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Intuitionistic Logic

A. Heyting.

Die intuitionistische Grundlegung der

Mathematik. Erkenntnis 2, 106-115 (1931).

Constructive reasoning:

ϕ ∨ ¬ϕ (excluded middle)

¬¬ϕ ⊃ ϕ (¬¬ elim.)

(¬ϕ ⊃ ¬ψ) ⊃ (ψ ⊃ ϕ) (contrapositive)

((ϕ ⊃ χ) ⊃ ϕ) ⊃ ϕ (Peirce's Law)
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81-132 (1980).
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Default Logics

R. Reiter.

A Logic for Default Reasoning. AI 13(1-2):

81-132 (1980).

Formally represent non-monotonic reasoning:

if Φ ` ϕ then Φ ∪Ψ ` ϕ (monotonicity)

Applications:

common sense reasoning � knowledge representation� software

engineering� computer science � legal reasoning � planning
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The Power of Intuitionistic + Default Reasoning I/II

Consider a trial: the possible verdicts are guilty or not guilty.

Verdict of guilty g : prosecution presents evidence with the

�beyond reasonable doubt� standard of proof.

Verdict of not guilty ¬g : the defense manages to pinpoint

contradiction in the evidences.

This behaviour is intuitionistic: g ∨ ¬g is not plainly true.
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The Power of Intuitionistic + Default Reasoning II/II

Consider the principle of presumption of innocence (PPI):

�A person is considered innocent unless proven guilty�.

If we only know that a person has been accused of committing

a crime a , we must conclude that this person is innocent i :

{a} |≈ i

If additional information is brought up, e.g., a credible witness

c , the murder weapon w , the principle ceases to apply:

{a, c ,w} 6|≈ i

The the PPI behaves non-monotonically.

5



The Power of Intuitionistic + Default Reasoning II/II

Consider the principle of presumption of innocence (PPI):

�A person is considered innocent unless proven guilty�.

If we only know that a person has been accused of committing

a crime a , we must conclude that this person is innocent i :

{a} |≈ i

If additional information is brought up, e.g., a credible witness

c , the murder weapon w , the principle ceases to apply:

{a, c ,w} 6|≈ i

The the PPI behaves non-monotonically.

5



The Power of Intuitionistic + Default Reasoning II/II

Consider the principle of presumption of innocence (PPI):

�A person is considered innocent unless proven guilty�.

If we only know that a person has been accused of committing

a crime a , we must conclude that this person is innocent i :

{a} |≈ i

If additional information is brought up, e.g., a credible witness

c , the murder weapon w , the principle ceases to apply:

{a, c ,w} 6|≈ i

The the PPI behaves non-monotonically.

5



The Power of Intuitionistic + Default Reasoning II/II

Consider the principle of presumption of innocence (PPI):

�A person is considered innocent unless proven guilty�.

If we only know that a person has been accused of committing

a crime a , we must conclude that this person is innocent i :

{a} |≈ i

If additional information is brought up, e.g., a credible witness

c , the murder weapon w , the principle ceases to apply:

{a, c ,w} 6|≈ i

The the PPI behaves non-monotonically.

5



Intuitionistic Propositional Logic in a nutshell

Syntax of Intuitionistic Propositional Logic (IPL):

ϕ ::= pi | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ ⊃ ϕ.

Models: a model is a tuple M = 〈W ,4,V 〉, where

W is a set of elements or worlds;

4⊆W 2 is re�exive and transitive; and

V : Prop→ 2W is s.t. for all w 4 w ′, if w ∈ V (p), w ′ ∈ V (p).

Semantics of IPL:

M,w |= ¬ϕ i� for all w 4 w ′, M,w ′ 6|= ϕ

M,w |= ϕ ⊃ ψ i� for all w 4 w ′, if M,w ′ |= ϕ then M,w ′ |= ψ.
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Main elements of a Default Logic

A default theory is a 2-uple 〈Φ,∆〉 where:

Φ is a set of formulas of the underlying (monotonic) logic;

∆ is a set of defaults π
ρ

=⇒ χ :

π is the prerrequisite of the default;

ρ is the justi�cation; and

χ is the consequent.

Let 〈Φ,∆〉 be a default theory, and ϕ a formula, we have a notion

of default consequence:

〈Φ,∆〉 |≈ ϕ

In our case, Φ, π, ρ, χ and ϕ, are formulas from intuitionistic logic.
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Default Logical Consequence

De�nition.

An extension E of a default theory 〈Φ,∆〉, is a set

E = Conseq(Φ ∪ {χ | π ρ
=⇒ χ ∈ ∆′}), where ∆′ ⊆ ∆.

De�nition (Default Consequence).

〈Φ,∆〉 |≈ ϕ , i� for all extension E , E � ϕ .

Notice that � is the underlying consequence (in our case, IPL).
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Tableaux Proof Calculus

We de�ne a tableaux-based notion of default proof |∼, in

correspondence with |≈.

The tableaux calculus is an extension of the calculus for IPL.

Tableaux formulas:

@+
i ϕ stands for �ϕ holds at world i�;

@−i ϕ stands for �ϕ does not hold at world i�;

(i , j) stands for �world j is accessible from world i�
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Tableaux calculus for IPL

The calculus decides logical consequence, i.e., let Φ a set of formulas,

and ϕ a formula, it decides whether Φ � ϕ.

A Tableaux Calculus for Default Intuitionistic Logic 7

successors. The rule (A) occupies a special place in the construction of a tableau
and will be discussed immediately below. Rules are applied as usual: premisses
must belong to the branch; side conditions must be met (if any); the branch is
extended at the level of leaves according to the consequents.

@+
i (ϕ ∧ ψ)

@+
i ψ

@+
i ϕ

(∧+)
@−i (ϕ ∧ ψ)

@−i ϕ @−i ψ
(∧−)

@+
i (ϕ ∨ ψ)

@+
i ϕ @+

i ψ
(∨+)

@−i (ϕ ∨ ψ)

@−i ψ

@−i ϕ

(∨−)

@+
i (ϕ ⊃ ψ)
(i, j)

@−j ϕ @+
j ψ

(⊃+)

@−i (ϕ ⊃ ψ)
(i, j)

@+
j ϕ

@−j ψ

(⊃−)†
@+

i ¬ϕ
(i, j)

@−j ϕ
(¬+)

@−i ¬ϕ
(i, j)

@+
j ϕ

(¬−)†

@+
i p

(i, j)

@+
j p

(her)‡ (i, i)
(ref)∗

(i, j)

(j, k)

(i, k)
(trans)¶

@+
0 ϕ

(A) for ϕ ∈ Φ

† for j new (i.e., not used before in the branch).
‡ for j 6= i in the branch.
∗ for i in the branch.
¶ for i, j, k in the branch.

Fig. 1. Tableau Rules for IPL

Definition 13 (Closedness and Saturation). A branch is closed, tagged
(N), if @+

i ϕ and @−i ϕ occur in the branch; otherwise it is open, tagged (H).
A branch is saturated, tagged (�), if the application of any expansion rule is
redundant.

Definition 14 (Provability). A tableau τ for ϕ is an attempt at proving ϕ.
We call τ a proof of ϕ if all branches in τ are closed. We write ` ϕ if there is
a proof of ϕ.

Def. 13 introduces standard conditions of closedness and saturation for a
tableau. Given these conditions, we define a tableau proof in Def. 14. The result-
ing proof calculus is sound and complete, i.e., ` ϕ iff � ϕ (see [34]). Termination
is ensured using loop-checks. Loop-checks are a standard termination technique
in tableaux systems that require the re-application of expansion rules [22,16].

Tableaux constructed without the rule (A) formulate a proof calculus for
provability, i.e., proofs without assumptions. Including the rule (A) in the con-
struction of a tableau gives us a proof calculus for deducibility (proofs from a set
Φ of assumptions). Intuitively, (A) can be understood as stating that assump-
tions are always true in the “current” world. This rule is not strictly necessary:
Φ � ϕ iff � ∧Φ ⊃ ϕ, for Φ finite. Nonetheless, incorporating a primitive rule for
assumptions simplifies the definitions and understanding of tableaux for DIPL.
When (A) is involved, we talk about a tableau for ϕ from Φ. Such a tableau is

10



Tableaux calculus for DIPL

The calculus decides default consequence, i.e., let 〈Φ,∆〉 a default

theory, and ϕ a formula, it decides whether 〈Φ,∆〉 |≈ ϕ.
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δ1
@+

0 δ
X
1 . . .

δi
@+

0 δ
X
i . . .

δn
@+

0 δ
X
n

(D)†

for { δi | i ∈ [1, n] } = { δ ∈ ∆Θ\∆B | δ is detached by ∆B }
where ∆B is the set of defaults in the branch.

Fig. 2. Tableau Rule for Defaults

The proof calculus just introduced is sound and complete. Termination is
guaranteed by the termination of tableaux for IPL. Fig. 3 shows a default proof.

(a) @−0 (u1 ∧ u2)

(b) @−0 u1

(d) @+
0 (b1 ∨ b2)

(e) @+
0 b1

(g) δ1

(i) @+
0 u1

(N) b, i

(h) δ2

(j) @+
0 u2

(k) δ1

(l) @+
0 u1

(N) b, l

(f) @+
0 b2

(m) δ1

(o) @+
0 u1

(N) b, o

(n) δ2

(p) @+
0 u2

(q) δ1

(r) @+
0 u1

(N) b, r

(c) @−0 u2

(s) @+
0 (b1 ∨ b2)

(t) @+
0 b1

(v) δ1

(x) @+
0 u1

(y) δ2

(z) @+
0 u2

(N) c, z

(w) δ2

(a’) @+
0 u2

(N) c, a’

(u) @+
0 b2

(b’) δ1

(d’) @+
0 u1

(e’) δ2

(f’) @+
0 u2

(N) c, f’

(c’) δ2

(g’) @+
0 u2

(N) c, g’

Fig. 3. Default tableau for u1 ∧ u2 from 〈{b1 ∨ b2}, {>
ui∧¬bi====⇒ ui | i ∈ {1, 2} }〉.

Theorem 1. Θ |∼ ϕ iff Θ |≈ ϕ. Since ` terminates, |∼ also terminates.

Proof (Sketch). We make use of the already known soundness and completeness
of deducibility of the tableaux calculus for IPL. The proof of soundness and
completeness of default deducibility depends on the following two observations:
(i) a branch of a default tableau contains a branch of a tableau for deducibility
in IPL (just remove default nodes); and (ii) defaults appearing in an open and
saturated branch of a default tableau define a generating set (as per Def. 9) by
construction. (i) and (ii) implies that if there is an open and saturated branch of
a default tableau, then, there is an extension which serves as a counter-example.
This proves that if Θ |≈ ϕ, then Θ |∼ ϕ. For the converse, suppose that Θ 6|≈ ϕ;
hence there is an extension E ∈E(Θ) s.t. E 6� ϕ. Let τ be any saturated default
tableau for ϕ from Θ; by construction, there is an open branch of τ which
contains a set of defaults which is a generating set for E. The result follows from
the completeness of deducibility for IPL.
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Adequateness of the calculus

Theorem.

The calculus is sound, complete, and it terminates (by using

loop-checks).
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DefTab: a tableaux-based prover for DIPL

A prototype implementation in Haskell.

Given 〈Φ,∆〉 and ϕ as input, DefTab builds proof attempts of

〈Φ,∆〉 |∼ ϕ by searching for Kripke models for ϕ.

Then it uses sentences from Φ and defaults from ∆.

DefTab reports whether or not a default proof has been found.

In the latter case, DefTab exhibits an extension of 〈Φ,∆〉 from
which ϕ does not follow.
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Empirical evaluation

We compare DefTab against intuitionistic provers:

intuit: SMT reasoner over MiniSAT;

IntHistGC: sequent based prover (with backtracking

optimizations);

fCube: tableaux-based (specialized rules for nested

implications).

These provers outperform DefTab (but comparable mostly in

non-valid formulas).

Expected since DefTab does not implement optimizations yet.

For the default part, we tested with non-trivial intuitionistic

formulas, defaults do not block each other.

Relatively good performance.
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Future work

Exhaustive testing (combining complex intuitionistic and

default formulas).

Optimizations:

caching

nested implications

. . .

Parametric prover on the rules for the underlying logic.
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