
Separation Logics: A Modal Perspective

Raul Fervari
FAMAF-UNC & CONICET (Argentina)

LIRa seminar, ILLC, UvA

Amsterdam, NL, 2019

Joint work with Stéphane Demri & Alessio Mansutti (LSV, U. Paris-Saclay & CNRS, France)

1/ 19

Updating models

• Fascinating realm of (modal) logics updating models:

� logics of public announcement [Plaza, 1989; Lutz, AAMAS'06]

� sabotage modal logics [van Benthem, 2002]

� relation-changing modal logics [Fervari, PhD 2014]

� separation logics [Reynolds, LICS'02]

� one-agent re�nement modal logic

[Bozzelli & van Ditmarsch & Pinchinat, TCS 2015]

� modal separation logic DMBI

[Courtault & Galmiche, JLC 2018]

� logics with reactive Kripke semantics [Gabbay, Book 2013]

• This work: combining separation logics with modal logics, leading

to new relation-changing modal logics.

2/ 19

Updating models

• Fascinating realm of (modal) logics updating models:

� logics of public announcement [Plaza, 1989; Lutz, AAMAS'06]

� sabotage modal logics [van Benthem, 2002]

� relation-changing modal logics [Fervari, PhD 2014]

� separation logics [Reynolds, LICS'02]

� one-agent re�nement modal logic

[Bozzelli & van Ditmarsch & Pinchinat, TCS 2015]

� modal separation logic DMBI

[Courtault & Galmiche, JLC 2018]

� logics with reactive Kripke semantics [Gabbay, Book 2013]

• This work: combining separation logics with modal logics, leading

to new relation-changing modal logics.

2/ 19

Frame rule and separating conjunction

Separation logic:

Extension of Floyd-Hoare logic for (concurrent) programs with

mutable data structures.

Extension of Hoare logic with separating connectives ∗ and −∗.
[O'Hearn, Reynolds & Yang, CSL'01; Reynolds, LICS'02]

Frame rule:
{φ} C {ψ}

{φ ∗ ψ′} C {ψ ∗ ψ′}
where C does not mess with ψ′.

{x ↪→ 5} ∗x← 4 {x ↪→ 4}
{x ↪→ 5 ∗ y ↪→ 3} ∗x← 4 {x ↪→ 4 ∗ y ↪→ 3}

(s, h) |= x ↪→ 5 ∗ y ↪→ 3 implies (s, h) |= x 6= y.

3/ 19

Frame rule and separating conjunction

Separation logic:

Extension of Floyd-Hoare logic for (concurrent) programs with

mutable data structures.

Extension of Hoare logic with separating connectives ∗ and −∗.
[O'Hearn, Reynolds & Yang, CSL'01; Reynolds, LICS'02]

Frame rule:
{φ} C {ψ}

{φ ∗ ψ′} C {ψ ∗ ψ′}
where C does not mess with ψ′.

{x ↪→ 5} ∗x← 4 {x ↪→ 4}
{x ↪→ 5 ∗ y ↪→ 3} ∗x← 4 {x ↪→ 4 ∗ y ↪→ 3}

(s, h) |= x ↪→ 5 ∗ y ↪→ 3 implies (s, h) |= x 6= y.

3/ 19

Frame rule and separating conjunction

Separation logic:

Extension of Floyd-Hoare logic for (concurrent) programs with

mutable data structures.

Extension of Hoare logic with separating connectives ∗ and −∗.
[O'Hearn, Reynolds & Yang, CSL'01; Reynolds, LICS'02]

Frame rule:
{φ} C {ψ}

{φ ∗ ψ′} C {ψ ∗ ψ′}
where C does not mess with ψ′.

{x ↪→ 5} ∗x← 4 {x ↪→ 4}
{x ↪→ 5 ∗ y ↪→ 3} ∗x← 4 {x ↪→ 4 ∗ y ↪→ 3}

(s, h) |= x ↪→ 5 ∗ y ↪→ 3 implies (s, h) |= x 6= y.

3/ 19

Memory states with one record �eld

• Program variables PVAR = {x1, x2, x3, . . .}.
• Loc: countably in�nite set of locations

Val: countably in�nite set of values with Loc ⊆ Val.

• Memory state (s, h):

� Store s : PVAR→ Val.
� Heap h : Loc⇀fin Val (�nite domain).
� In this talk, we assume Loc = Val = N.

l1

x

l2 l3

y

l4

s(x) = l1
s(y) = l3

dom(h) = {l1, l2, l3}
h(l1) = l2
h(l2) = l3
h(l3) = l4

4/ 19

Memory states with one record �eld

• Program variables PVAR = {x1, x2, x3, . . .}.
• Loc: countably in�nite set of locations

Val: countably in�nite set of values with Loc ⊆ Val.

• Memory state (s, h):

� Store s : PVAR→ Val.
� Heap h : Loc⇀fin Val (�nite domain).
� In this talk, we assume Loc = Val = N.

l1

x

l2 l3

y

l4

s(x) = l1
s(y) = l3

dom(h) = {l1, l2, l3}
h(l1) = l2
h(l2) = l3
h(l3) = l4

4/ 19

Memory states with one record �eld

• Program variables PVAR = {x1, x2, x3, . . .}.
• Loc: countably in�nite set of locations

Val: countably in�nite set of values with Loc ⊆ Val.

• Memory state (s, h):

� Store s : PVAR→ Val.
� Heap h : Loc⇀fin Val (�nite domain).
� In this talk, we assume Loc = Val = N.

l1

x

l2 l3

y

l4

s(x) = l1
s(y) = l3

dom(h) = {l1, l2, l3}
h(l1) = l2
h(l2) = l3
h(l3) = l4

4/ 19

Disjoint heaps

• The heaps h1 and h2 are disjoint i� dom(h1) ∩ dom(h2) = ∅.

• When h1 and h2 are disjoint, h1] h2 is their disjoint union.

=]

5/ 19

Motivations for modal separation logics

Modal separation logics: Kripke-style semantics with modal

and separating connectives, alternative to FOSL

[Demri & Fervari, AiML'18].

To propose a uniform framework so that the logics can be

understood either as modal logics or as separation logics.

y

x

(ls(x, y) ∗ >) vs. @
x
EFy

As by-products, we introduce variants of

hybrid separation logics [Brotherston & Villard, POPL'14]

relation-changing modal logics [Fervari, PhD 2014]

6/ 19

Motivations for modal separation logics

Modal separation logics: Kripke-style semantics with modal

and separating connectives, alternative to FOSL

[Demri & Fervari, AiML'18].

To propose a uniform framework so that the logics can be

understood either as modal logics or as separation logics.

y

x

(ls(x, y) ∗ >) vs. @
x
EFy

As by-products, we introduce variants of

hybrid separation logics [Brotherston & Villard, POPL'14]

relation-changing modal logics [Fervari, PhD 2014]

6/ 19

Motivations for modal separation logics

Modal separation logics: Kripke-style semantics with modal

and separating connectives, alternative to FOSL

[Demri & Fervari, AiML'18].

To propose a uniform framework so that the logics can be

understood either as modal logics or as separation logics.

y

x

(ls(x, y) ∗ >) vs. @
x
EFy

As by-products, we introduce variants of

hybrid separation logics [Brotherston & Villard, POPL'14]

relation-changing modal logics [Fervari, PhD 2014]

6/ 19

Modal separation logic MSL

• Formulae:

φ ::= p | emp | ¬φ | φ∨φ | ♦φ | 〈6=〉φ | φ ∗ φ | φ−∗φ

• Models M = 〈N,R,V〉:
� R ⊆ N× N is �nite and functional,

� V : PROP→ P(N).

• Disjoint unions M1]M2.

• The models have an in�nite universe and a �nite relation

encoding the heap.

7/ 19

Modal separation logic MSL

• Formulae:

φ ::= p | emp | ¬φ | φ∨φ | ♦φ | 〈6=〉φ | φ ∗ φ | φ−∗φ

• Models M = 〈N,R,V〉:
� R ⊆ N× N is �nite and functional,

� V : PROP→ P(N).

• Disjoint unions M1]M2.

• The models have an in�nite universe and a �nite relation

encoding the heap.

7/ 19

Modal separation logic MSL

• Formulae:

φ ::= p | emp | ¬φ | φ∨φ | ♦φ | 〈6=〉φ | φ ∗ φ | φ−∗φ

• Models M = 〈N,R,V〉:
� R ⊆ N× N is �nite and functional,

� V : PROP→ P(N).

• Disjoint unions M1]M2.

• The models have an in�nite universe and a �nite relation

encoding the heap.

7/ 19

Modal separation logic MSL

• Formulae:

φ ::= p | emp | ¬φ | φ∨φ | ♦φ | 〈6=〉φ | φ ∗ φ | φ−∗φ

• Models M = 〈N,R,V〉:
� R ⊆ N× N is �nite and functional,

� V : PROP→ P(N).

• Disjoint unions M1]M2.

• The models have an in�nite universe and a �nite relation

encoding the heap.

7/ 19

Semantics

M, l |= p
def⇔ l ∈ V(p)

M, l |= ♦φ
def⇔ M, l′ |= φ, for some l′ ∈ N such that (l, l′) ∈ R

M, l |= 〈6=〉φ def⇔ M, l′ |= φ, for some l′ ∈ N such that l′ 6= l

M, l |= emp
def⇔ R = ∅

M, l |= φ1 ∗ φ2
def⇔ 〈N,R1,V〉, l |= φ1 and 〈N,R2,V〉, l |= φ2,

for some partition {R1,R2} of R

M, l |= φ1−∗φ2
def⇔ for all M′=〈N,R′,V〉 such that R∪R′ is �nite

and functional, and R ∩R′ = ∅,
M′, l |= φ1 implies 〈N,R ∪R′,V〉, l |= φ2.

8/ 19

Semantics

M, l |= p
def⇔ l ∈ V(p)

M, l |= ♦φ
def⇔ M, l′ |= φ, for some l′ ∈ N such that (l, l′) ∈ R

M, l |= 〈6=〉φ def⇔ M, l′ |= φ, for some l′ ∈ N such that l′ 6= l

M, l |= emp
def⇔ R = ∅

M, l |= φ1 ∗ φ2
def⇔ 〈N,R1,V〉, l |= φ1 and 〈N,R2,V〉, l |= φ2,

for some partition {R1,R2} of R

M, l |= φ1−∗φ2
def⇔ for all M′=〈N,R′,V〉 such that R∪R′ is �nite

and functional, and R ∩R′ = ∅,
M′, l |= φ1 implies 〈N,R ∪R′,V〉, l |= φ2.

8/ 19

Examples

• Universal modality:

〈U〉φ def
= φ ∨ 〈6=〉φ

• emp is de�nable (in fragments with ♦+ 〈6=〉):

emp
def
= [U]�⊥

• Size of the accessibility relation:

size ≥ k
def
= ¬emp ∗ · · · ∗ ¬emp︸ ︷︷ ︸

k times

Nominal x as in hybrid (modal) logics.

〈U〉(x ∧ [6=]¬x)

9/ 19

Examples

• Universal modality:

〈U〉φ def
= φ ∨ 〈6=〉φ

• emp is de�nable (in fragments with ♦+ 〈6=〉):

emp
def
= [U]�⊥

• Size of the accessibility relation:

size ≥ k
def
= ¬emp ∗ · · · ∗ ¬emp︸ ︷︷ ︸

k times

Nominal x as in hybrid (modal) logics.

〈U〉(x ∧ [6=]¬x)

9/ 19

Examples

• Universal modality:

〈U〉φ def
= φ ∨ 〈6=〉φ

• emp is de�nable (in fragments with ♦+ 〈6=〉):

emp
def
= [U]�⊥

• Size of the accessibility relation:

size ≥ k
def
= ¬emp ∗ · · · ∗ ¬emp︸ ︷︷ ︸

k times

Nominal x as in hybrid (modal) logics.

〈U〉(x ∧ [6=]¬x)

9/ 19

Examples

• Universal modality:

〈U〉φ def
= φ ∨ 〈6=〉φ

• emp is de�nable (in fragments with ♦+ 〈6=〉):

emp
def
= [U]�⊥

• Size of the accessibility relation:

size ≥ k
def
= ¬emp ∗ · · · ∗ ¬emp︸ ︷︷ ︸

k times

Nominal x as in hybrid (modal) logics.

〈U〉(x ∧ [6=]¬x)

9/ 19

Examples

The formula (♦> ∗ ♦>) is a contradiction.

The model is a loop of length 2 visiting the current location l:

size ≥ 2 ∧ ¬size ≥ 3 ∧ ♦♦♦>∧

¬(¬emp ∗ ♦♦♦>) ∧ ¬♦(¬emp ∗ ♦♦♦>)
l

p1 ∧ ♦(p2 ∧ ♦(p3 ∧ · · ·♦(pn ∧� ⊥) · · ·)):

l1

p1

l2

p2

. . . ln

pn

10/ 19

Examples

The formula (♦> ∗ ♦>) is a contradiction.

The model is a loop of length 2 visiting the current location l:

size ≥ 2 ∧ ¬size ≥ 3 ∧ ♦♦♦>∧

¬(¬emp ∗ ♦♦♦>) ∧ ¬♦(¬emp ∗ ♦♦♦>)
l

p1 ∧ ♦(p2 ∧ ♦(p3 ∧ · · ·♦(pn ∧� ⊥) · · ·)):

l1

p1

l2

p2

. . . ln

pn

10/ 19

Examples

The formula (♦> ∗ ♦>) is a contradiction.

The model is a loop of length 2 visiting the current location l:

size ≥ 2 ∧ ¬size ≥ 3 ∧ ♦♦♦>∧

¬(¬emp ∗ ♦♦♦>) ∧ ¬♦(¬emp ∗ ♦♦♦>)
l

p1 ∧ ♦(p2 ∧ ♦(p3 ∧ · · ·♦(pn ∧� ⊥) · · ·)):

l1

p1

l2

p2

. . . ln

pn

10/ 19

Overview about satis�ability problems

MSL, undecidable

MSL(∗,♦, 〈6=〉), Tower-c.

MSL(∗,♦, 〈6=〉,♦−1), in Tower

MSL(∗,♦,♦−1), ?

MSL(∗,♦), NP-c. MSL(∗, 〈6=〉), NP-c.

SL(∗,−∗), PSpace-c.

SL(∗,−∗, ls), undecidable

MSL(♦, 〈gsb〉), NP-c.

• PSpace-C. of SL(∗,−∗) [Calcagno & Yang & O'Hearn, FSTTCS'01]

• Undec. of SL(∗,−∗, ls) [Demri & Lozes & Mansutti, FOSSACS'18]

• Complexity class Tower [Schmitz, ToCT 2016]

11/ 19

Axiomatising Modal Separation Logics

• Main challenges:

- dealing with languages lacking uniform substitution.

- puristic approach: systems without external features (e.g.

labels).

Proof systems for abstract separation logics with labels or nominals:

Hybrid separation logics. [Brotherston & Villard, POPL'14]

Sequent-style calculi. [Hou et al., TOCL 2018]

Tableaux-based calculi. [Docherty & Pym, FOSSACS'18]

• Our approach: design a subclass of formulae in MSL(∗,♦) that
captures the expressive power of MSL(∗,♦) (�core formulae�).

[Demri & Fervari & Mansutti, JELIA'19]

• Calculus for MSL(∗, 〈6=〉) adapting [Segerberg, Theoria 1981].

12/ 19

Axiomatising Modal Separation Logics

• Main challenges:

- dealing with languages lacking uniform substitution.

- puristic approach: systems without external features (e.g.

labels).

Proof systems for abstract separation logics with labels or nominals:

Hybrid separation logics. [Brotherston & Villard, POPL'14]

Sequent-style calculi. [Hou et al., TOCL 2018]

Tableaux-based calculi. [Docherty & Pym, FOSSACS'18]

• Our approach: design a subclass of formulae in MSL(∗,♦) that
captures the expressive power of MSL(∗,♦) (�core formulae�).

[Demri & Fervari & Mansutti, JELIA'19]

• Calculus for MSL(∗, 〈6=〉) adapting [Segerberg, Theoria 1981].

12/ 19

Axiomatising Modal Separation Logics

• Main challenges:

- dealing with languages lacking uniform substitution.

- puristic approach: systems without external features (e.g.

labels).

Proof systems for abstract separation logics with labels or nominals:

Hybrid separation logics. [Brotherston & Villard, POPL'14]

Sequent-style calculi. [Hou et al., TOCL 2018]

Tableaux-based calculi. [Docherty & Pym, FOSSACS'18]

• Our approach: design a subclass of formulae in MSL(∗,♦) that
captures the expressive power of MSL(∗,♦) (�core formulae�).

[Demri & Fervari & Mansutti, JELIA'19]

• Calculus for MSL(∗, 〈6=〉) adapting [Segerberg, Theoria 1981].

12/ 19

Axiomatising Modal Separation Logics

• Main challenges:

- dealing with languages lacking uniform substitution.

- puristic approach: systems without external features (e.g.

labels).

Proof systems for abstract separation logics with labels or nominals:

Hybrid separation logics. [Brotherston & Villard, POPL'14]

Sequent-style calculi. [Hou et al., TOCL 2018]

Tableaux-based calculi. [Docherty & Pym, FOSSACS'18]

• Our approach: design a subclass of formulae in MSL(∗,♦) that
captures the expressive power of MSL(∗,♦) (�core formulae�).

[Demri & Fervari & Mansutti, JELIA'19]

• Calculus for MSL(∗, 〈6=〉) adapting [Segerberg, Theoria 1981].

12/ 19

Axiomatising Modal Separation Logics

• Main challenges:

- dealing with languages lacking uniform substitution.

- puristic approach: systems without external features (e.g.

labels).

Proof systems for abstract separation logics with labels or nominals:

Hybrid separation logics. [Brotherston & Villard, POPL'14]

Sequent-style calculi. [Hou et al., TOCL 2018]

Tableaux-based calculi. [Docherty & Pym, FOSSACS'18]

• Our approach: design a subclass of formulae in MSL(∗,♦) that
captures the expressive power of MSL(∗,♦) (�core formulae�).

[Demri & Fervari & Mansutti, JELIA'19]

• Calculus for MSL(∗, 〈6=〉) adapting [Segerberg, Theoria 1981].

12/ 19

Method to axiomatise MSL(∗,♦)

• The Hilbert-style proof system is made of three parts:
1 Axioms and rule from propositional calculus.

2 Axiomatisation for Boolean combinations of core formulae.

3 Axioms and rules to transform any formula into a Boolean

combination of core formulae.

• Only formulae in MSL(∗,♦) are used!

• Similar to Dynamic Epistemic Logic's reduction axioms.

• Boolean combinations of core formulae capture MSL(∗,♦).

• Intuitively, each formula is equivalent to (Boolean combination

of):

- a modal part, and

- a size part.

13/ 19

Method to axiomatise MSL(∗,♦)

• The Hilbert-style proof system is made of three parts:
1 Axioms and rule from propositional calculus.

2 Axiomatisation for Boolean combinations of core formulae.

3 Axioms and rules to transform any formula into a Boolean

combination of core formulae.

• Only formulae in MSL(∗,♦) are used!

• Similar to Dynamic Epistemic Logic's reduction axioms.

• Boolean combinations of core formulae capture MSL(∗,♦).

• Intuitively, each formula is equivalent to (Boolean combination

of):

- a modal part, and

- a size part.

13/ 19

Method to axiomatise MSL(∗,♦)

• The Hilbert-style proof system is made of three parts:
1 Axioms and rule from propositional calculus.

2 Axiomatisation for Boolean combinations of core formulae.

3 Axioms and rules to transform any formula into a Boolean

combination of core formulae.

• Only formulae in MSL(∗,♦) are used!

• Similar to Dynamic Epistemic Logic's reduction axioms.

• Boolean combinations of core formulae capture MSL(∗,♦).

• Intuitively, each formula is equivalent to (Boolean combination

of):

- a modal part, and

- a size part.

13/ 19

Method to axiomatise MSL(∗,♦)

• The Hilbert-style proof system is made of three parts:
1 Axioms and rule from propositional calculus.

2 Axiomatisation for Boolean combinations of core formulae.

3 Axioms and rules to transform any formula into a Boolean

combination of core formulae.

• Only formulae in MSL(∗,♦) are used!

• Similar to Dynamic Epistemic Logic's reduction axioms.

• Boolean combinations of core formulae capture MSL(∗,♦).

• Intuitively, each formula is equivalent to (Boolean combination

of):

- a modal part, and

- a size part.

13/ 19

Method to axiomatise MSL(∗,♦)

• The Hilbert-style proof system is made of three parts:
1 Axioms and rule from propositional calculus.

2 Axiomatisation for Boolean combinations of core formulae.

3 Axioms and rules to transform any formula into a Boolean

combination of core formulae.

• Only formulae in MSL(∗,♦) are used!

• Similar to Dynamic Epistemic Logic's reduction axioms.

• Boolean combinations of core formulae capture MSL(∗,♦).

• Intuitively, each formula is equivalent to (Boolean combination

of):

- a modal part, and

- a size part.

13/ 19

Eliminating modalities & reasoning on core formulae

14/ 19

Hilbert-style system for MSL(∗,♦)

The modal part is named graph formula

` := > | ⊥ | p | ¬p Q := ` | Q ∧ Q

G := |Q, . . . ,Q〉 | |Q, . . . ,Q] | |Q, . . . ,Q, . . . ,Q

For a size formula we have

size ≥ β or ¬size ≥ β, (β ∈ N)

Claim: Each MSL(∗,♦)-formula is equivalent to a Boolean

combination of formulas of the shape

G ∧ size ≥ β or G ∧ size ≥ β ∧ ¬size ≥ β′

15/ 19

Hilbert-style system for MSL(∗,♦)

The modal part is named graph formula

` := > | ⊥ | p | ¬p Q := ` | Q ∧ Q

G := |Q, . . . ,Q〉 | |Q, . . . ,Q] | |Q, . . . ,Q, . . . ,Q

For a size formula we have

size ≥ β or ¬size ≥ β, (β ∈ N)

Claim: Each MSL(∗,♦)-formula is equivalent to a Boolean

combination of formulas of the shape

G ∧ size ≥ β or G ∧ size ≥ β ∧ ¬size ≥ β′

15/ 19

Hilbert-style system for MSL(∗,♦)

The modal part is named graph formula

` := > | ⊥ | p | ¬p Q := ` | Q ∧ Q

G := |Q, . . . ,Q〉 | |Q, . . . ,Q] | |Q, . . . ,Q, . . . ,Q

For a size formula we have

size ≥ β or ¬size ≥ β, (β ∈ N)

Claim: Each MSL(∗,♦)-formula is equivalent to a Boolean

combination of formulas of the shape

G ∧ size ≥ β or G ∧ size ≥ β ∧ ¬size ≥ β′

15/ 19

Hilbert-style system for MSL(∗,♦)

The modal part is named graph formula

` := > | ⊥ | p | ¬p Q := ` | Q ∧ Q

G := |Q, . . . ,Q〉 | |Q, . . . ,Q] | |Q, . . . ,Q, . . . ,Q

For a size formula we have

size ≥ β or ¬size ≥ β, (β ∈ N)

Claim: Each MSL(∗,♦)-formula is equivalent to a Boolean

combination of formulas of the shape

G ∧ size ≥ β or G ∧ size ≥ β ∧ ¬size ≥ β′

15/ 19

Intuitive semantics of graph formulae

|Q1, . . . ,Qn〉 characterises: l1

Q1

l2

Q2

. . . ln

Qn

. . .

|Q1, . . . ,Qn] characterises:
l1

Q1

l2

Q2

. . . ln

Qn

|Q1,Q2, . . . ,Qn characterises:
l1

Q1

l2

Q2

. . . ln

Qn

Claim: Graph formulae are de�nable in MSL(∗,♦).

16/ 19

Intuitive semantics of graph formulae

|Q1, . . . ,Qn〉 characterises: l1

Q1

l2

Q2

. . . ln

Qn

. . .

|Q1, . . . ,Qn] characterises:
l1

Q1

l2

Q2

. . . ln

Qn

|Q1,Q2, . . . ,Qn characterises:
l1

Q1

l2

Q2

. . . ln

Qn

Claim: Graph formulae are de�nable in MSL(∗,♦).

16/ 19

Intuitive semantics of graph formulae

|Q1, . . . ,Qn〉 characterises: l1

Q1

l2

Q2

. . . ln

Qn

. . .

|Q1, . . . ,Qn] characterises:
l1

Q1

l2

Q2

. . . ln

Qn

|Q1,Q2, . . . ,Qn characterises:
l1

Q1

l2

Q2

. . . ln

Qn

Claim: Graph formulae are de�nable in MSL(∗,♦).

16/ 19

Intuitive semantics of graph formulae

|Q1, . . . ,Qn〉 characterises: l1

Q1

l2

Q2

. . . ln

Qn

. . .

|Q1, . . . ,Qn] characterises:
l1

Q1

l2

Q2

. . . ln

Qn

|Q1,Q2, . . . ,Qn characterises:
l1

Q1

l2

Q2

. . . ln

Qn

Claim: Graph formulae are de�nable in MSL(∗,♦).

16/ 19

Axioms and inference rules

• Axioms dedicated to size formulae and inconsistencies, e.g.

size ≥ 0 size ≥ β+1⇒ size ≥ β

• Axioms dedicated to conjunctions and negations, e.g.

|Q1, . . . ,Qi , . . . ,Qn ∧|Q ′1, . . . ,Q ′i , . . . ,Q ′n ⇔ |Q1∧Q ′1, . . . ,Qi ∧ Q ′i , . . . ,Qn ∧ Q ′n

• Axioms and rules to eliminate ♦ and ∗, e.g.

♦(|Q1, . . . ,Qn〉)⇔ |>,Q1, . . . ,Qn ∨ |>,Q1, . . . ,Qn〉
♦φ⇒ ♦ψ

φ⇒ ψ

• Completeness of the calculus with the additional axiom:

p ⇔ (|p〉 ∨ |p] ∨ |p).

[Demri & Fervari & Mansutti, JELIA'19]

17/ 19

Axioms and inference rules

• Axioms dedicated to size formulae and inconsistencies, e.g.

size ≥ 0 size ≥ β+1⇒ size ≥ β

• Axioms dedicated to conjunctions and negations, e.g.

|Q1, . . . ,Qi , . . . ,Qn ∧|Q ′1, . . . ,Q ′i , . . . ,Q ′n ⇔ |Q1∧Q ′1, . . . ,Qi ∧ Q ′i , . . . ,Qn ∧ Q ′n

• Axioms and rules to eliminate ♦ and ∗, e.g.

♦(|Q1, . . . ,Qn〉)⇔ |>,Q1, . . . ,Qn ∨ |>,Q1, . . . ,Qn〉
♦φ⇒ ♦ψ

φ⇒ ψ

• Completeness of the calculus with the additional axiom:

p ⇔ (|p〉 ∨ |p] ∨ |p).

[Demri & Fervari & Mansutti, JELIA'19]

17/ 19

Axioms and inference rules

• Axioms dedicated to size formulae and inconsistencies, e.g.

size ≥ 0 size ≥ β+1⇒ size ≥ β

• Axioms dedicated to conjunctions and negations, e.g.

|Q1, . . . ,Qi , . . . ,Qn ∧|Q ′1, . . . ,Q ′i , . . . ,Q ′n ⇔ |Q1∧Q ′1, . . . ,Qi ∧ Q ′i , . . . ,Qn ∧ Q ′n

• Axioms and rules to eliminate ♦ and ∗, e.g.

♦(|Q1, . . . ,Qn〉)⇔ |>,Q1, . . . ,Qn ∨ |>,Q1, . . . ,Qn〉
♦φ⇒ ♦ψ

φ⇒ ψ

• Completeness of the calculus with the additional axiom:

p ⇔ (|p〉 ∨ |p] ∨ |p).

[Demri & Fervari & Mansutti, JELIA'19]

17/ 19

Axioms and inference rules

• Axioms dedicated to size formulae and inconsistencies, e.g.

size ≥ 0 size ≥ β+1⇒ size ≥ β

• Axioms dedicated to conjunctions and negations, e.g.

|Q1, . . . ,Qi , . . . ,Qn ∧|Q ′1, . . . ,Q ′i , . . . ,Q ′n ⇔ |Q1∧Q ′1, . . . ,Qi ∧ Q ′i , . . . ,Qn ∧ Q ′n

• Axioms and rules to eliminate ♦ and ∗, e.g.

♦(|Q1, . . . ,Qn〉)⇔ |>,Q1, . . . ,Qn ∨ |>,Q1, . . . ,Qn〉
♦φ⇒ ♦ψ

φ⇒ ψ

• Completeness of the calculus with the additional axiom:

p ⇔ (|p〉 ∨ |p] ∨ |p).

[Demri & Fervari & Mansutti, JELIA'19]

17/ 19

From MSL(∗,♦) to core formulae - example

The formula

size ≥ 2 ∧ ¬size ≥ 3 ∧ ♦♦♦>∧

¬(¬emp ∗ ♦♦♦>) ∧ ¬♦(¬emp ∗ ♦♦♦>)
l

can be shown equivalent to

size ≥ 2 ∧ ¬size ≥ 3 ∧ |>,>

18/ 19

Concluding remarks

• Introduction to basic modal separation logics and investigations on

their complexity and axiomatisation.

• Axiomatisations for the fragment MSL(∗,♦, 〈6=〉)?

• Some ongoing works:

- Expressivity and complexity for MSL(∗,♦−1)?
(with B. Bednarczyk, S. Demri & A. Mansutti).

- Tableaux methods for core formulae.

(with A. Saravia).

19/ 19

Concluding remarks

• Introduction to basic modal separation logics and investigations on

their complexity and axiomatisation.

• Axiomatisations for the fragment MSL(∗,♦, 〈6=〉)?

• Some ongoing works:

- Expressivity and complexity for MSL(∗,♦−1)?
(with B. Bednarczyk, S. Demri & A. Mansutti).

- Tableaux methods for core formulae.

(with A. Saravia).

19/ 19

