
Logic in AI: the case of strategic reasoning

Raul Fervari

[http://cs.famaf.unc.edu.ar/~rfervari | rfervari@unc.edu.ar]

Logics, Interaction and Intelligent Systems Group (LIIS),

FAMAF-UNC / CONICET, Argentina

GTIIT (China)

MCS Colloquium - GTIIT - 2022

1

http://cs.famaf.unc.edu.ar/~rfervari
rfervari@unc.edu.ar

Logic in AI: from the origins

1960 2024

1962

Knowledge

(Hintikka)

1966

Planning

problem

(Simon)

1969

Logical AI - Common Sense

(McCarthy & Hayes)

1980

Non-monotonic reasoning

(Reiter / McCarthy / Mc-

Dermott & Doyle)

1984

Mutiple agents

(Fagin, Halpern,

Vardi)

1992

Description Logics

(Woods & Schmolze)

1996

Logic in NLP

(van Benthem

& ter Meulen)

2015

‘Knowing How’

(Y. Wang)

2021

Uncertainty-Based KH

(Areces, Fervari, Sa-

ravia, Velázquez-Quesada)

2023

Logics with Abilities

and Constrained Plans

(Demri & Fervari)

2

Strategies and Knowledge

• Agents are autonomous entities,

acting in a certain environment.

• Have some perception about the real

world (epistemic).

• Take a certain course of action for

achieving a goal (strategies/abilities).

3

The concept(s) of knowledge

Y. Wang (2015): A Logic of Knowing How. LORI 2015.

• Usually, epistemic logic is about “knowing that”:

◦ John knows that it is raining in Shantou,

◦ the robot knows that it is standing next to a wall...

• Study other patterns of reasoning: knowing why, knowing whether,

knowing who, knowing how.

◦ Knowledge + Abilities.

4

Knowing How

• Autonomous agent: intelligent entities operating in a given environ-

ment (perception, decision making, etc).

• Knowing How is related to the abilities of the agents to achieve a

certain goal.

• Inspired by AI planning.

• Interpreted as: there exists a proper course of action (sequence of

actions) that the agent can take to achieve the goal.

◦ What “proper” means?

◦ Different courses of actions?

◦ Different costs?

5

Knowing How

• Autonomous agent: intelligent entities operating in a given environ-

ment (perception, decision making, etc).

• Knowing How is related to the abilities of the agents to achieve a

certain goal.

• Inspired by AI planning.

• Interpreted as: there exists a proper course of action (sequence of

actions) that the agent can take to achieve the goal.

◦ What “proper” means?

◦ Different courses of actions?

◦ Different costs?

5

Models: Labelled Transition Systems (LTSs)

An LTS is a tuple S = ⟨W, {Ra}a∈Act,V⟩ where:

• W is a countable set of states • V : Prop → 2W

• Ra ⊆ W×W, for each a ∈ Act.

pw1

w2

q
w3

w4

a

a

b

A transition a from w1 to w2 is read as “after executing action a at state

w1, the agent reaches state w2”.

For a set of actions Act, a plan σ is an element from Act∗ (finite sequences

of symbols from Act, such as a, ab and the empty plan ϵ).

6

Models: Labelled Transition Systems (LTSs)

An LTS is a tuple S = ⟨W, {Ra}a∈Act,V⟩ where:

• W is a countable set of states • V : Prop → 2W

• Ra ⊆ W×W, for each a ∈ Act.

pw1

w2

q
w3

w4

a

a

b

A transition a from w1 to w2 is read as “after executing action a at state

w1, the agent reaches state w2”.

For a set of actions Act, a plan σ is an element from Act∗ (finite sequences

of symbols from Act, such as a, ab and the empty plan ϵ).

6

Models: Labelled Transition Systems (LTSs)

An LTS is a tuple S = ⟨W, {Ra}a∈Act,V⟩ where:

• W is a countable set of states • V : Prop → 2W

• Ra ⊆ W×W, for each a ∈ Act.

pw1

w2

q
w3

w4

a

a

b

A transition a from w1 to w2 is read as “after executing action a at state

w1, the agent reaches state w2”.

For a set of actions Act, a plan σ is an element from Act∗ (finite sequences

of symbols from Act, such as a, ab and the empty plan ϵ).

6

Models: Labelled Transition Systems (LTSs)

An LTS is a tuple S = ⟨W, {Ra}a∈Act,V⟩ where:

• W is a countable set of states • V : Prop → 2W

• Ra ⊆ W×W, for each a ∈ Act.

pw1

w2

q
w3

w4

a

a

b

A transition a from w1 to w2 is read as “after executing action a at state

w1, the agent reaches state w2”.

For a set of actions Act, a plan σ is an element from Act∗ (finite sequences

of symbols from Act, such as a, ab and the empty plan ϵ).
6

Strong executability

A plan must be fail-proof: each partial execution must be completed.

pw1

w2

q

w3

w4

a

a

b

ab is not SE at w1

Definition:

A plan σ is strongly executable (SE) at u ∈ W iff for all partial

execution of σ from u, such an execution can be completed.

7

Strong executability

A plan must be fail-proof: each partial execution must be completed.

pw1

w2

q

w3

w4

a

a

b

ab is not SE at w1

Definition:

A plan σ is strongly executable (SE) at u ∈ W iff for all partial

execution of σ from u, such an execution can be completed.

7

LKh over LTS

Definition (Syntax of LKh)

φ ::= p | ¬φ | φ ∨ φ | Kh(φ,φ)

Kh(ψ,φ): “whenever ψ holds, the agent knows how to achieve φ”.

Definition (LKh over LTS)

S,w |= p iff w ∈ V(p)

S,w |= Kh(ψ,φ) iff there exists a plan σ ∈ Act∗ such that:

(1) σ is SE at every state satisfying ψ; and,

(2) from every ψ-state, executing σ always ends at φ-states.

8

LKh over LTS

Definition (Syntax of LKh)

φ ::= p | ¬φ | φ ∨ φ | Kh(φ,φ)

Kh(ψ,φ): “whenever ψ holds, the agent knows how to achieve φ”.

Definition (LKh over LTS)

S,w |= p iff w ∈ V(p)

S,w |= Kh(ψ,φ) iff there exists a plan σ ∈ Act∗ such that:

(1) σ is SE at every state satisfying ψ; and,

(2) from every ψ-state, executing σ always ends at φ-states.

8

LKh over LTS

Definition (Syntax of LKh)

φ ::= p | ¬φ | φ ∨ φ | Kh(φ,φ)

Kh(ψ,φ): “whenever ψ holds, the agent knows how to achieve φ”.

Definition (LKh over LTS)

S,w |= p iff w ∈ V(p)

S,w |= Kh(ψ,φ) iff there exists a plan σ ∈ Act∗ such that:

(1) σ is SE at every state satisfying ψ; and,

(2) from every ψ-state, executing σ always ends at φ-states.

8

Example

pw1

r

w2

q

w3

r
w4

a

a

b
S,w1 |= Kh(p, r)

the plan a is SE w1 (the only p-state), and

takes the agent from p only to r -states.

S,w1 ̸|= Kh(p, q)

- ϵ and a: are SE at w1 (p-state),

but do not lead to q;

- ab is not SE at w1.

9

Example

pw1

r

w2

q

w3

r
w4

a

a

b
S,w1 |= Kh(p, r)

the plan a is SE w1 (the only p-state), and

takes the agent from p only to r -states.

S,w1 ̸|= Kh(p, q)

- ϵ and a: are SE at w1 (p-state),

but do not lead to q;

- ab is not SE at w1.

9

Example

pw1

r

w2

q

w3

r
w4

a

a

b
S,w1 |= Kh(p, r)

the plan a is SE w1 (the only p-state), and

takes the agent from p only to r -states.

S,w1 ̸|= Kh(p, q)

- ϵ and a: are SE at w1 (p-state),

but do not lead to q;

- ab is not SE at w1.

9

Example

pw1

r

w2

q

w3

r
w4

a

a

b
S,w1 |= Kh(p, r)

the plan a is SE w1 (the only p-state), and

takes the agent from p only to r -states.

S,w1 ̸|= Kh(p, q)

- ϵ and a: are SE at w1 (p-state),

but do not lead to q;

- ab is not SE at w1.

9

Example

pw1

r

w2

q

w3

r
w4

a

a

b
S,w1 |= Kh(p, r)

the plan a is SE w1 (the only p-state), and

takes the agent from p only to r -states.

S,w1 ̸|= Kh(p, q)

- ϵ and a: are SE at w1 (p-state),

but do not lead to q;

- ab is not SE at w1.

9

Conceptual analysis

• The logic reached some consensus in the community.

• Simple language and semantics, and features nice properties (e.g.

decidability, axiomatizability).

• But look at these properties:

◦ Kh(ψ, χ) ∧ Kh(χ, φ) implies Kh(ψ,φ)

Should the agent know how to compose plans?

◦ If ψ → φ holds everywhere then Kh(ψ,φ) holds.

Universal validities should imply knowing how?

• Moreover, in this setting, abilities = knowledge.

Arguably, this is a logic of knowing how, but not an epistemic logic of

knowing how.

10

Conceptual analysis

• The logic reached some consensus in the community.

• Simple language and semantics, and features nice properties (e.g.

decidability, axiomatizability).

• But look at these properties:

◦ Kh(ψ, χ) ∧ Kh(χ, φ) implies Kh(ψ,φ)

Should the agent know how to compose plans?

◦ If ψ → φ holds everywhere then Kh(ψ,φ) holds.

Universal validities should imply knowing how?

• Moreover, in this setting, abilities = knowledge.

Arguably, this is a logic of knowing how, but not an epistemic logic of

knowing how.

10

Conceptual analysis

• The logic reached some consensus in the community.

• Simple language and semantics, and features nice properties (e.g.

decidability, axiomatizability).

• But look at these properties:

◦ Kh(ψ, χ) ∧ Kh(χ, φ) implies Kh(ψ,φ)

Should the agent know how to compose plans?

◦ If ψ → φ holds everywhere then Kh(ψ,φ) holds.

Universal validities should imply knowing how?

• Moreover, in this setting, abilities = knowledge.

Arguably, this is a logic of knowing how, but not an epistemic logic of

knowing how.

10

Conceptual analysis

• The logic reached some consensus in the community.

• Simple language and semantics, and features nice properties (e.g.

decidability, axiomatizability).

• But look at these properties:

◦ Kh(ψ, χ) ∧ Kh(χ, φ) implies Kh(ψ,φ)

Should the agent know how to compose plans?

◦ If ψ → φ holds everywhere then Kh(ψ,φ) holds.

Universal validities should imply knowing how?

• Moreover, in this setting, abilities = knowledge.

Arguably, this is a logic of knowing how, but not an epistemic logic of

knowing how.

10

Towards an epistemic logic of knowing how

There are many reasons to not knowing how. What if...

• The agent is not aware of the existence of certain plans?

• The agent is not able to distinguish certain plan from another?

• The agent does not care about the difference among certain plans?

We introduced the notion of epistemic indistinguishability at the level of

plans, to fix these issues.

11

Towards an epistemic logic of knowing how

There are many reasons to not knowing how. What if...

• The agent is not aware of the existence of certain plans?

• The agent is not able to distinguish certain plan from another?

• The agent does not care about the difference among certain plans?

We introduced the notion of epistemic indistinguishability at the level of

plans, to fix these issues.

11

Towards an epistemic logic of knowing how

There are many reasons to not knowing how. What if...

• The agent is not aware of the existence of certain plans?

• The agent is not able to distinguish certain plan from another?

• The agent does not care about the difference among certain plans?

We introduced the notion of epistemic indistinguishability at the level of

plans, to fix these issues.

11

Towards an epistemic logic of knowing how

There are many reasons to not knowing how. What if...

• The agent is not aware of the existence of certain plans?

• The agent is not able to distinguish certain plan from another?

• The agent does not care about the difference among certain plans?

We introduced the notion of epistemic indistinguishability at the level of

plans, to fix these issues.

11

Knowing How + Uncertainty

C. Areces, R. Fervari, A. Saravia, F. Velázquez-Quesada.

Uncertainty-Based Semantics for Multi-Agent Knowing How

Logics. (TARK 2021).

https://cs.famaf.unc.edu.ar/~rfervari/files/papers/2021-tark.pdf

12

https://cs.famaf.unc.edu.ar/~rfervari/files/papers/2021-tark.pdf

Uncertainty-based LTS (LTSU)

An LTSU is a tuple M = ⟨W, {Ra}a∈Act, {∼i}i∈Agt,V⟩ where:

• ⟨W, {Ra}a∈Act,V⟩ is an LTS,

• ∼i is an equivalence relation over a non-empty set of plans, for each

i ∈ Agt (a set of agent symbols).

pw q r
a

c

b

ab ∼i c

13

(Multi-Agent) semantics over LTSU

Definition (LKhi over LTSU).

Let Si be the set of equivalence classes (over plans) by ∼i .

M,w |= Khi (ψ,φ) iff there exists a set of plans π ∈ Si such that:

(1) each plan in π is SE at every ψ-state; and

(2) from ψ-states, each plan in π always ends at φ-states.

14

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Si = {{a, ab}})

a ∼j a, ab ∼j ab (Sj = {{a}, {ab}})

a

a

b
M,w1 |= ¬Khi (p, r)

take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

M,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

15

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Si = {{a, ab}})

a ∼j a, ab ∼j ab (Sj = {{a}, {ab}})

a

a

b
M,w1 |= ¬Khi (p, r)
take π = {a, ab}:

- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

M,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

15

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Si = {{a, ab}})

a ∼j a, ab ∼j ab (Sj = {{a}, {ab}})

a

a

b
M,w1 |= ¬Khi (p, r)
take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

M,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

15

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Si = {{a, ab}})

a ∼j a, ab ∼j ab (Sj = {{a}, {ab}})

a

a

b
M,w1 |= ¬Khi (p, r)
take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

M,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

15

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Si = {{a, ab}})

a ∼j a, ab ∼j ab (Sj = {{a}, {ab}})

a

a

b
M,w1 |= ¬Khi (p, r)
take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

M,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

15

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Si = {{a, ab}})

a ∼j a, ab ∼j ab (Sj = {{a}, {ab}})

a

a

b
M,w1 |= ¬Khi (p, r)
take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

M,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

15

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Si = {{a, ab}})

a ∼j a, ab ∼j ab (Sj = {{a}, {ab}})

a

a

b
M,w1 |= ¬Khi (p, r)
take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

M,w1 |= Khj (p, r)

take π′ = {a}:

- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

15

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Si = {{a, ab}})

a ∼j a, ab ∼j ab (Sj = {{a}, {ab}})

a

a

b
M,w1 |= ¬Khi (p, r)
take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

M,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

15

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Si = {{a, ab}})

a ∼j a, ab ∼j ab (Sj = {{a}, {ab}})

a

a

b
M,w1 |= ¬Khi (p, r)
take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

M,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

15

LTS vs. LTSU approaches

• Over LTS, there is no distinction between abilities and knowledge.

• Over LTSU:

◦ abilities are given by the LTS (common to all agents);

◦ knowledge is determined by ∼i (individual, own perception).

• Kh(ψ, χ) ∧ Kh(χ, φ) → Kh(ψ,φ) no longer valid;

• ψ → φ true everywhere does not entail Kh(ψ,φ) anymore.

• Over LTSU, we preserve good properties, even improve some features

(good computational complexity).

◦ Checking satisfiability of a formula is NP-complete.

◦ Checking whether M,w |= φ? can be done in polynomial time.

16

LTS vs. LTSU approaches

• Over LTS, there is no distinction between abilities and knowledge.

• Over LTSU:

◦ abilities are given by the LTS (common to all agents);

◦ knowledge is determined by ∼i (individual, own perception).

• Kh(ψ, χ) ∧ Kh(χ, φ) → Kh(ψ,φ) no longer valid;

• ψ → φ true everywhere does not entail Kh(ψ,φ) anymore.

• Over LTSU, we preserve good properties, even improve some features

(good computational complexity).

◦ Checking satisfiability of a formula is NP-complete.

◦ Checking whether M,w |= φ? can be done in polynomial time.

16

LTS vs. LTSU approaches

• Over LTS, there is no distinction between abilities and knowledge.

• Over LTSU:

◦ abilities are given by the LTS (common to all agents);

◦ knowledge is determined by ∼i (individual, own perception).

• Kh(ψ, χ) ∧ Kh(χ, φ) → Kh(ψ,φ) no longer valid;

• ψ → φ true everywhere does not entail Kh(ψ,φ) anymore.

• Over LTSU, we preserve good properties, even improve some features

(good computational complexity).

◦ Checking satisfiability of a formula is NP-complete.

◦ Checking whether M,w |= φ? can be done in polynomial time.

16

LTS vs. LTSU approaches

• Over LTS, there is no distinction between abilities and knowledge.

• Over LTSU:

◦ abilities are given by the LTS (common to all agents);

◦ knowledge is determined by ∼i (individual, own perception).

• Kh(ψ, χ) ∧ Kh(χ, φ) → Kh(ψ,φ) no longer valid;

• ψ → φ true everywhere does not entail Kh(ψ,φ) anymore.

• Over LTSU, we preserve good properties, even improve some features

(good computational complexity).

◦ Checking satisfiability of a formula is NP-complete.

◦ Checking whether M,w |= φ? can be done in polynomial time.

16

LTS vs. LTSU approaches

• Over LTS, there is no distinction between abilities and knowledge.

• Over LTSU:

◦ abilities are given by the LTS (common to all agents);

◦ knowledge is determined by ∼i (individual, own perception).

• Kh(ψ, χ) ∧ Kh(χ, φ) → Kh(ψ,φ) no longer valid;

• ψ → φ true everywhere does not entail Kh(ψ,φ) anymore.

• Over LTSU, we preserve good properties, even improve some features

(good computational complexity).

◦ Checking satisfiability of a formula is NP-complete.

◦ Checking whether M,w |= φ? can be done in polynomial time.

16

LTS vs. LTSU approaches

• Over LTS, there is no distinction between abilities and knowledge.

• Over LTSU:

◦ abilities are given by the LTS (common to all agents);

◦ knowledge is determined by ∼i (individual, own perception).

• Kh(ψ, χ) ∧ Kh(χ, φ) → Kh(ψ,φ) no longer valid;

• ψ → φ true everywhere does not entail Kh(ψ,φ) anymore.

• Over LTSU, we preserve good properties, even improve some features

(good computational complexity).

◦ Checking satisfiability of a formula is NP-complete.

◦ Checking whether M,w |= φ? can be done in polynomial time.

16

On the agenda

• Dynamic Operations: how to update each agent’s “knowing how”?

[Daĺı 2022 - Areces, Fervari, Saravia, Velázquez-Quesada]

• Knowing how + knowing that: interaction between types of knowledge.

[IJCAI 2017 - Fervari, Herzig, Li, Wang]

[Work in progress - Saravia’s thesis]

• Deontic interpretations: reasoning about normative systems.

[Paper submitted - Areces, Cassano, Castro, Fervari, Saravia]

• Constrained plans: revisit the definition of a “proper” plan.

◦ (Infinite) equivalence classes as finite state automata.

◦ Budgets (actions with costs).

[AAAI-23 - Demri & Fervari]

◦ Non-deterministic plans, state-dependent costs/plans.

[Future work - Demri & Fervari]

17

On the agenda

• Dynamic Operations: how to update each agent’s “knowing how”?

[Daĺı 2022 - Areces, Fervari, Saravia, Velázquez-Quesada]

• Knowing how + knowing that: interaction between types of knowledge.

[IJCAI 2017 - Fervari, Herzig, Li, Wang]

[Work in progress - Saravia’s thesis]

• Deontic interpretations: reasoning about normative systems.

[Paper submitted - Areces, Cassano, Castro, Fervari, Saravia]

• Constrained plans: revisit the definition of a “proper” plan.

◦ (Infinite) equivalence classes as finite state automata.

◦ Budgets (actions with costs).

[AAAI-23 - Demri & Fervari]

◦ Non-deterministic plans, state-dependent costs/plans.

[Future work - Demri & Fervari]

17

On the agenda

• Dynamic Operations: how to update each agent’s “knowing how”?

[Daĺı 2022 - Areces, Fervari, Saravia, Velázquez-Quesada]

• Knowing how + knowing that: interaction between types of knowledge.

[IJCAI 2017 - Fervari, Herzig, Li, Wang]

[Work in progress - Saravia’s thesis]

• Deontic interpretations: reasoning about normative systems.

[Paper submitted - Areces, Cassano, Castro, Fervari, Saravia]

• Constrained plans: revisit the definition of a “proper” plan.

◦ (Infinite) equivalence classes as finite state automata.

◦ Budgets (actions with costs).

[AAAI-23 - Demri & Fervari]

◦ Non-deterministic plans, state-dependent costs/plans.

[Future work - Demri & Fervari]

17

On the agenda

• Dynamic Operations: how to update each agent’s “knowing how”?

[Daĺı 2022 - Areces, Fervari, Saravia, Velázquez-Quesada]

• Knowing how + knowing that: interaction between types of knowledge.

[IJCAI 2017 - Fervari, Herzig, Li, Wang]

[Work in progress - Saravia’s thesis]

• Deontic interpretations: reasoning about normative systems.

[Paper submitted - Areces, Cassano, Castro, Fervari, Saravia]

• Constrained plans: revisit the definition of a “proper” plan.

◦ (Infinite) equivalence classes as finite state automata.

◦ Budgets (actions with costs).

[AAAI-23 - Demri & Fervari]

◦ Non-deterministic plans, state-dependent costs/plans.

[Future work - Demri & Fervari]

17

On the agenda

• Dynamic Operations: how to update each agent’s “knowing how”?

[Daĺı 2022 - Areces, Fervari, Saravia, Velázquez-Quesada]

• Knowing how + knowing that: interaction between types of knowledge.

[IJCAI 2017 - Fervari, Herzig, Li, Wang]

[Work in progress - Saravia’s thesis]

• Deontic interpretations: reasoning about normative systems.

[Paper submitted - Areces, Cassano, Castro, Fervari, Saravia]

• Constrained plans: revisit the definition of a “proper” plan.

◦ (Infinite) equivalence classes as finite state automata.

◦ Budgets (actions with costs).

[AAAI-23 - Demri & Fervari]

◦ Non-deterministic plans, state-dependent costs/plans.

[Future work - Demri & Fervari]

17

Recent work

*Accepted for publication at the 37th AAAI Conference on Artificial Intelligence (AAAI-23), 2023.

18

Thanks!

19

