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e This work: combining separation logics with modal logics, leading
to new relation-changing modal logics.
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Disjoint heaps

e The heaps h; and by are iff dom(h1) N dom(bhz) = 0.

e When by and by are disjoint, hy W by is their
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@ As by-products, we introduce variants of

e hybrid separation logics [Brotherston & Villard, POPL’14]
e relation-changing modal logics [Fervari, PhD 2014]
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separation logic MSL

e Formulae:

¢:=p | | =9 | oV | 0 | (F)o |

e Models 9 = (N, R, U):
-RCNxNis
— 9 : PROP — P(N).

e Disjoint unions 901 W M.

e The models have an infinite universe and a finite relation

encoding the heap.
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Semantics

M, = p

M, 1 O
M, L= (#)o
M, [ |= emp

M, L= ¢1 % ¢2
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M, = ¢, for some I' € N such that (I,I') € R
M, = ¢, for some I' € N such that [ £ [
R=10

(N,R1,0), [ = ¢1 and (N, R, 0), [ | o2,

for all M'=(N, R, W) such that RUR’ is finite

and functional, and RN R = (),
M, [ = ¢y implies (N, RU R 0), [ = ¢o.
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° modality:
(U= oV (Ao
e emp is (in fragments with ¢ + (#)):
emp & [U]OL
. of the accessibility relation:
size > kd:efﬁemp*-n*ﬁemp
k times
° x as in hybrid (modal) logics.

(U A [#]x)
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@ The formula (0T % QT) is a contradiction.
@ The model is a of length 2 visiting the [:
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Overview about satisfiability problems

MSL, undecidable

SL(x, —,1s), undecidable

‘MSL(*; 0,(#),071), in Tower‘

| \

‘MSL A#), Tower-c.‘
| SL(x, —), PSpace-c.
MSL (%, ), NP-c. \MSL #) NP-C-\
| MSL(0, (gsb)), NP-c. |
e PSpace-C. of SL(x, —) [Calcagno & Yang & O'Hearn, FSTTCS'01]
e Undec. of SL(x, —,1s) [Demri & Lozes & Mansutti, FOSSACS’18]

e Complexity class Tower [Schmitz, ToCT 2016]
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e Calculus for MSL(x*, (#)) adapting [Segerberg, Theoria 1981].
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Method to axiomatise MSL(x, )

e The Hilbert-style proof system is made of three parts:
© Axioms and rule from propositional calculus.
@ Axiomatisation for Boolean combinations of core formulae.
© Axioms and rules to transform any formula into a Boolean
combination of core formulae.

Only formulae in MSL(x, {) are used!

Similar to Dynamic Epistemic Logic's

Boolean combinations of core formulae capture MSL(x, ).

Intuitively, each formula is equivalent to (Boolean combination
of ):

= & part, and

- a part.



Eliminating modalities & reasoning on core formulae

Elimination of modalities

\  Completeness for
Fein 091 & ¢/ | core formulae

Fein 1 * 2 & ¢

¢i7¢3

Boolean combinations
of core formulae

}_elim ¢ = d) '_core ’(P
Fo
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Hilbert-style system for MSL(x, ()

@ The modal part is named

¢ = T |L|lp| -p Q=1 QNQ

G = 1Q,...,Q) | 1Q,...,Q] | |1Q,...,Q,...,Q

@ For a we have

size > or -size>pf, (B€N)

e Claim: Each MSL(x, {)-formula is equivalent to a Boolean
combination of formulas of the shape

GAsize>f3 or GAsize> 3 A-size>ff
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Intuitive semantics of graph formulae

Q Q

|Q1, ..., Q,) characterises: WD—@— _’l)_’

Q1 @

|Q1, ..., Qn] characterises: 9—— - _’J

[ [ [n
|Q1, Qa2, . .., Q| characterises: ‘9_)‘9*_)\;‘)

Claim: Graph formulae are definable in MSL(x, 0).
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Axioms and inference rules

e Axioms dedicated to size formulae and inconsistencies, e.g.

size >0 size > f+1 = size > [

e Axioms dedicated to conjunctions and negations, e.g.
1Quy e, Qi s Qul ALQL o, QL QL & | QAQL. . QAQL...,QuAQ,
e Axioms and rules to eliminate ¢ and *, e.g.
Op = O
0@, Q))& |T,Qu,..., Q| VI|T,Q,...,Qn) b=

e Completeness of the calculus with the additional axiom:

pe(p) VIplVIp )
[Demri & Fervari & Mansutti, JELIA'19]



From MSL(x, ) to core formulae - example

The formula

Q
size > 2 A —size >3 AQOOTA 4//y

—(—emp * OOOT) A =O(—emp x OOOT)

il *

can be shown to

size > 2 A —size > 3A|T, T
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Concluding remarks

e Introduction to basic modal separation logics and investigations on

their complexity and axiomatisation.
e Axiomatisations for the fragment MSL(x, 0, (#))?

e Some ongoing works:
- Expressivity and complexity for MSL (*, $~1)?
(with B. Bednarczyk, S. Demri & A. Mansutti).

- Tableaux methods for core formulae.
(with A. Saravia).



