Model-Checking for Ability-Based Logics with
Constrained Plans

Stéphane Demri' & Raul Fervari*?

LUniversité Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France
ZFAMAF, Universidad Nacional de Cérdoba / CONICET, Argentina

3Guangdong Technion - Israel Institute of Technology, China

37th AAAI Conference on Artificial Intelligence (AAAI-23) - 2023

Ability-Based Logics

Formal foundations for strategic reasoning and epistemic planning.
[van Dimarsch et al., (2015)]

A realm of logics featuring abilities:

@ Propositional Dynamic Logic. [Pratt (1976), Harel (1984)]
@ Knowledge and action. [Moore (1985)]
@ STIT (sees to it at) logics. [Belnap & Perloff (1988)]

Knowledge modalities and abilities. [van der Hoek & Lomuscio (2003)]

[Herzig & Troquard (2006)]

Knowing how logics. [Wang (2015)]

[Areces et al. (2021)]

Our Motivations

@ Knowing how + numerical constraints and/or regularity constraints.
@ Model checking (instead of satisfiability /validity):
e better reflects expressivity.

@ Connections with formal language theory.

A Simple Logic of Knowing How - Models

Definition (Models). |
An LTS is a tuple S = (S, (Ra)acAct, V) where:

@ S is a countable set of states oV :S — 2Prop

@ R, CS xS, for each a € Act.

A Simple Logic of Knowing How - Models

Definition (Models). |
An LTS is a tuple S = (S, (Ra)acAct, V) where:

@ S is a countable set of states oV :S — 2Prop

@ R, CS xS, for each a € Act.

a
S1
a

-
O

sS4

A Simple Logic of Knowing How - Models

Definition (Models). |
An LTS is a tuple S = (S, (Ra)acAct, V) where:

@ S is a countable set of states oV :S — 2Prop

@ R, CS xS, for each a € Act.

B b 53
g : @ A transition a from s; to s, is read

= ®< as “after executing action a at state
& O s1, the agent reaches state s,".

sS4

A Simple Logic of Knowing How - Models

Definition (Models). |
An LTS is a tuple S = (S, (Ra)acAct, V) where:

@ S is a countable set of states oV :S — 2Prop

@ R, CS xS, for each a € Act.

B b 53
g : @ A transition a from s; to s, is read

= ®< as “after executing action a at state
& O s1, the agent reaches state s,".

sS4

For a set of actions Act, a plan o is an element from Act™ (finite sequences
of symbols from Act, such as a, ab and the empty plan €).

Strong executability

A plan must be fail-proof: each partial execution must be completed.

L

a
. ®< ab is not SE at s
1

a

O

sS4

Strong executability

A plan must be fail-proof: each partial execution must be completed.

L

a
. ®< ab is not SE at s
a O We say that (s1,53) € Rab (53 € Rap(s1)).

sS4

Strong executability

A plan must be fail-proof: each partial execution must be completed.

L

a
. ®< ab is not SE at s;
a O We say that (s1,3) € Rap (53 € Ran(51)).

sS4

Definition (SE). |
A plan o € Act” is strongly executable (SE) at s € S iff for all k € [0, |o| — 1]
and t € Ry, (s), we have R,pqy(t) # 0.

Define the set: SE(o) &f {s €S| o isSE at s}.

A Simple Logic of Knowing How - £,

Definition (Syntax of Lyp).

pu=plopleVe|Kh(e)
Kh(1),): “whenever ¢ holds, the agent knows how to achieve ¢”.

A Simple Logic of Knowing How - £,

Definition (Syntax of Lyp).
pu=plopleVe|Khp e)

Kh(1),): “whenever ¢ holds, the agent knows how to achieve ¢”.

Definition (Semantics).
S,slkp iff peV(s)

A Simple Logic of Knowing How - £,

Definition (Syntax of Lyp).

pu=plopleVe|Kh(e)
Kh(1),): “whenever ¢ holds, the agent knows how to achieve ¢”.

Definition (Semantics).
S,slkp iff peV(s)
S, sk Kh(¢,) iff there exists a plan o € Act™ such that:
O [v]° C SE(o), and
@ for every t € [¥]°, R, (t) C [¢]°,
where: [x]S £ {t|S,tIF x}.

S, s1 - Kh(p,r)

S, s1 - Kh(p,r)

b the plan a is SE s; (the only p-state), and
a @ @ takes the agent from p only to r-states.

S1

S1

S, s1 - Kh(p,r)
the plan a is SE s; (the only p-state), and
takes the agent from p only to r-states.

8,511/ Kh(p, q)

S1

S, s1 - Kh(p,r)
the plan a is SE s; (the only p-state), and
takes the agent from p only to r-states.

5,1 I¥ Kh(p, q)
- ¢ and a: are SE at s; (p-state),
but do not lead to g;

S, s1 - Kh(p,r)

b the plan a is SE s; (the only p-state), and
a @ @ takes the agent from p only to r-states.
s1
S 8,511 Kh(p, q)
@ - ¢ and a: are SE at s; (p-state),
4 but do not lead to g;

- ab is not SE at s;.

Complexity of Model Checking

Theorem
The model checking problem for Ly, is PSpace-complete.

Proof Strategy. |

@ Lower bound: reduction from non-emptiness of the intersection of
Finite State Automata (PSpace-complete).

@ Upper Bound: PSpace algorithm, relying on a small plan property.

Lower bound - PSpace-hardness

Let A; and A, be two automata (the argument can be extended to n
automata):

b a
start —)m
P ~_2 7
2

Lower bound - PSpace-hardness

Let A; and A, be two automata (the argument can be extended to n

automata):
b 2 b 2

VS

start —>(qo 2 @ : @ init 2 O - &

g

A W :> b
b a b a

_, ’
_/v \i/ S

Az

Lower bound - PSpace-hardness

Let A; and A, be two automata (the argument can be extended to n

automata):
b 2 b 2
VS
start —>(qo 2 @ 2 @ init 2 O . &
S
A W :> b
b a b a
/Z\& Cl S
_, :
_/v \i/
Ao s
Lemma.

L(A;) NL(Ap) # 0 if and only if S, s I+ Kh(init, fin).

PSpace upper bound

» Based on a small plan property.

10

PSpace upper bound

» Based on a small plan property. Let s a state in an LTS. Then:

Lemma.
The set Ly = {0 | s € SE(0)} is a regular language.

10

PSpace upper bound

» Based on a small plan property. Let s a state in an LTS. Then:

Lemma.
The set Ly = {0 | s € SE(0)} is a regular language.

» We intersect L with the set of plans witnessing a formula Kh(%, ¢):

Lemma. |
S, s IF Kh(y,) iff there is a plan o of exponential size, witnessing the
truth of Kh(v,).

10

PSpace upper bound

» Based on a small plan property. Let s a state in an LTS. Then:

Lemma.
The set Ly = {0 | s € SE(0)} is a regular language.

» We intersect L with the set of plans witnessing a formula Kh(%, ¢):

Lemma. |

S, s IF Kh(y,) iff there is a plan o of exponential size, witnessing the
truth of Kh(v,).

Corollary.
Checking S, s I Kh(#, ¢) can be done in polynomial space.

10

Constrained Plans - Regularity

Let S = (S, (Ra)aeact; (Ua)acngt, V), where for every agent a € Agt, U, =
{A1, Ao, ...} (for all Aj, Ay € Uq, j # k implies L(A;) N L(Ax) = 0).

11

Constrained Plans - Regularity

Let S = (S, (Ra)aeact; (Ua)acngt, V), where for every agent a € Agt, U, =
{A1, Ao, ...} (for all Aj, Ay € Uq, j # k implies L(A;) N L(Ax) = 0).

Definition (Semantics of £/,). |

S,s Ik Kha(1, @) iff there exists A € U, such that, for every o € L(A):

© [¥]° C SE(s), and
@ forevery t € [, Ry(t) C [0 ([x]° € {t St x}).

11

Constrained Plans - Regularity

Let S = (S, (Ra)aeact; (Ua)acngt, V), where for every agent a € Agt, U, =
{A1, Ao, ...} (for all Aj, Ay € Uq, j # k implies L(A;) N L(Ax) = 0).

Definition (Semantics of £/,). |

S,s Ik Kha(1, @) iff there exists A € U, such that, for every o € L(A):

© [¥]° C SE(s), and
@ forevery t € [, Ry(t) C [0 ([x]° € {t St x}).

Theorem

Model checking ﬁreg is in PTime.

11

Constrained Plans - Regularity

Let S = (S, (Ra)acact; (Ua)acagt, V), where for every agent a € Agt, U, =
{A1, Ao, ...} (for all Aj, Ay € Uq, j # k implies L(A;) N L(Ax) = 0).

Definition (Semantics of £/,). |

S,s Ik Kha(1, @) iff there exists A € U, such that, for every o € L(A):

© [¥]° C SE(s), and
@ forevery t € [, Ry(t) C [0 ([x]° € {t St x}).

Theorem

Model checking ﬁreg is in PTime.

Proof strategy: Algorithm based on reachability checks of a product
graph (S x A).

11

Adding budgets

@ In many situations, actions have costs (and executions must stay
within a certain budget).

@ Consider a function wf : S xAct — Z', for some r > 0 (a number

of resources).

° Kh5(¢, ©): knowing how to make ¢ true, given 1, with budget b.

12

Adding budgets

@ In many situations, actions have costs (and executions must stay
within a certain budget).

@ Consider a function wf : S xAct — Z', for some r > 0 (a number

of resources).

° Kh5(¢, ©): knowing how to make ¢ true, given 1, with budget b.

Theorem |

© Model-checking ﬁgg + budgets: PTime.

Proof strategy: Non-safety problem in Vector Addition Systems (VASS).

12

Adding budgets

@ In many situations, actions have costs (and executions must stay

within a certain budget).

@ Consider a function wf : S xAct — Z', for some r > 0 (a number

of resources).

° Kh5(¢, ©): knowing how to make ¢ true, given 1, with budget b.

Theorem |
© Model-checking LY, + budgets: PTime.

reg

Proof strategy: Non-safety problem in Vector Addition Systems (VASS).

@ Model-checking Ly, + budgets: ExpSpace-hard (no upper-bound).

Proof strategy: Reduction from the control-state reachability problem
for VASS.

12

Final remarks

@ We studied complexity of model-checking for ability-based logics.

Linear plans ([Wang (2015)]).
Regularity constraints (ext. [Areces et al. (2021)]).

Budget constraints.

Results for variant logics.

13

Final remarks

@ We studied complexity of model-checking for ability-based logics.

Linear plans ([Wang (2015)]).
Regularity constraints (ext. [Areces et al. (2021)]).

Budget constraints.

Results for variant logics.
@ Future work:

e Exact complexity of L4, + budgets.
o Other constraints (e.g. non linear plans).
o Other semantics for knowing how (e.g. [Fervari et al. (2017)]).

13

