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Strategies and Knowledge

• Agents are autonomous entities,

acting in a certain environment.

• Have some perception about the real

world (epistemic).

• Take a certain course of action for

achieving a goal (strategies/abilities).
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The concept(s) of knowledge

Y. Wang (2015): A Logic of Knowing How. LORI 2015.

• Usually, epistemic logic is about “knowing that”:

◦ John knows that it is raining in Shantou,

◦ the robot knows that it is standing next to a wall...

• Study other patterns of reasoning: knowing why, knowing whether,

knowing who, knowing how.

◦ Knowledge + Abilities.
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Knowing How

• Autonomous agent: intelligent entities operating in a given environ-

ment (perception, decision making, etc).

• Knowing How is related to the abilities of the agents to achieve a

certain goal.

• Inspired by AI planning.

• Interpreted as: there exists a proper course of action (sequence of

actions) that the agent can take to achieve the goal.

◦ What “proper” means?

◦ Different courses of actions?

◦ Different costs?
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Models: Labelled Transition Systems (LTSs)

An LTS is a tuple S = ⟨W, {Ra}a∈Act,V⟩ where:

• W is a countable set of states • V : Prop → 2W

• Ra ⊆ W×W, for each a ∈ Act.

pw1

w2

q
w3

w4

a

a

b

A transition a from w1 to w2 is read as “after executing action a at state

w1, the agent reaches state w2”.

For a set of actions Act, a plan σ is an element from Act∗ (finite sequences

of symbols from Act, such as a, ab and the empty plan ϵ).
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Strong executability

A plan must be fail-proof: each partial execution must be completed.

pw1

w2

q

w3

w4

a

a

b

ab is not SE at w1

Definition:

A plan σ is strongly executable (SE) at u ∈ W iff for all partial

execution of σ from u, such an execution can be completed.
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LKh over LTS

Definition (Syntax of LKh)

φ ::= p | ¬φ | φ ∨ φ | Kh(φ,φ)

Kh(ψ,φ): “whenever ψ holds, the agent knows how to achieve φ”.

Definition (LKh over LTS)

S,w |= p iff w ∈ V(p)

S,w |= Kh(ψ,φ) iff there exists a plan σ ∈ Act∗ such that:

(1) σ is SE at every state satisfying ψ; and,

(2) from every ψ-state, executing σ always ends at φ-states.
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Example

pw1

r

w2

q

w3

r
w4

a

a

b
S,w1 |= Kh(p, r)

the plan a is SE w1 (the only p-state), and

takes the agent from p only to r -states.

S,w1 ̸|= Kh(p, q)

- ϵ and a: are SE at w1 (p-state),

but do not lead to q;

- ab is not SE at w1.
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Conceptual analysis

• The logic reached some consensus in the community.

• Simple language and semantics, and features nice properties (e.g.

decidability, axiomatizability).

• But look at these properties:

◦ Kh(ψ, χ) ∧ Kh(χ, φ) implies Kh(ψ,φ)

Should the agent know how to compose plans?

◦ If ψ → φ holds everywhere then Kh(ψ,φ) holds.

Universal validities should imply knowing how?

• Moreover, in this setting, abilities = knowledge.

Arguably, this is a logic of knowing how, but not an epistemic logic of

knowing how.
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Towards an epistemic logic of knowing how

There are many reasons to not knowing how. What if...

• The agent is not aware of the existence of certain plans?

• The agent is not able to distinguish certain plan from another?

• The agent does not care about the difference among certain plans?

We introduced the notion of epistemic indistinguishability at the level of

plans, to fix these issues.
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Knowing How + Uncertainty

C. Areces, R. Fervari, A. Saravia, F. Velázquez-Quesada.

Uncertainty-Based Semantics for Multi-Agent Knowing How

Logics. (TARK 2021).

https://cs.famaf.unc.edu.ar/~rfervari/files/papers/2021-tark.pdf
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Uncertainty-based LTS (LTSU)

An LTSU is a tuple M = ⟨W, {Ra}a∈Act, {∼i}i∈Agt,V⟩ where:

• ⟨W, {Ra}a∈Act,V⟩ is an LTS,

• ∼i is an equivalence relation over a non-empty set of plans, for each

i ∈ Agt (a set of agent symbols).

pw q r
a

c

b

ab ∼i c
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(Multi-Agent) semantics over LTSU

Definition (LKhi over LTSU).

Let Si be the set of equivalence classes (over plans) by ∼i .

M,w |= Khi (ψ,φ) iff there exists a set of plans π ∈ Si such that:

(1) each plan in π is SE at every ψ-state; and

(2) from ψ-states, each plan in π always ends at φ-states.
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Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Si = {{a, ab}})

a ∼j a, ab ∼j ab (Sj = {{a}, {ab}})

a

a

b
M,w1 |= ¬Khi (p, r)

take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

M,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.
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LTS vs. LTSU approaches

• Over LTS, there is no distinction between abilities and knowledge.

• Over LTSU:

◦ abilities are given by the LTS (common to all agents);

◦ knowledge is determined by ∼i (individual, own perception).

• Kh(ψ, χ) ∧ Kh(χ, φ) → Kh(ψ,φ) no longer valid;

• ψ → φ true everywhere does not entail Kh(ψ,φ) anymore.

• Over LTSU, we preserve good properties, even improve some features

(good computational complexity).

◦ Checking satisfiability of a formula is NP-complete.

◦ Checking whether M,w |= φ? can be done in polynomial time.
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On the agenda

• Dynamic Operations: how to update each agent’s “knowing how”?

[Daĺı 2022 - Areces, Fervari, Saravia, Velázquez-Quesada]

• Knowing how + knowing that: interaction between types of knowledge.

[IJCAI 2017 - Fervari, Herzig, Li, Wang]

[Work in progress - Saravia’s thesis]

• Deontic interpretations: reasoning about normative systems.

[Paper submitted - Areces, Cassano, Castro, Fervari, Saravia]

• Constrained plans: revisit the definition of a “proper” plan.

◦ (Infinite) equivalence classes as finite state automata.

◦ Budgets (actions with costs).

[AAAI-23 - Demri & Fervari]

◦ Non-deterministic plans, state-dependent costs/plans.

[Future work - Demri & Fervari]
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