
Updating Knowing How

Raul Fervari

Logics, Interaction and Intelligent Systems Group (LIIS),

FAMAF-UNC / CONICET, Argentina

(Joint work with C. Areces, A. Saravia, F. Velázquez-Quesada)

FM&AI Working Group - LMF - France - 2023

1

The concept(s) of knowledge

• Usually, epistemic logic is about “knowing that” (Hintikka 1962):

◦ John knows that it is raining in Paris,

◦ the robot knows that it is standing next to a wall...

◦ Typically, modal formulas Kiφ expressing “agent i knows that φ”.

• Study other patterns of reasoning:

◦ knowing why,

◦ knowing whether,

◦ knowing who,

◦ knowing how.

2

The concept(s) of knowledge

• Usually, epistemic logic is about “knowing that” (Hintikka 1962):

◦ John knows that it is raining in Paris,

◦ the robot knows that it is standing next to a wall...

◦ Typically, modal formulas Kiφ expressing “agent i knows that φ”.

• Study other patterns of reasoning:

◦ knowing why,

◦ knowing whether,

◦ knowing who,

◦ knowing how.

2

The concept(s) of knowledge

• Usually, epistemic logic is about “knowing that” (Hintikka 1962):

◦ John knows that it is raining in Paris,

◦ the robot knows that it is standing next to a wall...

◦ Typically, modal formulas Kiφ expressing “agent i knows that φ”.

• Study other patterns of reasoning:

◦ knowing why,

◦ knowing whether,

◦ knowing who,

◦ knowing how.

2

Knowing How

• Autonomous agent: intelligent entities operating in a given environ-

ment (perception, decision making, etc).

• Related to the abilities of the agents to achieve a certain goal.

• Inspired by AI planning.

• Interpreted as: there exists a proper course of action (sequence of

actions) that the agent can take to achieve the goal.

◦ What “proper” means?

◦ Different costs?

◦ How to update the agents’ knowledge (how)?

3

Knowing How

• Autonomous agent: intelligent entities operating in a given environ-

ment (perception, decision making, etc).

• Related to the abilities of the agents to achieve a certain goal.

• Inspired by AI planning.

• Interpreted as: there exists a proper course of action (sequence of

actions) that the agent can take to achieve the goal.

◦ What “proper” means?

◦ Different costs?

◦ How to update the agents’ knowledge (how)?

3

History of Knowing How Approaches

• Knowing that + Abilities (Lespérance et al. 2000), (Herzig & Tro-

quard 2006), etc.

• A single binary modality for knowing how Kh(ψ,φ) and variants:

(Wang 2015).

• Knowing how + knowing that (Fervari et al. 2017).

• Semantics based on indistinguishability/uncertainty between plans

(Areces et al. 2021).

We argue the latter enables us to develop a full theory of epistemic logic

of knowing how.

4

History of Knowing How Approaches

• Knowing that + Abilities (Lespérance et al. 2000), (Herzig & Tro-

quard 2006), etc.

• A single binary modality for knowing how Kh(ψ,φ) and variants:

(Wang 2015).

• Knowing how + knowing that (Fervari et al. 2017).

• Semantics based on indistinguishability/uncertainty between plans

(Areces et al. 2021).

We argue the latter enables us to develop a full theory of epistemic logic

of knowing how.

4

Models: Labelled Transition Systems (LTSs)

An LTS is a tuple S = ⟨S, {Ra}a∈Act,V⟩ where:

• S is a countable set of states • V : Prop → 2S

• Ra ⊆ S×S, for each a ∈ Act.

pw1

w2

q
w3

w4

a

a

b

A transition a from w1 to w2 is read as “after executing action a at state

w1, the agent reaches state w2”.

For a set of actions Act, a plan σ is an element from Act∗ (finite sequences

of symbols from Act, such as a, ab and the empty plan ϵ).

5

Models: Labelled Transition Systems (LTSs)

An LTS is a tuple S = ⟨S, {Ra}a∈Act,V⟩ where:

• S is a countable set of states • V : Prop → 2S

• Ra ⊆ S×S, for each a ∈ Act.

pw1

w2

q
w3

w4

a

a

b

A transition a from w1 to w2 is read as “after executing action a at state

w1, the agent reaches state w2”.

For a set of actions Act, a plan σ is an element from Act∗ (finite sequences

of symbols from Act, such as a, ab and the empty plan ϵ).

5

Models: Labelled Transition Systems (LTSs)

An LTS is a tuple S = ⟨S, {Ra}a∈Act,V⟩ where:

• S is a countable set of states • V : Prop → 2S

• Ra ⊆ S×S, for each a ∈ Act.

pw1

w2

q
w3

w4

a

a

b

A transition a from w1 to w2 is read as “after executing action a at state

w1, the agent reaches state w2”.

For a set of actions Act, a plan σ is an element from Act∗ (finite sequences

of symbols from Act, such as a, ab and the empty plan ϵ).

5

Models: Labelled Transition Systems (LTSs)

An LTS is a tuple S = ⟨S, {Ra}a∈Act,V⟩ where:

• S is a countable set of states • V : Prop → 2S

• Ra ⊆ S×S, for each a ∈ Act.

pw1

w2

q
w3

w4

a

a

b

A transition a from w1 to w2 is read as “after executing action a at state

w1, the agent reaches state w2”.

For a set of actions Act, a plan σ is an element from Act∗ (finite sequences

of symbols from Act, such as a, ab and the empty plan ϵ).
5

Strong executability

A plan must be fail-proof: each partial execution must be completed.

pw1

w2

q

w3

w4

a

a

b

ab is not SE at w1

Definition:

A plan σ is strongly executable (SE) at u ∈ S iff for all partial

execution of σ from u, such an execution can be completed.

6

Strong executability

A plan must be fail-proof: each partial execution must be completed.

pw1

w2

q

w3

w4

a

a

b

ab is not SE at w1

Definition:

A plan σ is strongly executable (SE) at u ∈ S iff for all partial

execution of σ from u, such an execution can be completed.

6

Towards an epistemic logic of knowing how

There are many reasons to not knowing how. What if...

• The agent is not aware of the existence of certain plans?

• The agent is not able to distinguish certain plan from another?

• The agent does not care about the difference among certain plans?

We introduced the notion of epistemic indistinguishability at the level of

plans, to fix these issues (Areces et al. 2021).

7

Towards an epistemic logic of knowing how

There are many reasons to not knowing how. What if...

• The agent is not aware of the existence of certain plans?

• The agent is not able to distinguish certain plan from another?

• The agent does not care about the difference among certain plans?

We introduced the notion of epistemic indistinguishability at the level of

plans, to fix these issues (Areces et al. 2021).

7

Towards an epistemic logic of knowing how

There are many reasons to not knowing how. What if...

• The agent is not aware of the existence of certain plans?

• The agent is not able to distinguish certain plan from another?

• The agent does not care about the difference among certain plans?

We introduced the notion of epistemic indistinguishability at the level of

plans, to fix these issues (Areces et al. 2021).

7

Towards an epistemic logic of knowing how

There are many reasons to not knowing how. What if...

• The agent is not aware of the existence of certain plans?

• The agent is not able to distinguish certain plan from another?

• The agent does not care about the difference among certain plans?

We introduced the notion of epistemic indistinguishability at the level of

plans, to fix these issues (Areces et al. 2021).

7

Uncertainty-based LTS (LTSU)

An LTSU is a tuple S = ⟨S, {Ra}a∈Act, {∼i}i∈Agt,V⟩ where:

• ⟨S, {Ra}a∈Act,V⟩ is an LTS,

• ∼i is an equivalence relation over a non-empty set of plans, for each

i ∈ Agt (a set of agent symbols).

pw1

r

w2

q
w3

r
w4

a ∼i ab
a

a

b

We call Ui the set of equivalence classes (over plans) by ∼i .

8

Uncertainty-based LTS (LTSU)

An LTSU is a tuple S = ⟨S, {Ra}a∈Act, {∼i}i∈Agt,V⟩ where:

• ⟨S, {Ra}a∈Act,V⟩ is an LTS,

• ∼i is an equivalence relation over a non-empty set of plans, for each

i ∈ Agt (a set of agent symbols).

pw1

r

w2

q
w3

r
w4

a ∼i ab
a

a

b

We call Ui the set of equivalence classes (over plans) by ∼i .

8

Semantics over LTSU

Definition (LKhi over LTSU).

Formulas of the language LKhi are given by

φ ::= p | ¬φ | φ ∨ φ | Khi (φ,φ),

with p ∈ Prop, and i ∈ Agt and a ∈ Act.

Khi (ψ,φ) is read as “agent i

knows how to achieve φ given ψ”.

S,w |= Khi (ψ,φ) iff there exists a set of plans π ∈ Ui such that:

1. each plan in π is SE at every ψ-state; and

2. from ψ-states, each plan in π always ends at φ-states.

Property:

Define Aφ :=
∨

i∈Agt Khi (¬φ,⊥), we have:

S,w |= Aφ iff for all v , S, v |= φ;

i.e., A is the standard universal modality (and its dual: Eφ := ¬A¬φ).

9

Semantics over LTSU

Definition (LKhi over LTSU).

Formulas of the language LKhi are given by

φ ::= p | ¬φ | φ ∨ φ | Khi (φ,φ),

with p ∈ Prop, and i ∈ Agt and a ∈ Act. Khi (ψ,φ) is read as “agent i

knows how to achieve φ given ψ”.

S,w |= Khi (ψ,φ) iff there exists a set of plans π ∈ Ui such that:

1. each plan in π is SE at every ψ-state; and

2. from ψ-states, each plan in π always ends at φ-states.

Property:

Define Aφ :=
∨

i∈Agt Khi (¬φ,⊥), we have:

S,w |= Aφ iff for all v , S, v |= φ;

i.e., A is the standard universal modality (and its dual: Eφ := ¬A¬φ).

9

Semantics over LTSU

Definition (LKhi over LTSU).

Formulas of the language LKhi are given by

φ ::= p | ¬φ | φ ∨ φ | Khi (φ,φ),

with p ∈ Prop, and i ∈ Agt and a ∈ Act. Khi (ψ,φ) is read as “agent i

knows how to achieve φ given ψ”.

S,w |= Khi (ψ,φ) iff there exists a set of plans π ∈ Ui such that:

1. each plan in π is SE at every ψ-state; and

2. from ψ-states, each plan in π always ends at φ-states.

Property:

Define Aφ :=
∨

i∈Agt Khi (¬φ,⊥), we have:

S,w |= Aφ iff for all v , S, v |= φ;

i.e., A is the standard universal modality (and its dual: Eφ := ¬A¬φ).

9

Semantics over LTSU

Definition (LKhi over LTSU).

Formulas of the language LKhi are given by

φ ::= p | ¬φ | φ ∨ φ | Khi (φ,φ),

with p ∈ Prop, and i ∈ Agt and a ∈ Act. Khi (ψ,φ) is read as “agent i

knows how to achieve φ given ψ”.

S,w |= Khi (ψ,φ) iff there exists a set of plans π ∈ Ui such that:

1. each plan in π is SE at every ψ-state; and

2. from ψ-states, each plan in π always ends at φ-states.

Property:

Define Aφ :=
∨

i∈Agt Khi (¬φ,⊥), we have:

S,w |= Aφ iff for all v , S, v |= φ;

i.e., A is the standard universal modality (and its dual: Eφ := ¬A¬φ).
9

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Ui = {{a, ab}})

a ∼j a, ab ∼j ab (Uj = {{a}, {ab}})

a

a

b
S,w1 |= ¬Khi (p, r)

take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

S,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

10

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Ui = {{a, ab}})

a ∼j a, ab ∼j ab (Uj = {{a}, {ab}})

a

a

b
S,w1 |= ¬Khi (p, r)
take π = {a, ab}:

- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

S,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

10

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Ui = {{a, ab}})

a ∼j a, ab ∼j ab (Uj = {{a}, {ab}})

a

a

b
S,w1 |= ¬Khi (p, r)
take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

S,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

10

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Ui = {{a, ab}})

a ∼j a, ab ∼j ab (Uj = {{a}, {ab}})

a

a

b
S,w1 |= ¬Khi (p, r)
take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

S,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

10

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Ui = {{a, ab}})

a ∼j a, ab ∼j ab (Uj = {{a}, {ab}})

a

a

b
S,w1 |= ¬Khi (p, r)
take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

S,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

10

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Ui = {{a, ab}})

a ∼j a, ab ∼j ab (Uj = {{a}, {ab}})

a

a

b
S,w1 |= ¬Khi (p, r)
take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

S,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

10

Example

pw1

r

w2

q

w3

r
w4

a ∼i ab (Ui = {{a, ab}})

a ∼j a, ab ∼j ab (Uj = {{a}, {ab}})

a

a

b
S,w1 |= ¬Khi (p, r)
take π = {a, ab}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- ab is not SE at w1 (p-state).

- thus, π = {a, ab} is not SE at w1.

S,w1 |= Khj (p, r)

take π′ = {a}:
- a is SE at w1 (p-state), and

takes from p-states to r -states.

- thus, π′ = {a} works as a witness.

10

Ontic Updates vs. Epistemic Updates

• Updating the LTS = update what an agent can do.

• Updating the relation ∼i (or the set Ui) = epistemic updates (affec-

ting the “knowing how”).

• Proposal: refining the indistinguishability between plans, i.e., making

plans distinguishable for the agent.

11

Ontic Updates vs. Epistemic Updates

• Updating the LTS = update what an agent can do.

• Updating the relation ∼i (or the set Ui) = epistemic updates (affec-

ting the “knowing how”).

• Proposal: refining the indistinguishability between plans, i.e., making

plans distinguishable for the agent.

11

Epistemic updates: Refinement (LRef)

Definition (LRef formulas)

φ ::= p | ¬φ | φ ∨ φ | Khi (φ,φ) | ⟨σ1 ̸∼σ2⟩φ

⟨σ ̸∼σ2⟩φ: “After it is stated that plans σ1 and σ2 are distinguishable, φ

holds.”

12

Epistemic updates: Refinement (LRef)

Definition (LRef formulas)

φ ::= p | ¬φ | φ ∨ φ | Khi (φ,φ) | ⟨σ1 ̸∼σ2⟩φ

⟨σ ̸∼σ2⟩φ: “After it is stated that plans σ1 and σ2 are distinguishable, φ

holds.”

12

Epistemic updates: Refinement (LRef) (cont.)

pw1

r

w2

q

w3

r
w4

a

a

b

Ui = {{a}, {b}}, Uj = {{a, b}}

• S,w |= Khi (p, r) and S,w |= ⟨a ̸∼ b⟩Khi (p, r).

◦ preserves knowledge

• S,w ̸|= Khj(p, r) but S,w |= ⟨a ̸∼ b⟩Khj(p, r);

◦ generates new knowledge

13

Epistemic updates: Refinement (LRef) (cont.)

pw1

r

w2

q

w3

r
w4

a

a

b

Ui = {{a}, {b}}, Uj = {{a, b}}

• S,w |= Khi (p, r) and S,w |= ⟨a ̸∼ b⟩Khi (p, r).

◦ preserves knowledge

• S,w ̸|= Khj(p, r) but S,w |= ⟨a ̸∼ b⟩Khj(p, r);

◦ generates new knowledge

13

Epistemic updates: Refinement (LRef) (cont.)

pw1

r

w2

q

w3

r
w4

a

a

b

Ui = {{a}, {b}}, Uj = {{a, b}}

• S,w |= Khi (p, r) and S,w |= ⟨a ̸∼ b⟩Khi (p, r).

◦ preserves knowledge

• S,w ̸|= Khj(p, r)

but S,w |= ⟨a ̸∼ b⟩Khj(p, r);

◦ generates new knowledge

13

Epistemic updates: Refinement (LRef) (cont.)

pw1

r

w2

q

w3

r
w4

a

a

b

Ui = {{a}, {b}}, Uj = {{a}, {b}}

• S,w |= Khi (p, r) and S,w |= ⟨a ̸∼ b⟩Khi (p, r).

◦ preserves knowledge

• S,w ̸|= Khj(p, r) but S,w |= ⟨a ̸∼ b⟩Khj(p, r);

◦ generates new knowledge

13

Epistemic updates: Refinement (LRef) (cont.)

pw1

r

w2

q

w3

r
w4

a

a

b

Ui = {{a}, {b}}, Uj = {{a}, {b}}

• S,w |= Khi (p, r) and S,w |= ⟨a ̸∼ b⟩Khi (p, r).

◦ preserves knowledge

• S,w ̸|= Khj(p, r) but S,w |= ⟨a ̸∼ b⟩Khj(p, r);

◦ generates new knowledge

13

Expressivity

Property:

LRef is more expressive than LKhi .

Proof: Let S and S ′ be the LTSs below, with Ui := {{a}} and U′
i :=

{{a, b}}:

pwS
qa

a

pw ′
qa

b
S ′

S,w |= ¬⟨a ̸∼ b⟩Khi (p, q) while S ′,w |= ⟨a ̸∼ b⟩Khi (p, q).

14

Expressivity

Property:

LRef is more expressive than LKhi .

Proof: Let S and S ′ be the LTSs below, with Ui := {{a}} and U′
i :=

{{a, b}}:

pwS
qa

a

pw ′
qa

b
S ′

S,w |= ¬⟨a ̸∼ b⟩Khi (p, q) while S ′,w |= ⟨a ̸∼ b⟩Khi (p, q).

14

Uniform substitution

Uniform substitution is an standard property in axiomatizing the logic.

If φ is valid, then φ[p/ψ] is also valid.

Property:

Uniform substitution fails in LRef .

Proof:

Take the formula φ = p → ⟨a ̸∼ b⟩p, and the LTSU S below, with

Ui = {{a, b}}:

pwS
qa

b

Replace p by ¬Khi (p, q): ¬Khi (p, q) → ⟨a ̸∼ b⟩¬Khi (p, q) is not valid.

15

Uniform substitution

Uniform substitution is an standard property in axiomatizing the logic.

If φ is valid, then φ[p/ψ] is also valid.

Property:

Uniform substitution fails in LRef .

Proof:

Take the formula φ = p → ⟨a ̸∼ b⟩p, and the LTSU S below, with

Ui = {{a, b}}:

pwS
qa

b

Replace p by ¬Khi (p, q): ¬Khi (p, q) → ⟨a ̸∼ b⟩¬Khi (p, q) is not valid.

15

Uniform substitution

Uniform substitution is an standard property in axiomatizing the logic.

If φ is valid, then φ[p/ψ] is also valid.

Property:

Uniform substitution fails in LRef .

Proof:

Take the formula φ = p → ⟨a ̸∼ b⟩p, and the LTSU S below, with

Ui = {{a, b}}:

pwS
qa

b

Replace p by ¬Khi (p, q): ¬Khi (p, q) → ⟨a ̸∼ b⟩¬Khi (p, q) is not valid.

15

Uniform substitution

Uniform substitution is an standard property in axiomatizing the logic.

If φ is valid, then φ[p/ψ] is also valid.

Property:

Uniform substitution fails in LRef .

Proof:

Take the formula φ = p → ⟨a ̸∼ b⟩p, and the LTSU S below, with

Ui = {{a, b}}:

pwS
qa

b

Replace p by ¬Khi (p, q): ¬Khi (p, q) → ⟨a ̸∼ b⟩¬Khi (p, q) is not valid.

15

Challenges

• This kind of updates increase the expressive power:

◦ Failure of uniform substitution.

◦ No reduction axioms.

• Quite challenging to obtain axiomatizations.

• (A) solution: extend the expressivity of the underlying static language.

16

Challenges

• This kind of updates increase the expressive power:

◦ Failure of uniform substitution.

◦ No reduction axioms.

• Quite challenging to obtain axiomatizations.

• (A) solution: extend the expressivity of the underlying static language.

16

Proposal: A Knowing How Logic with Explicit Actions

Definition (LKhi ,□)

Formulas of the language LKhi ,□ are given by

φ ::= p | ¬φ | φ ∨ φ | Khi (φ,φ) | [a]φ,

with p ∈ Prop, i ∈ Agt and a ∈ Act. Define: ⟨a⟩φ := ¬[a]¬φ.

Definition

S,w |= [a]φ iff for all v s.t. (w , v) ∈ Ra, S, v |= φ.

17

Action Refinement

Definition (LKhi ,□,[!])

S,w |= [!a]φ iff Sa,w |= φ,

where a ∈ Act and Sa is as S, except that for all i ∈ Agt we have:

• Ua
i = (Ui \π) ∪ {{a}}, if a ∈ π;

• Ua
i = Ui ∪ {{a}}, otherwise.

Let S be such that Ui := {{a, b}}.

pwS
q

a

b

S,w ̸|= Khi (p, q) and S,w |= [!b]Khi (p, q).

18

Action Refinement

Definition (LKhi ,□,[!])

S,w |= [!a]φ iff Sa,w |= φ,

where a ∈ Act and Sa is as S, except that for all i ∈ Agt we have:

• Ua
i = (Ui \π) ∪ {{a}}, if a ∈ π;

• Ua
i = Ui ∪ {{a}}, otherwise.

Let S be such that Ui := {{a, b}}.

pwS
q

a

b

S,w ̸|= Khi (p, q) and S,w |= [!b]Khi (p, q).

18

Reduction Axioms

1. [!a]p ↔ p

2. [!a]¬φ1 ↔ ¬[!a]φ1

3. [!a](φ1 ∨ φ2) ↔ ([!a]φ1 ∨ [!a]φ2)

4. [!a][a]φ1 ↔ [a][!a]φ1

5. [!a]Khi (φ1, φ2) ↔ (Khi ([!a]φ1, [!a]φ2)∨
A([!a]φ1 → (⟨a⟩⊤ ∧ [a][!a]φ2)))

Via reduction axioms, we can eliminate all the occurrences of a [!a] moda-

lity (i.e., embed LKhi ,□,[!] into LKhi ,□).

19

Reduction Axioms

1. [!a]p ↔ p

2. [!a]¬φ1 ↔ ¬[!a]φ1

3. [!a](φ1 ∨ φ2) ↔ ([!a]φ1 ∨ [!a]φ2)

4. [!a][a]φ1 ↔ [a][!a]φ1

5. [!a]Khi (φ1, φ2) ↔ (Khi ([!a]φ1, [!a]φ2)∨
A([!a]φ1 → (⟨a⟩⊤ ∧ [a][!a]φ2)))

Via reduction axioms, we can eliminate all the occurrences of a [!a] moda-

lity (i.e., embed LKhi ,□,[!] into LKhi ,□).

19

Reduction Axioms

1. [!a]p ↔ p

2. [!a]¬φ1 ↔ ¬[!a]φ1

3. [!a](φ1 ∨ φ2) ↔ ([!a]φ1 ∨ [!a]φ2)

4. [!a][a]φ1 ↔ [a][!a]φ1

5. [!a]Khi (φ1, φ2) ↔ (Khi ([!a]φ1, [!a]φ2)∨
A([!a]φ1 → (⟨a⟩⊤ ∧ [a][!a]φ2)))

Via reduction axioms, we can eliminate all the occurrences of a [!a] moda-

lity (i.e., embed LKhi ,□,[!] into LKhi ,□).

19

Example

Let S be s.t. Ui := {{a, b}}, S,w ̸|= Khi (p, q) and S,w |= [!b]Khi (p, q).

pwS
q

a

b

S,w |= [!b]Khi (p, q) (5)

iff S,w |= Khi ([!b]p, [!b]q) ∨ A([!b]p → (⟨b⟩⊤ ∧ [b][!b]q)) (1)

iff S,w |= Khi (p, q) ∨ A(p → (⟨b⟩⊤ ∧ [b]q))

20

Example

Let S be s.t. Ui := {{a, b}}, S,w ̸|= Khi (p, q) and S,w |= [!b]Khi (p, q).

pwS
q

a

b

S,w |= [!b]Khi (p, q) (5)

iff S,w |= Khi ([!b]p, [!b]q) ∨ A([!b]p → (⟨b⟩⊤ ∧ [b][!b]q)) (1)

iff S,w |= Khi (p, q) ∨ A(p → (⟨b⟩⊤ ∧ [b]q))

20

Example

Let S be s.t. Ui := {{a, b}}, S,w ̸|= Khi (p, q) and S,w |= [!b]Khi (p, q).

pwS
q

a

b

S,w |= [!b]Khi (p, q) (5)

iff S,w |= Khi ([!b]p, [!b]q) ∨ A([!b]p → (⟨b⟩⊤ ∧ [b][!b]q)) (1)

iff S,w |= Khi (p, q) ∨ A(p → (⟨b⟩⊤ ∧ [b]q))

20

Axiomatization

Axioms Taut ⊢ φ for φ a propositional tautology

DistA ⊢ A(φ→ ψ) → (Aφ→ Aψ)

TA ⊢ Aφ→ φ

Dist□ ⊢ [a](φ→ ψ) → ([a]φ→ [a]ψ)

A□ ⊢ Aφ→ [a]φ

4KhA ⊢ Khi (ψ,φ) → AKhi (ψ,φ)

5KhA ⊢ ¬Khi (ψ,φ) → A¬Khi (ψ,φ)
KhE ⊢ (Eψ ∧ Khi (ψ,φ)) → Eφ

KhA ⊢ (A(χ→ ψ) ∧ Khi (ψ,φ) ∧ A(φ→ θ)) → Khi (χ, θ)

Rules MP From ⊢ φ and ⊢ φ→ ψ infer ⊢ ψ
NecA From ⊢ φ infer ⊢ Aφ

Theorem
1. The axiom system above is sound and complete for LKhi ,□.

2. The axiom system above + the reduction axioms is sound and complete for

LKhi ,□,[!].

21

Axiomatization

Axioms Taut ⊢ φ for φ a propositional tautology

DistA ⊢ A(φ→ ψ) → (Aφ→ Aψ)

TA ⊢ Aφ→ φ

Dist□ ⊢ [a](φ→ ψ) → ([a]φ→ [a]ψ)

A□ ⊢ Aφ→ [a]φ

4KhA ⊢ Khi (ψ,φ) → AKhi (ψ,φ)

5KhA ⊢ ¬Khi (ψ,φ) → A¬Khi (ψ,φ)
KhE ⊢ (Eψ ∧ Khi (ψ,φ)) → Eφ

KhA ⊢ (A(χ→ ψ) ∧ Khi (ψ,φ) ∧ A(φ→ θ)) → Khi (χ, θ)

Rules MP From ⊢ φ and ⊢ φ→ ψ infer ⊢ ψ
NecA From ⊢ φ infer ⊢ Aφ

Theorem
1. The axiom system above is sound and complete for LKhi ,□.

2. The axiom system above + the reduction axioms is sound and complete for

LKhi ,□,[!].

21

Final remarks

• Preliminary results have been included in (Areces et al.; DALI 2022).

• We extended the expressive power of uncertainty-based knowing how.

• We defined a dynamic modality to update the knowledge, and obtai-

ned reduction axioms.

• This idea can be adapted to arbitrary plans, not only actions (i.e.,

[!σ]φ, with σ ∈ Act∗).

• Reduction axioms for the general case.

• Future work: complexity of the logic, other updates.

22

