
used in tableaux to keep track of the evaluation of a formula during
an attempt to build a model.

» We obtained a terminating PSPACE algorithm.

Fervari: Proof Theory for XPath using Hybrid Logic tools LSV-ENS Cachan, 2017 24/26



Some tableaux rules

Prefix Internalization Rules

Oy {a x B8) (Int) 0, ~{a x 5) (Cint)
(0,0 % @,3) (@, % @,f3)
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Some tableaux rules

Prefix Internalization Rules

On{a * 3) (Int) Q,—(ax* f) (Cint)
(@, % @,0) (@, * @,f3)

Some XPath rules

M(“ mis new ~(@plaxB) n—m
n—m (_‘i)
(@ + 5) ~(Omap)
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Some tableaux rules

Prefix Internalization Rules

On{a * 3) (Int) Q,—(ax* f) (Cint)
(@, % @,0) (@, * @,f3)

Some XPath rules
(@, lax B)

(\I/) m is new _'<©n\J,Oé * /3> n—m
n—m (—kl/)
(Omar * [3) ~(@ma + )
w@ ) k is new “<©n*@m¢a> m — k
Gr L)
<@n * @kOé> —|<©n * @ka>
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Future Work

» Take advantage of the hybridization of XPath_ to obtain general
axiomatizations: define minimal proof systems that are complete
when extended with additional axioms that are pure.
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Future Work

» Take advantage of the hybridization of XPath_ to obtain general
axiomatizations: define minimal proof systems that are complete
when extended with additional axioms that are pure.

» Explore this general framework and obtain complete axiomatic
systems for natural extensions of HXPath_(1]):

» HXPath_(1l) with reflexive-transitive closure for downward/upward
navigation (i.e., allowing |* and 1*), and sibling navigation.

» Exploring new kind of data comparisons, for instance, including the
relation < in addition to = and #.
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Future Work

» Take advantage of the hybridization of XPath_ to obtain general
axiomatizations: define minimal proof systems that are complete
when extended with additional axioms that are pure.

» Explore this general framework and obtain complete axiomatic
systems for natural extensions of HXPath_(1]):

» HXPath_(1l) with reflexive-transitive closure for downward/upward
navigation (i.e., allowing |* and 1*), and sibling navigation.

» Exploring new kind of data comparisons, for instance, including the
relation < in addition to = and #.

» Extend tableaux calculus for:

» Handling data trees.
» Additional navigation axis: descendant ({*), ancestor (1*), father (1),
next-sibling (—), etc.
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axiomatizations: define minimal proof systems that are complete
when extended with additional axioms that are pure.

» Explore this general framework and obtain complete axiomatic
systems for natural extensions of HXPath_(1]):

» HXPath_(1l) with reflexive-transitive closure for downward/upward
navigation (i.e., allowing |* and 1*), and sibling navigation.

» Exploring new kind of data comparisons, for instance, including the
relation < in addition to = and #.

» Extend tableaux calculus for:
» Handling data trees.
» Additional navigation axis: descendant ({*), ancestor (1*), father (1),
next-sibling (—), etc.
» Get implementations: extending the Hybrid Logic prover HTab to
handle data.
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