Separation Logics: A Modal Perspective

Raul Fervari
FAMAF-UNC \& CONICET (Argentina)

LIRa seminar, ILLC, UvA
Amsterdam, NL, 2019

Joint work with Stéphane Demri \& Alessio Mansutti (LSV, U. Paris-Saclay \& CNRS, France)

Updating models

- Fascinating realm of (modal) logics updating models:
- logics of public announcement [Plaza, 1989; Lutz, AAMAS'06]
- sabotage modal logics [van Benthem, 2002]
- relation-changing modal logics [Fervari, PhD 2014]
- separation logics
[Reynolds, LICS'02]
- one-agent refinement modal logic
[Bozzelli \& van Ditmarsch \& Pinchinat, TCS 2015]
- modal separation logic DMBI
[Courtault \& Galmiche, JLC 2018]
- logics with reactive Kripke semantics
[Gabbay, Book 2013]

Updating models

- Fascinating realm of (modal) logics updating models:
- logics of public announcement [Plaza, 1989; Lutz, AAMAS'06]
- sabotage modal logics [van Benthem, 2002]
- relation-changing modal logics [Fervari, PhD 2014]
- separation logics
[Reynolds, LICS'02]
- one-agent refinement modal logic
[Bozzelli \& van Ditmarsch \& Pinchinat, TCS 2015]
- modal separation logic DMBI
[Courtault \& Galmiche, JLC 2018]
- logics with reactive Kripke semantics
[Gabbay, Book 2013]
- This work: combining separation logics with modal logics, leading to new relation-changing modal logics.

Frame rule and separating conjunction

- Separation logic:
- Extension of Floyd-Hoare logic for (concurrent) programs with mutable data structures.
- Extension of Hoare logic with separating connectives $*$ and $\rightarrow *$.
[O'Hearn, Reynolds \& Yang, CSL'01; Reynolds, LICS'02]

Frame rule and separating conjunction

- Separation logic:
- Extension of Floyd-Hoare logic for (concurrent) programs with mutable data structures.
- Extension of Hoare logic with separating connectives $*$ and \rightarrow. [O'Hearn, Reynolds \& Yang, CSL'01; Reynolds, LICS'02]
- Frame rule:

$$
\frac{\{\phi\} \mathrm{C}\{\psi\}}{\left\{\phi * \psi^{\prime}\right\} \mathrm{C}\left\{\psi * \psi^{\prime}\right\}}
$$

where C does not mess with ψ^{\prime}.

$$
\frac{\{\mathrm{x} \hookrightarrow 5\}^{*} \mathrm{x} \leftarrow 4\{\mathrm{x} \hookrightarrow 4\}}{\{\mathrm{x} \hookrightarrow 5 * \mathrm{y} \hookrightarrow 3\}^{*} \mathrm{x} \leftarrow 4\{\mathrm{x} \hookrightarrow 4 * \mathrm{y} \hookrightarrow 3\}}
$$

Frame rule and separating conjunction

- Separation logic:
- Extension of Floyd-Hoare logic for (concurrent) programs with mutable data structures.
- Extension of Hoare logic with separating connectives $*$ and $-*$. [O'Hearn, Reynolds \& Yang, CSL'01; Reynolds, LICS'02]
- Frame rule:

$$
\frac{\{\phi\} \mathrm{C}\{\psi\}}{\left\{\phi * \psi^{\prime}\right\} \mathrm{C}\left\{\psi * \psi^{\prime}\right\}}
$$

where C does not mess with ψ^{\prime}.

$$
\frac{\{\mathrm{x} \hookrightarrow 5\}^{*} \mathrm{x} \leftarrow 4\{\mathrm{x} \hookrightarrow 4\}}{\{\mathrm{x} \hookrightarrow 5 * \mathrm{y} \hookrightarrow 3\}^{*} \mathrm{x} \leftarrow 4\{\mathrm{x} \hookrightarrow 4 * \mathrm{y} \hookrightarrow 3\}}
$$

- $(\mathfrak{s}, \mathfrak{h}) \vDash \mathrm{x} \hookrightarrow 5 * \mathrm{y} \hookrightarrow 3$ implies $(\mathfrak{s}, \mathfrak{h}) \vDash \mathrm{x} \neq \mathrm{y}$.

Memory states with one record field

- Program variables PVAR $=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots\right\}$.
- Loc: countably infinite set of locations

Val: countably infinite set of values with Loc \subseteq Val.

Memory states with one record field

- Program variables PVAR $=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots\right\}$.
- Loc: countably infinite set of locations

Val: countably infinite set of values with Loc \subseteq Val.

- Memory state ($\mathfrak{s}, \mathfrak{h}$):
- Store $\mathfrak{s}:$ PVAR \rightarrow Val.
- Heap \mathfrak{h} : Loc $\rightarrow_{\text {fin }}$ Val (finite domain).
- In this talk, we assume Loc $=\mathrm{Val}=\mathbb{N}$.

Memory states with one record field

- Program variables PVAR $=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots\right\}$.
- Loc: countably infinite set of locations

Val: countably infinite set of values with Loc \subseteq Val.

- Memory state ($\mathfrak{s}, \mathfrak{h}$):
- Store $\mathfrak{s}:$ PVAR \rightarrow Val.
- Heap \mathfrak{h} : Loc $\rightharpoonup_{\text {fin }}$ Val (finite domain).
- In this talk, we assume Loc $=\mathrm{Val}=\mathbb{N}$.

Disjoint heaps

- The heaps \mathfrak{h}_{1} and \mathfrak{h}_{2} are disjoint iff $\operatorname{dom}\left(\mathfrak{h}_{1}\right) \cap \operatorname{dom}\left(\mathfrak{h}_{2}\right)=\emptyset$.
- When \mathfrak{h}_{1} and \mathfrak{h}_{2} are disjoint, $\mathfrak{h}_{1} \uplus \mathfrak{h}_{2}$ is their disjoint union.

Motivations for modal separation logics

- Modal separation logics: Kripke-style semantics with modal and separating connectives, alternative to FOSL
[Demri \& Fervari, AiML'18].

Motivations for modal separation logics

- Modal separation logics: Kripke-style semantics with modal and separating connectives, alternative to FOSL
[Demri \& Fervari, AiML'18].
- To propose a uniform framework so that the logics can be understood either as modal logics or as separation logics.

$$
(\operatorname{ls}(\mathrm{x}, \mathrm{y}) * \top) \text { vs. } @_{\mathrm{x}} \mathrm{EFy}
$$

Motivations for modal separation logics

- Modal separation logics: Kripke-style semantics with modal and separating connectives, alternative to FOSL
[Demri \& Fervari, AiML'18].
- To propose a uniform framework so that the logics can be understood either as modal logics or as separation logics.

$$
(\operatorname{ls}(\mathrm{x}, \mathrm{y}) * \top) \text { vs. } \bigotimes_{\mathrm{x}} E F y
$$

- As by-products, we introduce variants of
- hybrid separation logics
- relation-changing modal logics
[Fervari, PhD 2014]

Modal separation logic MSL

- Formulae:

$$
\phi::=p|\operatorname{emp}| \neg \phi|\phi \vee \phi| \diamond \phi|\langle\neq\rangle \phi| \phi * \phi \mid \phi * \phi
$$

Modal separation logic MSL

- Formulae:

$$
\phi::=p|\operatorname{emp}| \neg \phi|\phi \vee \phi| \diamond \phi|\langle\neq\rangle \phi| \phi * \phi \mid \phi \rightarrow \phi
$$

- Models $\mathfrak{M}=\langle\mathbb{N}, \mathfrak{R}, \mathfrak{V}\rangle$:
- $\mathfrak{R} \subseteq \mathbb{N} \times \mathbb{N}$ is finite and functional,
$-\mathfrak{V}: \operatorname{PROP} \rightarrow \mathcal{P}(\mathbb{N})$.

Modal separation logic MSL

- Formulae:

$$
\phi::=p|\operatorname{emp}| \neg \phi|\phi \vee \phi| \diamond \phi|\langle\neq\rangle \phi| \phi * \phi \mid \phi \rightarrow \phi
$$

- Models $\mathfrak{M}=\langle\mathbb{N}, \mathfrak{R}, \mathfrak{V}\rangle$:
- $\mathfrak{R} \subseteq \mathbb{N} \times \mathbb{N}$ is finite and functional,
- $\mathfrak{V}: \operatorname{PROP} \rightarrow \mathcal{P}(\mathbb{N})$.
- Disjoint unions $\mathfrak{M}_{1} \uplus \mathfrak{M}_{2}$.

Modal separation logic MSL

- Formulae:

$$
\phi::=p \mid \text { emp }|\neg \phi| \phi \vee \phi|\diamond \phi|\langle\neq\rangle \phi|\phi * \phi| \phi * \phi
$$

- Models $\mathfrak{M}=\langle\mathbb{N}, \mathfrak{R}, \mathfrak{V}\rangle$:
- $\mathfrak{R} \subseteq \mathbb{N} \times \mathbb{N}$ is finite and functional,
- $\mathfrak{V}: \operatorname{PROP} \rightarrow \mathcal{P}(\mathbb{N})$.
- Disjoint unions $\mathfrak{M}_{1} \uplus \mathfrak{M}_{2}$.
- The models have an infinite universe and a finite relation encoding the heap.

Semantics

$$
\begin{array}{ll}
\mathfrak{M}, \mathfrak{l}=p & \stackrel{\text { def }}{\Leftrightarrow} \mathfrak{l} \in \mathfrak{V}(p) \\
\mathfrak{M}, \mathfrak{l} \vDash \diamond \phi & \stackrel{\text { def }}{\Leftrightarrow} \mathfrak{M}, \mathfrak{l}^{\prime} \models \phi, \text { for some } \mathfrak{l}^{\prime} \in \mathbb{N} \text { such that }\left(\mathfrak{l}, \mathfrak{l}^{\prime}\right) \in \mathfrak{R} \\
\mathfrak{M}, \mathfrak{l}=\langle\neq\rangle \phi \quad & \stackrel{\text { def }}{\Leftrightarrow} \mathfrak{M}, \mathfrak{l}^{\prime} \models \phi, \text { for some } \mathfrak{l}^{\prime} \in \mathbb{N} \text { such that } \mathfrak{l}^{\prime} \neq \mathfrak{l}
\end{array}
$$

Semantics

$$
\begin{aligned}
& \mathfrak{M}, \mathfrak{l}=p \quad \stackrel{\text { def }}{\Leftrightarrow} \mathfrak{l} \in \mathfrak{V}(p) \\
& \mathfrak{M} \mathfrak{l} \models \diamond \phi \\
& \stackrel{\text { def }}{\Leftrightarrow} \mathfrak{M}, \mathfrak{l}^{\prime} \models \phi, \text { for some } \mathfrak{l}^{\prime} \in \mathbb{N} \text { such that }\left(\mathfrak{l}, \mathfrak{l}^{\prime}\right) \in \mathfrak{R} \\
& \mathfrak{M}, \mathfrak{l} \mid=\langle\neq\rangle \phi \quad \stackrel{\text { def }}{\Leftrightarrow} \quad \mathfrak{M}, \mathfrak{l}^{\prime} \models \phi, \text { for some } \mathfrak{l}^{\prime} \in \mathbb{N} \text { such that } \mathfrak{l}^{\prime} \neq \mathfrak{l} \\
& \mathfrak{M}, \mathfrak{l} \mid=\mathrm{emp} \quad \stackrel{\text { def }}{\Leftrightarrow} \mathfrak{R}=\emptyset \\
& \mathfrak{M}, \mathfrak{l}=\phi_{1} * \phi_{2} \quad \stackrel{\text { def }}{\Leftrightarrow}\left\langle\mathbb{N}, \mathfrak{R}_{1}, \mathfrak{V}\right\rangle, \mathfrak{l} \models \phi_{1} \text { and }\left\langle\mathbb{N}, \mathfrak{R}_{2}, \mathfrak{V}\right\rangle, \mathfrak{l} \models \phi_{2}, \\
& \text { for some partition }\left\{\Re_{1}, \mathfrak{R}_{2}\right\} \text { of } \mathfrak{R}
\end{aligned}
$$

$\mathfrak{M}, \mathfrak{l} \mid=\phi_{1} * \phi_{2} \quad \stackrel{\text { def }}{\Leftrightarrow}$ for all $\mathfrak{M}^{\prime}=\left\langle\mathbb{N}, \mathfrak{R}^{\prime}, \mathfrak{V}\right\rangle$ such that $\mathfrak{R} \cup \mathfrak{R}^{\prime}$ is finite and functional, and $\mathfrak{R} \cap \mathfrak{R}^{\prime}=\emptyset$, $\mathfrak{M}^{\prime}, \mathfrak{l}=\phi_{1}$ implies $\left\langle\mathbb{N}, \mathfrak{R} \cup \mathfrak{R}^{\prime}, \mathfrak{V}\right\rangle, \mathfrak{l}=\phi_{2}$.

Examples

- Universal modality:

$$
\langle\mathrm{U}\rangle \phi \stackrel{\text { def }}{=} \phi \vee\langle\neq\rangle \phi
$$

Examples

- Universal modality:

$$
\langle\mathrm{U}\rangle \phi \stackrel{\text { def }}{=} \phi \vee\langle\neq\rangle \phi
$$

- emp is definable (in fragments with $\rangle+\langle\neq\rangle$):

$$
\text { emp } \stackrel{\text { def }}{=}[\mathrm{U}] \square \perp
$$

Examples

- Universal modality:

$$
\langle\mathrm{U}\rangle \phi \stackrel{\text { def }}{=} \phi \vee\langle\neq\rangle \phi
$$

- emp is definable (in fragments with $\diamond+\langle\neq\rangle$):

$$
\text { emp } \stackrel{\text { def }}{=}[\mathrm{U}] \square \perp
$$

- Size of the accessibility relation:

$$
\text { size } \geq k \stackrel{\text { def }}{=} \underbrace{\neg \mathrm{emp} * \cdots * \neg \mathrm{emp}}_{k \text { times }}
$$

Examples

- Universal modality:

$$
\langle\mathrm{U}\rangle \phi \stackrel{\text { def }}{=} \phi \vee\langle\neq\rangle \phi
$$

- emp is definable (in fragments with $\diamond+\langle\neq\rangle$):

$$
\mathrm{emp} \stackrel{\text { def }}{=}[\mathrm{U}] \square \perp
$$

- Size of the accessibility relation:

$$
\text { size } \geq k \stackrel{\text { def }}{=} \underbrace{\neg \mathrm{emp} * \cdots * \neg \mathrm{emp}}_{k \text { times }}
$$

- Nominal x as in hybrid (modal) logics.

$$
\langle\mathrm{U}\rangle(x \wedge[\neq] \neg x)
$$

Examples

- The formula $(\diamond T * \diamond T)$ is a contradiction.

Examples

- The formula $(\diamond T * \diamond T)$ is a contradiction.
- The model is a loop of length 2 visiting the current location \mathfrak{l} :

$$
\begin{gathered}
\text { size } \geq 2 \wedge \neg \text { size } \geq 3 \wedge \diamond \Delta \diamond \top \wedge \\
\neg(\neg \mathrm{emp} * \diamond \diamond \diamond \top) \wedge \neg \diamond(\neg \mathrm{emp} * \diamond \diamond \diamond \top)
\end{gathered}
$$

Examples

- The formula $(\diamond T * \diamond T)$ is a contradiction.
- The model is a loop of length 2 visiting the current location \mathfrak{l} :

$$
\begin{gathered}
\text { size } \geq 2 \wedge \neg \text { size } \geq 3 \wedge \diamond \diamond \diamond \top \wedge \\
\neg(\neg \operatorname{mp} * \diamond \diamond \diamond \top) \wedge \neg \diamond(\neg \operatorname{mpp} * \diamond \diamond \diamond \top)
\end{gathered}
$$

- $p_{1} \wedge \diamond\left(p_{2} \wedge \diamond\left(p_{3} \wedge \cdots \diamond\left(p_{n} \wedge \square \perp\right) \cdots\right)\right)$:

$$
\stackrel{p_{1}}{\mathrm{I}_{1}} \longrightarrow \stackrel{p_{2}}{\mathrm{I}_{2}} \longrightarrow \cdots \longrightarrow \stackrel{p_{n}}{\mathrm{I}_{n}}
$$

Overview about satisfiability problems

- PSpace-C. of SL $(*,-*)$ [Calcagno \& Yang \& O'Hearn, FSTTCS'01]
- Undec. of SL(*, $*, 1$ s)
- Complexity class Tower [Demri \& Lozes \& Mansutti, FOSSACS'18] [Schmitz, ToCT 2016]

Axiomatising Modal Separation Logics

- Main challenges:
- dealing with languages lacking uniform substitution.

Axiomatising Modal Separation Logics

- Main challenges:
- dealing with languages lacking uniform substitution.
- puristic approach: systems without external features (e.g. labels).

Axiomatising Modal Separation Logics

- Main challenges:
- dealing with languages lacking uniform substitution.
- puristic approach: systems without external features (e.g. labels).
- Proof systems for abstract separation logics with labels or nominals:
- Hybrid separation logics.
- Sequent-style calculi.
- Tableaux-based calculi.
[Brotherston \& Villard, POPL'14]
[Hou et al., TOCL 2018]
[Docherty \& Pym, FOSSACS'18]

Axiomatising Modal Separation Logics

- Main challenges:
- dealing with languages lacking uniform substitution.
- puristic approach: systems without external features (e.g. labels).
- Proof systems for abstract separation logics with labels or nominals:
- Hybrid separation logics.
- Sequent-style calculi.
- Tableaux-based calculi.
[Brotherston \& Villard, POPL'14]
[Hou et al., TOCL 2018]
[Docherty \& Pym, FOSSACS'18]
- Our approach: design a subclass of formulae in $\operatorname{MSL}(*, \diamond)$ that captures the expressive power of $\operatorname{MSL}(*, \diamond)$ ("core formulae").
[Demri \& Fervari \& Mansutti, JELIA'19]

Axiomatising Modal Separation Logics

- Main challenges:
- dealing with languages lacking uniform substitution.
- puristic approach: systems without external features (e.g. labels).
- Proof systems for abstract separation logics with labels or nominals:
- Hybrid separation logics.
- Sequent-style calculi.
- Tableaux-based calculi.
[Brotherston \& Villard, POPL'14]
[Hou et al., TOCL 2018]
[Docherty \& Pym, FOSSACS'18]
- Our approach: design a subclass of formulae in MSL $(*, \diamond)$ that captures the expressive power of $\operatorname{MSL}(*, \diamond)$ ("core formulae").
[Demri \& Fervari \& Mansutti, JELIA'19]
- Calculus for MSL $(*,\langle\neq\rangle)$ adapting [Segerberg, Theoria 1981].

Method to axiomatise MSL $(*, \diamond)$

- The Hilbert-style proof system is made of three parts:
(1) Axioms and rule from propositional calculus.
(2) Axiomatisation for Boolean combinations of core formulae.
(3) Axioms and rules to transform any formula into a Boolean combination of core formulae.

Method to axiomatise MSL $(*, \diamond)$

- The Hilbert-style proof system is made of three parts:
(1) Axioms and rule from propositional calculus.
(2) Axiomatisation for Boolean combinations of core formulae.
(3) Axioms and rules to transform any formula into a Boolean combination of core formulae.
- Only formulae in $\operatorname{MSL}(*, \diamond)$ are used!

Method to axiomatise MSL $(*, \diamond)$

- The Hilbert-style proof system is made of three parts:
(1) Axioms and rule from propositional calculus.
(2) Axiomatisation for Boolean combinations of core formulae.
(3) Axioms and rules to transform any formula into a Boolean combination of core formulae.
- Only formulae in $\operatorname{MSL}(*, \diamond)$ are used!
- Similar to Dynamic Epistemic Logic's reduction axioms.

Method to axiomatise $\operatorname{MSL}(*, \diamond)$

- The Hilbert-style proof system is made of three parts:
(1) Axioms and rule from propositional calculus.
(2) Axiomatisation for Boolean combinations of core formulae.
(3) Axioms and rules to transform any formula into a Boolean combination of core formulae.
- Only formulae in $\operatorname{MSL}(*, \diamond)$ are used!
- Similar to Dynamic Epistemic Logic's reduction axioms.
- Boolean combinations of core formulae capture $\operatorname{MSL}(*, \diamond)$.

Method to axiomatise $\operatorname{MSL}(*, \diamond)$

- The Hilbert-style proof system is made of three parts:
(1) Axioms and rule from propositional calculus.
(2) Axiomatisation for Boolean combinations of core formulae.
(3) Axioms and rules to transform any formula into a Boolean combination of core formulae.
- Only formulae in $\operatorname{MSL}(*, \diamond)$ are used!
- Similar to Dynamic Epistemic Logic's reduction axioms.
- Boolean combinations of core formulae capture $\operatorname{MSL}(*, \diamond)$.
- Intuitively, each formula is equivalent to (Boolean combination of):
- a modal part, and
- a size part.

Eliminating modalities \& reasoning on core formulae

Elimination of modalities

Hilbert-style system for MSL ($*, \diamond$)

- The modal part is named graph formula

$$
\ell:=\top|\perp| p|\neg p \quad Q:=\ell| Q \wedge Q
$$

Hilbert-style system for MSL ($*, \diamond$)

- The modal part is named graph formula

$$
\begin{aligned}
\ell & :=\top|\perp| p|\neg p \quad Q:=\ell| Q \wedge Q \\
\mathcal{G} & :=|Q, \ldots, Q\rangle| | Q, \ldots, Q]||Q, \ldots, \stackrel{Q}{Q}, \ldots, Q|
\end{aligned}
$$

Hilbert-style system for MSL $(*, \diamond)$

- The modal part is named graph formula

$$
\begin{aligned}
\ell & :=\top|\perp| p|\neg p \quad Q:=\ell| Q \wedge Q \\
\mathcal{G} & :=|Q, \ldots, Q\rangle| | Q, \ldots, Q]||Q, \ldots, \stackrel{Q}{Q}, \ldots, Q|
\end{aligned}
$$

- For a size formula we have

$$
\text { size } \geq \beta \quad \text { or } \quad \neg \text { size } \geq \beta, \quad(\beta \in \mathbb{N})
$$

Hilbert-style system for MSL $(*, \diamond)$

- The modal part is named graph formula

$$
\begin{aligned}
\ell & :=\top|\perp| p|\neg p \quad Q:=\ell| Q \wedge Q \\
\mathcal{G} & :=|Q, \ldots, Q\rangle| | Q, \ldots, Q]||Q, \ldots, \stackrel{Q}{Q}, \ldots, Q|
\end{aligned}
$$

- For a size formula we have

$$
\text { size } \geq \beta \quad \text { or } \quad \neg \text { size } \geq \beta, \quad(\beta \in \mathbb{N})
$$

- Claim: Each $\operatorname{MSL}(*, \diamond)$-formula is equivalent to a Boolean combination of formulas of the shape

$$
\mathcal{G} \wedge \text { size } \geq \beta \quad \text { or } \quad \mathcal{G} \wedge \text { size } \geq \beta \wedge \neg \text { size } \geq \beta^{\prime}
$$

Intuitive semantics of graph formulae
$\left|Q_{1}, \ldots, Q_{n}\right\rangle$ characterises:

$\left|Q_{1}, \ldots, Q_{n}\right\rangle$ characterises:

$\left.\mid Q_{1}, \ldots, Q_{n}\right]$ characterises:

Intuitive semantics of graph formulae

$\left|Q_{1}, \ldots, Q_{n}\right\rangle$ characterises:

$\left.\mid Q_{1}, \ldots, Q_{n}\right]$ characterises:

$\mid Q_{1}, \stackrel{Q_{2}, \ldots, Q_{n}}{ }$ characterises:

Intuitive semantics of graph formulae

$\left|Q_{1}, \ldots, Q_{n}\right\rangle$ characterises:

$\left.\mid Q_{1}, \ldots, Q_{n}\right]$ characterises:

$\mid Q_{1}, \stackrel{Q_{2}, \ldots, Q_{n}}{ }$ characterises:

Claim: Graph formulae are definable in $\operatorname{MSL}(*, \diamond)$.

Axioms and inference rules

- Axioms dedicated to size formulae and inconsistencies, e.g.

$$
\text { size } \geq 0 \quad \text { size } \geq \beta+1 \Rightarrow \text { size } \geq \beta
$$

Axioms and inference rules

- Axioms dedicated to size formulae and inconsistencies, e.g.

$$
\text { size } \geq 0 \quad \text { size } \geq \beta+1 \Rightarrow \text { size } \geq \beta
$$

- Axioms dedicated to conjunctions and negations, e.g.
$\left|Q_{1}, \ldots, \overleftarrow{Q_{i}, \ldots, Q_{n}}\right| \wedge\left|Q_{1}^{\prime}, \ldots, \overleftarrow{Q_{i}^{\prime}, \ldots, Q_{n}^{\prime}}\right| \Leftrightarrow\left|Q_{1} \wedge Q_{1}^{\prime}, \ldots, \overleftarrow{Q_{i} \wedge Q_{i}^{\prime}, \ldots, Q_{n} \wedge Q_{n}^{\prime}}\right|$

Axioms and inference rules

- Axioms dedicated to size formulae and inconsistencies, e.g.

$$
\text { size } \geq 0 \quad \text { size } \geq \beta+1 \Rightarrow \text { size } \geq \beta
$$

- Axioms dedicated to conjunctions and negations, e.g.
$\left|Q_{1}, \ldots, \overleftarrow{Q_{i}, \ldots, Q_{n}}\right| \wedge\left|Q_{1}^{\prime}, \ldots, \overleftarrow{Q_{i}^{\prime}, \ldots, Q_{n}^{\prime}}\right| \Leftrightarrow\left|Q_{1} \wedge Q_{1}^{\prime}, \ldots, \overleftarrow{Q_{i} \wedge Q_{i}^{\prime}, \ldots, Q_{n} \wedge Q_{n}^{\prime}}\right|$
- Axioms and rules to eliminate \diamond and $*$, e.g.

$$
\diamond\left(\left|Q_{1}, \ldots, Q_{n}\right\rangle\right) \Leftrightarrow\left|\stackrel{\uparrow}{\uparrow}, Q_{1}, \ldots, Q_{n}\right| \vee\left|\top, Q_{1}, \ldots, Q_{n}\right\rangle \quad \frac{\diamond \phi \Rightarrow \diamond \psi}{\phi \Rightarrow \psi}
$$

Axioms and inference rules

- Axioms dedicated to size formulae and inconsistencies, e.g.

$$
\text { size } \geq 0 \quad \text { size } \geq \beta+1 \Rightarrow \text { size } \geq \beta
$$

- Axioms dedicated to conjunctions and negations, e.g.
$\left|Q_{1}, \ldots, \overleftarrow{Q_{i}, \ldots, Q_{n}}\right| \wedge\left|Q_{1}^{\prime}, \ldots, \overleftarrow{Q_{i}^{\prime}, \ldots, Q_{n}^{\prime}}\right| \Leftrightarrow\left|Q_{1} \wedge Q_{1}^{\prime}, \ldots, \overleftarrow{Q_{i} \wedge Q_{i}^{\prime}, \ldots, Q_{n} \wedge Q_{n}^{\prime}}\right|$
- Axioms and rules to eliminate \diamond and $*$, e.g.

$$
\left.\diamond\left(\left|Q_{1}, \ldots, Q_{n}\right\rangle\right) \Leftrightarrow\left|\overleftarrow{\uparrow, Q_{1}, \ldots, Q_{n} \mid} \vee\right| \top, Q_{1}, \ldots, Q_{n}\right\rangle \quad \frac{\diamond \phi \Rightarrow \diamond \psi}{\phi \Rightarrow \psi}
$$

- Completeness of the calculus with the additional axiom:

$$
p \Leftrightarrow(|p\rangle \vee \mid p] \vee \mid \stackrel{\vee}{p}) \text {. }
$$

[Demri \& Fervari \& Mansutti, JELIA'19]

From $\operatorname{MSL}(*, \diamond)$ to core formulae - example

The formula

$$
\begin{gathered}
\text { size } \geq 2 \wedge \neg \text { size } \geq 3 \wedge \diamond \Delta \diamond T \wedge \\
\neg(\neg \mathrm{emp} * \diamond \diamond \diamond \top) \wedge \neg \diamond(\neg \mathrm{emp} * \diamond \diamond \diamond T)
\end{gathered}
$$

can be shown equivalent to

$$
\text { size } \geq 2 \wedge \neg \text { size } \geq 3 \wedge|\stackrel{\digamma}{\top}, \top|
$$

Concluding remarks

- Introduction to basic modal separation logics and investigations on their complexity and axiomatisation.
- Axiomatisations for the fragment $\operatorname{MSL}(*\rangle,,\langle\neq\rangle)$?

Concluding remarks

- Introduction to basic modal separation logics and investigations on their complexity and axiomatisation.
- Axiomatisations for the fragment $\operatorname{MSL}(*\rangle,,\langle\neq\rangle)$?
- Some ongoing works:
- Expressivity and complexity for $\left.\operatorname{MSL}(*,\rangle^{-1}\right)$? (with B. Bednarczyk, S. Demri \& A. Mansutti).
- Tableaux methods for core formulae.
(with A. Saravia).

