Model-Checking for Ability-Based Logics with Constrained Plans

Stéphane Demri¹ & Raul Fervari^{2,3}

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France ²FAMAF, Universidad Nacional de Córdoba / CONICET, Argentina ³Guangdong Technion - Israel Institute of Technology, China

37th AAAI Conference on Artificial Intelligence (AAAI-23) - 2023

Formal foundations for strategic reasoning and epistemic planning.

```
[van Dimarsch et al., (2015)]
```

A realm of logics featuring abilities:

- Propositional Dynamic Logic. [Pratt (1976), Harel (1984)]
- Knowledge and action. [Moore (1985)]
- STIT (sees to it at) logics. [Belnap & Perloff (1988)]
- Knowledge modalities and abilities. [van der Hoek & Lomuscio (2003)]

[Herzig & Troquard (2006)]

[Wang (2015)]

[Areces et al. (2021)]

• Knowing how logics.

- Knowing how + numerical constraints and/or regularity constraints.
- Model checking (instead of satisfiability/validity):
 - better reflects expressivity.
- Connections with formal language theory.

Definition (Models).

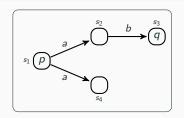
An LTS is a tuple $\mathcal{S} = (S, (R_a)_{a \in Act}, V)$ where:

- $\bullet \ \ S \ \ is a \ \ countable \ \ set \ of \ states \qquad \bullet \ V: \ S \rightarrow 2^{\mathsf{Prop}}$
- $R_a \subseteq S \times S$, for each $a \in Act$.

Definition (Models).

An LTS is a tuple $\mathcal{S} = (S, (R_a)_{a \in Act}, V)$ where:

- $\bullet \ \ S \ \ is a \ \ countable \ \ set \ of \ states \qquad \bullet \ V: \ S \rightarrow 2^{\mathsf{Prop}}$
- $R_a \subseteq S \times S$, for each $a \in Act$.

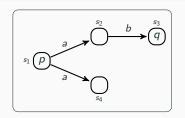


Definition (Models).

An LTS is a tuple $\mathcal{S} = (S, (R_a)_{a \in Act}, V)$ where:

 $\bullet \ \ S \ \ is a \ \ countable \ \ set \ of \ states \qquad \bullet \ V:S \rightarrow 2^{\mathsf{Prop}}$

•
$$R_a \subseteq S \times S$$
, for each $a \in Act$.

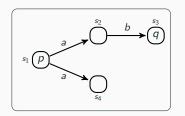


A transition *a* from s_1 to s_2 is read as "after executing action *a* at state s_1 , the agent reaches state s_2 ".

Definition (Models).

An LTS is a tuple $S = (S, (R_a)_{a \in Act}, V)$ where:

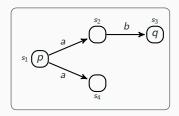
- $\bullet \ \ S \ \ is a \ \ countable \ \ set \ of \ states \qquad \bullet \ V: \ S \rightarrow 2^{\mathsf{Prop}}$
- $R_a \subseteq S \times S$, for each $a \in Act$.



A transition *a* from s_1 to s_2 is read as "after executing action *a* at state s_1 , the agent reaches state s_2 ".

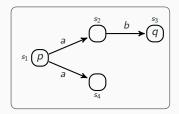
For a set of actions Act, a plan σ is an element from Act^{*} (finite sequences of symbols from Act, such as *a*, *ab* and the empty plan ϵ).

A plan must be fail-proof: each partial execution must be completed.



ab is not SE at s_1

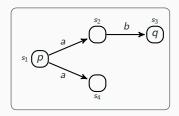
A plan must be fail-proof: each partial execution must be completed.



ab is not SE at s_1

We say that $(s_1, s_3) \in \mathsf{R}_{ab}$ $(s_3 \in \mathsf{R}_{ab}(s_1))$.

A plan must be fail-proof: each partial execution must be completed.



ab is not SE at s_1

We say that $(s_1, s_3) \in \mathsf{R}_{ab}$ $(s_3 \in \mathsf{R}_{ab}(s_1))$.

Definition (SE).

A plan $\sigma \in Act^*$ is strongly executable (SE) at $s \in S$ iff for all $k \in [0, |\sigma| - 1]$ and $t \in R_{\sigma_k}(s)$, we have $R_{\sigma[k+1]}(t) \neq \emptyset$. Define the set: $SE(\sigma) \stackrel{\text{def}}{=} \{s \in S \mid \sigma \text{ is SE at } s\}$. Definition (Syntax of \mathcal{L}_{kh}).

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}(\varphi, \varphi)$$

 $\mathsf{Kh}(\psi, \varphi)$: "whenever ψ holds, the agent knows how to achieve φ ".

Definition (Syntax of \mathcal{L}_{kh}).

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}(\varphi, \varphi)$$

 $\mathsf{Kh}(\psi, \varphi)$: "whenever ψ holds, the agent knows how to achieve φ ".

Definition (Semantics).

 $\mathcal{S}, s \Vdash p \text{ iff } p \in V(s)$

Definition (Syntax of \mathcal{L}_{kh}).

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}(\varphi, \varphi)$$

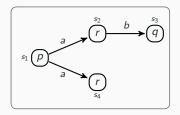
 $\mathsf{Kh}(\psi, \varphi)$: "whenever ψ holds, the agent knows how to achieve φ ".

Definition (Semantics).

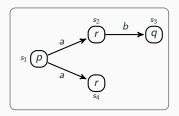
 $\mathcal{S}, s \Vdash p \text{ iff } p \in V(s)$

 $\mathcal{S}, s \Vdash \mathsf{Kh}(\psi, \varphi)$ iff there exists a plan $\sigma \in \mathsf{Act}^*$ such that:

•
$$\llbracket \psi \rrbracket^{\mathcal{S}} \subseteq SE(\sigma)$$
, and
• for every $t \in \llbracket \psi \rrbracket^{\mathcal{S}}$, $R_{\sigma}(t) \subseteq \llbracket \varphi \rrbracket^{\mathcal{S}}$,
where: $\llbracket \chi \rrbracket^{\mathcal{S}} \stackrel{\text{def}}{=} \{t \mid \mathcal{S}, t \Vdash \chi\}$.

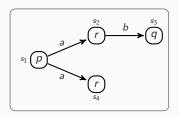


$$\mathcal{S}, s_1 \Vdash \mathsf{Kh}(p, r)$$



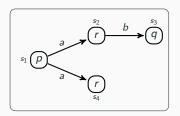
 $\mathcal{S}, s_1 \Vdash \mathsf{Kh}(p, r)$

the plan *a* is SE s_1 (the only *p*-state), and takes the agent from *p* only to *r*-states.



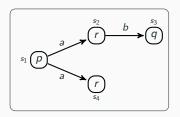
 $S, s_1 \Vdash Kh(p, r)$ the plan *a* is SE s_1 (the only *p*-state), and takes the agent from *p* only to *r*-states.

 $\mathcal{S}, \mathit{s}_1 \not\Vdash \mathsf{Kh}(p,q)$



 $S, s_1 \Vdash Kh(p, r)$ the plan *a* is SE s_1 (the only *p*-state), and takes the agent from *p* only to *r*-states.

 $S, s_1 \not\Vdash Kh(p, q)$ - ϵ and a: are SE at s_1 (p-state), but do not lead to q;



 $S, s_1 \Vdash Kh(p, r)$ the plan *a* is SE s_1 (the only *p*-state), and takes the agent from *p* only to *r*-states.

 $S, s_1 \not\Vdash Kh(p, q)$ - ϵ and a: are SE at s_1 (*p*-state), but do not lead to q; - ab is **not** SE at s_1 .

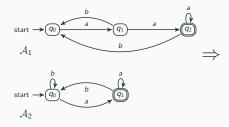
Theorem

The model checking problem for \mathcal{L}_{kh} is PSpace-complete.

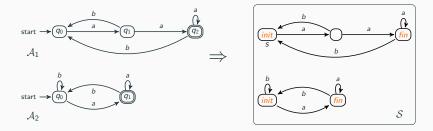
Proof Strategy.

- Lower bound: reduction from non-emptiness of the intersection of Finite State Automata (PSpace-complete).
- **Output: Output: Outpu**

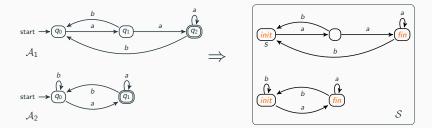
Let \mathcal{A}_1 and \mathcal{A}_2 be two automata (the argument can be extended to *n* automata):



Let \mathcal{A}_1 and \mathcal{A}_2 be two automata (the argument can be extended to *n* automata):



Let \mathcal{A}_1 and \mathcal{A}_2 be two automata (the argument can be extended to *n* automata):



Lemma.

 $L(\mathcal{A}_1) \cap L(\mathcal{A}_2) \neq \emptyset$ if and only if $\mathcal{S}, s \Vdash \mathsf{Kh}(\mathit{init}, \mathit{fin})$.

► Based on a small plan property.

▶ Based on a small plan property. Let *s* a state in an LTS. Then:

Lemma.

The set $L_s = \{\sigma \mid s \in SE(\sigma)\}$ is a regular language.

▶ Based on a small plan property. Let *s* a state in an LTS. Then:

Lemma.

The set $L_s = \{ \sigma \mid s \in SE(\sigma) \}$ is a regular language.

• We intersect L_s with the set of plans witnessing a formula $Kh(\psi, \varphi)$:

Lemma.

 $S, s \Vdash Kh(\psi, \varphi)$ iff there is a plan σ of exponential size, witnessing the truth of $Kh(\psi, \varphi)$.

▶ Based on a small plan property. Let *s* a state in an LTS. Then:

Lemma.

The set $L_s = \{ \sigma \mid s \in SE(\sigma) \}$ is a regular language.

• We intersect L_s with the set of plans witnessing a formula $Kh(\psi, \varphi)$:

Lemma.

 $S, s \Vdash \mathsf{Kh}(\psi, \varphi)$ iff there is a plan σ of exponential size, witnessing the truth of $\mathsf{Kh}(\psi, \varphi)$.

Corollary.

Checking $S, s \Vdash Kh(\psi, \varphi)$ can be done in polynomial space.

Definition (Semantics of \mathcal{L}_{reg}^{U}).

 $\mathcal{S}, s \Vdash \mathsf{Kh}_{\mathfrak{a}}(\psi, \varphi)$ iff there exists $\mathcal{A} \in \mathsf{U}_{\mathfrak{a}}$ such that, for every $\sigma \in L(\mathcal{A})$:

1
$$\llbracket \psi \rrbracket^{\mathcal{S}} \subseteq \mathsf{SE}(\sigma)$$
, and
2 for every $t \in \llbracket \psi \rrbracket^{\mathcal{S}}$, $\mathsf{R}_{\sigma}(t) \subseteq \llbracket \varphi \rrbracket^{\mathcal{S}}$ ($\llbracket \chi \rrbracket^{\mathcal{S}} \stackrel{\text{def}}{=} \{t \mid \mathcal{S}, t \Vdash \chi\}$).

Definition (Semantics of \mathcal{L}_{reg}^{U}).

 $\mathcal{S}, s \Vdash \mathsf{Kh}_{\mathfrak{a}}(\psi, \varphi)$ iff there exists $\mathcal{A} \in \mathsf{U}_{\mathfrak{a}}$ such that, for every $\sigma \in L(\mathcal{A})$:

1
$$\llbracket \psi \rrbracket^{\mathcal{S}} \subseteq \mathsf{SE}(\sigma)$$
, and
2 for every $t \in \llbracket \psi \rrbracket^{\mathcal{S}}$, $\mathsf{R}_{\sigma}(t) \subseteq \llbracket \varphi \rrbracket^{\mathcal{S}}$ ($\llbracket \chi \rrbracket^{\mathcal{S}} \stackrel{\text{def}}{=} \{t \mid \mathcal{S}, t \Vdash \chi\}$).

Theorem

Model checking \mathcal{L}_{reg}^{U} is in PTime.

Definition (Semantics of \mathcal{L}_{reg}^{U}).

 $\mathcal{S}, s \Vdash \mathsf{Kh}_{\mathfrak{a}}(\psi, \varphi)$ iff there exists $\mathcal{A} \in \mathsf{U}_{\mathfrak{a}}$ such that, for every $\sigma \in L(\mathcal{A})$:

1
$$\llbracket \psi \rrbracket^{\mathcal{S}} \subseteq \mathsf{SE}(\sigma)$$
, and
2 for every $t \in \llbracket \psi \rrbracket^{\mathcal{S}}$, $\mathsf{R}_{\sigma}(t) \subseteq \llbracket \varphi \rrbracket^{\mathcal{S}}$ ($\llbracket \chi \rrbracket^{\mathcal{S}} \stackrel{\text{def}}{=} \{t \mid \mathcal{S}, t \Vdash \chi\}$).

Theorem

Model checking \mathcal{L}_{reg}^{U} is in PTime.

Proof strategy: Algorithm based on reachability checks of a product graph ($S \times A$).

Adding budgets

- In many situations, actions have costs (and executions must stay within a certain budget).
- Consider a function wf : S × Act → Z^r, for some r ≥ 0 (a number of resources).
- $\mathsf{Kh}^{\vec{b}}(\psi,\varphi)$: knowing how to make φ true, given ψ , with budget \vec{b} .

Adding budgets

- In many situations, actions have costs (and executions must stay within a certain budget).
- Consider a function wf : S × Act → Z^r, for some r ≥ 0 (a number of resources).
- $\mathsf{Kh}^{\vec{b}}(\psi,\varphi)$: knowing how to make φ true, given ψ , with budget \vec{b} .

Theorem

• Model-checking \mathcal{L}_{reg}^{U} + budgets: PTime.

Proof strategy: Non-safety problem in Vector Addition Systems (VASS).

Adding budgets

- In many situations, actions have costs (and executions must stay within a certain budget).
- Consider a function wf : S × Act → Z^r, for some r ≥ 0 (a number of resources).
- $\mathsf{Kh}^{\vec{b}}(\psi,\varphi)$: knowing how to make φ true, given ψ , with budget \vec{b} .

Theorem

• Model-checking \mathcal{L}_{reg}^{U} + budgets: PTime.

Proof strategy: Non-safety problem in Vector Addition Systems (VASS).

Model-checking L_{kh} + budgets: ExpSpace-hard (no upper-bound).
Proof strategy: Reduction from the control-state reachability problem for VASS.

• We studied complexity of model-checking for ability-based logics.

- Linear plans ([Wang (2015)]).
- Regularity constraints (ext. [Areces et al. (2021)]).
- Budget constraints.
- Results for variant logics.

• We studied complexity of model-checking for ability-based logics.

- Linear plans ([Wang (2015)]).
- Regularity constraints (ext. [Areces et al. (2021)]).
- Budget constraints.
- Results for variant logics.
- Future work:
 - Exact complexity of \mathcal{L}_{kh} + budgets.
 - Other constraints (e.g. non linear plans).
 - Other semantics for knowing how (e.g. [Fervari et al. (2017)]).