
Model-Checking for Ability-Based Logics with

Constrained Plans

Stéphane Demri1 & Raul Fervari2,3

1Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France

2FAMAF, Universidad Nacional de Córdoba / CONICET, Argentina

3Guangdong Technion - Israel Institute of Technology, China

37th AAAI Conference on Artificial Intelligence (AAAI-23) - 2023

1

Ability-Based Logics

Formal foundations for strategic reasoning and epistemic planning.

[van Dimarsch et al., (2015)]

A realm of logics featuring abilities:

Propositional Dynamic Logic. [Pratt (1976), Harel (1984)]

Knowledge and action. [Moore (1985)]

STIT (sees to it at) logics. [Belnap & Perloff (1988)]

Knowledge modalities and abilities. [van der Hoek & Lomuscio (2003)]

[Herzig & Troquard (2006)]

Knowing how logics. [Wang (2015)]

[Areces et al. (2021)]

2

Our Motivations

Knowing how + numerical constraints and/or regularity constraints.

Model checking (instead of satisfiability/validity):

better reflects expressivity.

Connections with formal language theory.

3

A Simple Logic of Knowing How - Models

Definition (Models).

An LTS is a tuple S = (S, (Ra)a∈Act,V) where:

S is a countable set of states • V : S → 2Prop

Ra ⊆ S×S, for each a ∈ Act.

ps1

s2

q
s3

s4

a

a

b

A transition a from s1 to s2 is read

as “after executing action a at state

s1, the agent reaches state s2”.

For a set of actions Act, a plan σ is an element from Act∗ (finite sequences

of symbols from Act, such as a, ab and the empty plan ϵ).

4

A Simple Logic of Knowing How - Models

Definition (Models).

An LTS is a tuple S = (S, (Ra)a∈Act,V) where:

S is a countable set of states • V : S → 2Prop

Ra ⊆ S×S, for each a ∈ Act.

ps1

s2

q
s3

s4

a

a

b

A transition a from s1 to s2 is read

as “after executing action a at state

s1, the agent reaches state s2”.

For a set of actions Act, a plan σ is an element from Act∗ (finite sequences

of symbols from Act, such as a, ab and the empty plan ϵ).

4

A Simple Logic of Knowing How - Models

Definition (Models).

An LTS is a tuple S = (S, (Ra)a∈Act,V) where:

S is a countable set of states • V : S → 2Prop

Ra ⊆ S×S, for each a ∈ Act.

ps1

s2

q
s3

s4

a

a

b

A transition a from s1 to s2 is read

as “after executing action a at state

s1, the agent reaches state s2”.

For a set of actions Act, a plan σ is an element from Act∗ (finite sequences

of symbols from Act, such as a, ab and the empty plan ϵ).

4

A Simple Logic of Knowing How - Models

Definition (Models).

An LTS is a tuple S = (S, (Ra)a∈Act,V) where:

S is a countable set of states • V : S → 2Prop

Ra ⊆ S×S, for each a ∈ Act.

ps1

s2

q
s3

s4

a

a

b

A transition a from s1 to s2 is read

as “after executing action a at state

s1, the agent reaches state s2”.

For a set of actions Act, a plan σ is an element from Act∗ (finite sequences

of symbols from Act, such as a, ab and the empty plan ϵ).

4

Strong executability

A plan must be fail-proof: each partial execution must be completed.

ps1

s2

q
s3

s4

a

a

b

ab is not SE at s1

We say that (s1, s3) ∈ Rab (s3 ∈ Rab(s1)).

Definition (SE).

A plan σ ∈ Act∗ is strongly executable (SE) at s ∈ S iff for all k ∈ [0, |σ| − 1]

and t ∈ Rσk (s), we have Rσ[k+1](t) ̸= ∅.
Define the set: SE(σ)

def
= {s ∈ S | σ is SE at s}.

5

Strong executability

A plan must be fail-proof: each partial execution must be completed.

ps1

s2

q
s3

s4

a

a

b

ab is not SE at s1

We say that (s1, s3) ∈ Rab (s3 ∈ Rab(s1)).

Definition (SE).

A plan σ ∈ Act∗ is strongly executable (SE) at s ∈ S iff for all k ∈ [0, |σ| − 1]

and t ∈ Rσk (s), we have Rσ[k+1](t) ̸= ∅.
Define the set: SE(σ)

def
= {s ∈ S | σ is SE at s}.

5

Strong executability

A plan must be fail-proof: each partial execution must be completed.

ps1

s2

q
s3

s4

a

a

b

ab is not SE at s1

We say that (s1, s3) ∈ Rab (s3 ∈ Rab(s1)).

Definition (SE).

A plan σ ∈ Act∗ is strongly executable (SE) at s ∈ S iff for all k ∈ [0, |σ| − 1]

and t ∈ Rσk (s), we have Rσ[k+1](t) ̸= ∅.
Define the set: SE(σ)

def
= {s ∈ S | σ is SE at s}.

5

A Simple Logic of Knowing How - Lkh

Definition (Syntax of Lkh).

φ ::= p | ¬φ | φ ∨ φ | Kh(φ,φ)
Kh(ψ,φ): “whenever ψ holds, the agent knows how to achieve φ”.

Definition (Semantics).

S, s ⊩ p iff p ∈ V(s)

S, s ⊩ Kh(ψ,φ) iff there exists a plan σ ∈ Act∗ such that:

1 JψKS ⊆ SE(σ), and
2 for every t ∈ JψKS , Rσ(t) ⊆ JφKS ,

where: JχKS def
= {t | S, t ⊩ χ}.

6

A Simple Logic of Knowing How - Lkh

Definition (Syntax of Lkh).

φ ::= p | ¬φ | φ ∨ φ | Kh(φ,φ)
Kh(ψ,φ): “whenever ψ holds, the agent knows how to achieve φ”.

Definition (Semantics).

S, s ⊩ p iff p ∈ V(s)

S, s ⊩ Kh(ψ,φ) iff there exists a plan σ ∈ Act∗ such that:

1 JψKS ⊆ SE(σ), and
2 for every t ∈ JψKS , Rσ(t) ⊆ JφKS ,

where: JχKS def
= {t | S, t ⊩ χ}.

6

A Simple Logic of Knowing How - Lkh

Definition (Syntax of Lkh).

φ ::= p | ¬φ | φ ∨ φ | Kh(φ,φ)
Kh(ψ,φ): “whenever ψ holds, the agent knows how to achieve φ”.

Definition (Semantics).

S, s ⊩ p iff p ∈ V(s)

S, s ⊩ Kh(ψ,φ) iff there exists a plan σ ∈ Act∗ such that:

1 JψKS ⊆ SE(σ), and
2 for every t ∈ JψKS , Rσ(t) ⊆ JφKS ,

where: JχKS def
= {t | S, t ⊩ χ}.

6

Example

ps1

r

s2

q
s3

r
s4

a

a

b

S, s1 ⊩ Kh(p, r)

the plan a is SE s1 (the only p-state), and

takes the agent from p only to r -states.

S, s1 ̸⊩ Kh(p, q)

- ϵ and a: are SE at s1 (p-state),

but do not lead to q;

- ab is not SE at s1.

7

Example

ps1

r

s2

q
s3

r
s4

a

a

b

S, s1 ⊩ Kh(p, r)

the plan a is SE s1 (the only p-state), and

takes the agent from p only to r -states.

S, s1 ̸⊩ Kh(p, q)

- ϵ and a: are SE at s1 (p-state),

but do not lead to q;

- ab is not SE at s1.

7

Example

ps1

r

s2

q
s3

r
s4

a

a

b

S, s1 ⊩ Kh(p, r)

the plan a is SE s1 (the only p-state), and

takes the agent from p only to r -states.

S, s1 ̸⊩ Kh(p, q)

- ϵ and a: are SE at s1 (p-state),

but do not lead to q;

- ab is not SE at s1.

7

Example

ps1

r

s2

q
s3

r
s4

a

a

b

S, s1 ⊩ Kh(p, r)

the plan a is SE s1 (the only p-state), and

takes the agent from p only to r -states.

S, s1 ̸⊩ Kh(p, q)

- ϵ and a: are SE at s1 (p-state),

but do not lead to q;

- ab is not SE at s1.

7

Example

ps1

r

s2

q
s3

r
s4

a

a

b

S, s1 ⊩ Kh(p, r)

the plan a is SE s1 (the only p-state), and

takes the agent from p only to r -states.

S, s1 ̸⊩ Kh(p, q)

- ϵ and a: are SE at s1 (p-state),

but do not lead to q;

- ab is not SE at s1.

7

Complexity of Model Checking

Theorem

The model checking problem for Lkh is PSpace-complete.

Proof Strategy.

1 Lower bound: reduction from non-emptiness of the intersection of

Finite State Automata (PSpace-complete).

2 Upper Bound: PSpace algorithm, relying on a small plan property.

8

Lower bound - PSpace-hardness

Let A1 and A2 be two automata (the argument can be extended to n

automata):

A1

q0start q1 q2
a

b

a

b

a

⇒

A2

q0start q1
a

b

b

a

init
s

fin
a

b

a

b

a

init fin
a

b

b

a

S

Lemma.

L(A1) ∩ L(A2) ̸= ∅ if and only if S, s ⊩ Kh(init, fin).

9

Lower bound - PSpace-hardness

Let A1 and A2 be two automata (the argument can be extended to n

automata):

A1

q0start q1 q2
a

b

a

b

a

⇒

A2

q0start q1
a

b

b

a

init
s

fin
a

b

a

b

a

init fin
a

b

b

a

S

Lemma.

L(A1) ∩ L(A2) ̸= ∅ if and only if S, s ⊩ Kh(init, fin).

9

Lower bound - PSpace-hardness

Let A1 and A2 be two automata (the argument can be extended to n

automata):

A1

q0start q1 q2
a

b

a

b

a

⇒

A2

q0start q1
a

b

b

a

init
s

fin
a

b

a

b

a

init fin
a

b

b

a

S

Lemma.

L(A1) ∩ L(A2) ̸= ∅ if and only if S, s ⊩ Kh(init, fin).

9

PSpace upper bound

▶ Based on a small plan property.

Let s a state in an LTS. Then:

Lemma.

The set Ls = {σ | s ∈ SE(σ)} is a regular language.

▶ We intersect Ls with the set of plans witnessing a formula Kh(ψ,φ):

Lemma.

S, s ⊩ Kh(ψ,φ) iff there is a plan σ of exponential size, witnessing the

truth of Kh(ψ,φ).

Corollary.

Checking S, s ⊩ Kh(ψ,φ) can be done in polynomial space.

10

PSpace upper bound

▶ Based on a small plan property. Let s a state in an LTS. Then:

Lemma.

The set Ls = {σ | s ∈ SE(σ)} is a regular language.

▶ We intersect Ls with the set of plans witnessing a formula Kh(ψ,φ):

Lemma.

S, s ⊩ Kh(ψ,φ) iff there is a plan σ of exponential size, witnessing the

truth of Kh(ψ,φ).

Corollary.

Checking S, s ⊩ Kh(ψ,φ) can be done in polynomial space.

10

PSpace upper bound

▶ Based on a small plan property. Let s a state in an LTS. Then:

Lemma.

The set Ls = {σ | s ∈ SE(σ)} is a regular language.

▶ We intersect Ls with the set of plans witnessing a formula Kh(ψ,φ):

Lemma.

S, s ⊩ Kh(ψ,φ) iff there is a plan σ of exponential size, witnessing the

truth of Kh(ψ,φ).

Corollary.

Checking S, s ⊩ Kh(ψ,φ) can be done in polynomial space.

10

PSpace upper bound

▶ Based on a small plan property. Let s a state in an LTS. Then:

Lemma.

The set Ls = {σ | s ∈ SE(σ)} is a regular language.

▶ We intersect Ls with the set of plans witnessing a formula Kh(ψ,φ):

Lemma.

S, s ⊩ Kh(ψ,φ) iff there is a plan σ of exponential size, witnessing the

truth of Kh(ψ,φ).

Corollary.

Checking S, s ⊩ Kh(ψ,φ) can be done in polynomial space.

10

Constrained Plans - Regularity

Let S = (S, (Ra)a∈Act, (Ua)a∈Agt,V), where for every agent a ∈ Agt, Ua =

{A1,A2, . . .} (for all Aj ,Ak ∈ Ua, j ̸= k implies L(Aj) ∩ L(Ak) = ∅).

Definition (Semantics of LU
reg).

S, s ⊩ Kha(ψ,φ) iff there exists A ∈ Ua such that, for every σ ∈ L(A):

1 JψKS ⊆ SE(σ), and
2 for every t ∈ JψKS , Rσ(t) ⊆ JφKS (JχKS def

= {t | S, t ⊩ χ}).

Theorem

Model checking LU
reg is in PTime.

Proof strategy: Algorithm based on reachability checks of a product

graph (S ×A).

11

Constrained Plans - Regularity

Let S = (S, (Ra)a∈Act, (Ua)a∈Agt,V), where for every agent a ∈ Agt, Ua =

{A1,A2, . . .} (for all Aj ,Ak ∈ Ua, j ̸= k implies L(Aj) ∩ L(Ak) = ∅).

Definition (Semantics of LU
reg).

S, s ⊩ Kha(ψ,φ) iff there exists A ∈ Ua such that, for every σ ∈ L(A):

1 JψKS ⊆ SE(σ), and
2 for every t ∈ JψKS , Rσ(t) ⊆ JφKS (JχKS def

= {t | S, t ⊩ χ}).

Theorem

Model checking LU
reg is in PTime.

Proof strategy: Algorithm based on reachability checks of a product

graph (S ×A).

11

Constrained Plans - Regularity

Let S = (S, (Ra)a∈Act, (Ua)a∈Agt,V), where for every agent a ∈ Agt, Ua =

{A1,A2, . . .} (for all Aj ,Ak ∈ Ua, j ̸= k implies L(Aj) ∩ L(Ak) = ∅).

Definition (Semantics of LU
reg).

S, s ⊩ Kha(ψ,φ) iff there exists A ∈ Ua such that, for every σ ∈ L(A):

1 JψKS ⊆ SE(σ), and
2 for every t ∈ JψKS , Rσ(t) ⊆ JφKS (JχKS def

= {t | S, t ⊩ χ}).

Theorem

Model checking LU
reg is in PTime.

Proof strategy: Algorithm based on reachability checks of a product

graph (S ×A).

11

Constrained Plans - Regularity

Let S = (S, (Ra)a∈Act, (Ua)a∈Agt,V), where for every agent a ∈ Agt, Ua =

{A1,A2, . . .} (for all Aj ,Ak ∈ Ua, j ̸= k implies L(Aj) ∩ L(Ak) = ∅).

Definition (Semantics of LU
reg).

S, s ⊩ Kha(ψ,φ) iff there exists A ∈ Ua such that, for every σ ∈ L(A):

1 JψKS ⊆ SE(σ), and
2 for every t ∈ JψKS , Rσ(t) ⊆ JφKS (JχKS def

= {t | S, t ⊩ χ}).

Theorem

Model checking LU
reg is in PTime.

Proof strategy: Algorithm based on reachability checks of a product

graph (S ×A).

11

Adding budgets

In many situations, actions have costs (and executions must stay

within a certain budget).

Consider a function wf : S×Act → Zr , for some r ≥ 0 (a number

of resources).

Khb⃗(ψ,φ): knowing how to make φ true, given ψ, with budget b⃗.

Theorem

1 Model-checking LU
reg + budgets: PTime.

Proof strategy: Non-safety problem in Vector Addition Systems (VASS).

2 Model-checking Lkh + budgets: ExpSpace-hard (no upper-bound).

Proof strategy: Reduction from the control-state reachability problem

for VASS.

12

Adding budgets

In many situations, actions have costs (and executions must stay

within a certain budget).

Consider a function wf : S×Act → Zr , for some r ≥ 0 (a number

of resources).

Khb⃗(ψ,φ): knowing how to make φ true, given ψ, with budget b⃗.

Theorem

1 Model-checking LU
reg + budgets: PTime.

Proof strategy: Non-safety problem in Vector Addition Systems (VASS).

2 Model-checking Lkh + budgets: ExpSpace-hard (no upper-bound).

Proof strategy: Reduction from the control-state reachability problem

for VASS.

12

Adding budgets

In many situations, actions have costs (and executions must stay

within a certain budget).

Consider a function wf : S×Act → Zr , for some r ≥ 0 (a number

of resources).

Khb⃗(ψ,φ): knowing how to make φ true, given ψ, with budget b⃗.

Theorem

1 Model-checking LU
reg + budgets: PTime.

Proof strategy: Non-safety problem in Vector Addition Systems (VASS).

2 Model-checking Lkh + budgets: ExpSpace-hard (no upper-bound).

Proof strategy: Reduction from the control-state reachability problem

for VASS.

12

Final remarks

We studied complexity of model-checking for ability-based logics.

Linear plans ([Wang (2015)]).

Regularity constraints (ext. [Areces et al. (2021)]).

Budget constraints.

Results for variant logics.

Future work:

Exact complexity of Lkh + budgets.

Other constraints (e.g. non linear plans).

Other semantics for knowing how (e.g. [Fervari et al. (2017)]).

13

Final remarks

We studied complexity of model-checking for ability-based logics.

Linear plans ([Wang (2015)]).

Regularity constraints (ext. [Areces et al. (2021)]).

Budget constraints.

Results for variant logics.

Future work:

Exact complexity of Lkh + budgets.

Other constraints (e.g. non linear plans).

Other semantics for knowing how (e.g. [Fervari et al. (2017)]).

13

